
Fair and Efficient Online Allocations with Normalized Valuations

Vasilis Gkatzelis,1 Alexandros Psomas, 2 Xizhi Tan 1

1 Drexel University
2 Purdue University

gkatz@drexel.edu, apsomas@cs.purdue.edu, xizhi@drexel.edu

Abstract
A set of divisible resources becomes available over a se-
quence of rounds and needs to be allocated immediately and
irrevocably. Our goal is to distribute these resources to maxi-
mize fairness and efficiency. Achieving any non-trivial guar-
antees in an adversarial setting is impossible. However, we
show that normalizing the agent values, a very common as-
sumption in fair division, allows us to escape this impossi-
bility. Our main result is an online algorithm for the case of
two agents that ensures the outcome is fair while guarantee-
ing 91.6% of the optimal social welfare. We also show that
this is near-optimal: there is no fair algorithm that guarantees
more than 93.3% of the optimal social welfare.

Introduction
We consider a basic problem in online fair division: a set
of divisible items become available over a sequence of T
rounds (one item per round), and in each round we need to
make an irrevocable decision regarding how to distribute the
corresponding item among a set N of n agents. The value
vit of each agent i for the item in round t is revealed at the
beginning of that round and our goal is to ensure that the
overall allocation at the end of the T rounds is fair and effi-
cient, despite the information limitations that we face.

Prior work on online resource allocation problems such as
the one above has mostly focused on maximizing efficiency.
In our setting, this could easily be achieved by fully allocat-
ing the item of each round t to the agent i with the largest
vit value. However, this approach can often lead to outcomes
that are patently unfair, which is unacceptable in many im-
portant real-world applications. For example, ensuring that
the outcome is fair is crucial for food banks that allocate
food each day to soup kitchens and other local charities de-
pending on the demand (Prendergast 2017), or software en-
gineering companies that distribute shared computational re-
sources among their employees (Gorokh et al. 2020).

Achieving fairness in such an online setting can be signif-
icantly more complicated than just maximizing efficiency.
This is mostly due to the fact that reaching a fair outcome
may require a more holistic view of the instance at hand.
For example, the fair-share property (also referred to as pro-
portionality in some contexts), one of the classic notions of

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fairness, requires that each of the n agents should eventu-
ally receive at least a 1/n fraction of their total value for all
the T items. But, agents who only value highly demanded
items are harder to satisfy than agents who value items of
low demand, and online algorithms may be unable to distin-
guish between these two types of agents soon enough. As a
result, designing efficient online algorithms that also satisfy
the fair-share property is an important, yet non-trivial, task.

In fact, it is easy to show that without imposing any nor-
malization on the agent values, essentially the only algo-
rithm that guarantees the fair-share property is the naive one
that equally splits every item among all agents (see the full
version of this paper for a proof). This yields an outcome that
is inefficient unless all agents happen to have the same val-
ues. But, the standard approach in fair division is to normal-
ize the agents’ values so that they add up to the same con-
stant (that constant is usually 1) (Aziz 2019). As we show in
this paper, this normalization is sufficient for us to escape the
strong impossibility result and achieve non-trivial efficiency
guarantees while satisfying the fair-share property.

Our Results and Techniques
With the exception of a few results in Section , all of our re-
sults focus on instances involving two agents, which already
pose several non-trivial obstacles.

We first consider the performance of non-adaptive on-
line algorithms, i.e., algorithms whose allocation decision
in each round t depends only on the agents’ values for item
t. A major benefit of these algorithms is that they need not
keep track of any additional information, making them easy
to implement. We focus on the interesting family of poly-
proportional algorithms that are parameterized by a value
p ≥ 0, and in each round t allocate to each agent i a frac-
tion of the item equal to vpit∑

j∈N vpjt
. For p = 0, we recover

the algorithm that splits each item equally among the agents
(which satisfies fair-share but can be inefficient), while for
p = ∞ we get the algorithm that allocates each item to the
agent with the highest value (which is efficient but violates
fair-share). Another well-studied algorithm from this family,
that is used widely in practice, is the proportional allocation
(or just proportional) algorithm, which corresponds to the
case p = 1. We show that this algorithm satisfies fair-share
and is a significant improvement in terms of efficiency: it

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5440

guarantees 82.8% of the optimal social welfare (Theorem 1).
As the value of the parameter p grows, the corresponding

poly-proportional algorithm allocates each item more “ag-
gressively”, i.e., a larger fraction goes to the agents with
the highest values. As a result, higher values of p lead
to increased efficiency, but may also lead to the violation
of the fair-share property. We precisely quantify this intu-
ition by first showing that for all p > 2 the correspond-
ing poly-proportional algorithm does not satisfy fair-share
(Lemma 1). Then, we show that the poly-proportional al-
gorithm with parameter p = 2, the quadratic-proportional
algorithm, satisfies fair-share and guarantees 89.4% of the
optimal social welfare (Theorem 2). As a result, we con-
clude that 89.4% is the optimal approximation achievable
by a poly-proportional algorithm that satisfies fair-share.

Moving beyond non-adaptive algorithms, we then study
the extent to which adaptivity could lead to even better ap-
proximation guarantees. With that goal in mind, we propose
the family of guarded poly-proportional algorithms, which
are a slight modification of the poly-proportional algorithm,
also parameterized by p. We show that every algorithm in
this family satisfies fair-share, and our main result is that the
guarded poly-proportional algorithm with p = 2.7 guaran-
tees 91.6% of the optimal social welfare (Theorem 3). On
the other hand, we prove that no fair-share algorithm (adap-
tive or non-adaptive) can achieve an approximation to the
optimal welfare better than 93.3% (Theorem 4), thus estab-
lishing that our positive result is near-optimal.

To prove our results, we leverage the fact that our algo-
rithms have a closed-form expression for the agents’ alloca-
tions and utilities. We can use this fact and write a mathemat-
ical program that computes the worst-case approximation to
the optimal welfare over all instances. We use variables vt
for the value of agent 1 for item t and λt for the ratio between
agents’ values. Even though this program is not itself convex
(so at first glance it’s unclear how useful it is), we show that
under a suitable choice of variables and constraints, fixing
some of the variables (i.e. treating them as constants) gives
a linear program with respect to the remaining variables.
The majority of the constraints in this LP are non-negativity
constraints, so, using the fundamental theorem of linear pro-
gramming we conclude that the worst-case instance only has
a few (two or three depending on the algorithm) items with
positive valuations. Once we have such small instances we
can analyze the approximation using simple calculus. See
the proofs of Theorem 1, 2 and 3 for details.

We conclude with a brief discussion regarding instances
with n ≥ 3 agents. We already know from the work of
(Caragiannis et al. 2012) on the price of fairness that even
offline algorithms cannot achieve an approximation better
than Ω(1/

√
n); we complement this result by showing that

the non-adaptive proportional algorithm matches this bound.
Finally, we provide an interesting local characterization of
all online algorithms that satisfy the fair-share property.

Related Work
The same model that we consider in this setting, i.e., online
allocation of divisible items with normalized agent valua-
tions, was very recently studied by Gorokh et al. (2020).

But, rather than introducing fairness as a hard constraint,
as we do here, they (approximately) maximize the Nash
social welfare objective. On the other hand, Bogomolnaia,
Moulin, and Sandomirskiy (2019) maximize efficiency sub-
ject to fair-share constraints, as we do, but not in an adver-
sarial setting. The agent values are stochastically generated
and fairness is guaranteed only in expectation.

An additional motivation behind our assumption that the
agents’ values are normalized comes from systems where
the users are asked to express their value using a budget of
some artificial currency in the form of tokens. If a user has a
high value for a good then she can use more tokens to con-
vey this information to the algorithm. Since all users have
the same budget, their values are normalized by design. A
natural, and very well-studied algorithm in these systems is
the proportional algorithm, which distributes each item in
proportion to the expressed value (see, e.g., (Zhang 2005;
Feldman, Lai, and Zhang 2009; Christodoulou, Sgouritsa,
and Tang 2016; Brânzei, Gkatzelis, and Mehta 2017)). We
provide an analysis of this algorithm, but we also achieve
improved results using alternative algorithms.

Zeng and Psomas (2020) considered the trade-off between
fairness and efficiency under a variety of adversaries, but in
a setting with indivisible items and non-normalized valua-
tions. Against the strong adversary studied here, their results
are negative: no algorithm with non-trivial fairness guaran-
tees can Pareto-dominate a uniformly random allocation.

More broadly, our paper is part of the growing litera-
ture on online, or dynamic, fair division. Much of this prior
work analyzes settings where the agents are static and the
resources arrive over time, like we do (Benade et al. 2018;
He et al. 2019). Another line of work studies the allocation
of static resources among dynamically arriving and depart-
ing agents (Walsh 2011; Kash, Procaccia, and Shah 2014;
Friedman, Psomas, and Vardi 2015, 2017; Im et al. 2020).

Preliminaries
We consider the problem of allocating T divisible items
among a set N of n agents. A fractional allocation x de-
fines for each agent i ∈ N and item t the fraction xit of that
item that the agent will receive. A feasible allocation satis-
fies

∑
i∈N xit ≤ 1 for all items t. We assume the valuations

of the agents are additive: each agent i has valuation vit for
item t, and utility ui(x) =

∑
t∈[T] vitxit for an allocation

x. We also assume that the agents’ valuations are normal-
ized so that

∑
t∈[T] vit = 1. We evaluate the efficiency of an

allocation x using the social welfare (SW), i.e., the sum of
all agents’ utilities SW (x) =

∑
i∈N ui(x).

An allocation x satisfies fair-share if ui(x) ≥ 1
n for every

agent i ∈ N . We say that an algorithm satisfies fair-share if
it always outputs an allocation that satisfies fair-share. An-
other popular definition of fairness is envy-freeness, which
dictates that no agent i values the allocation of some other
agent j more than her own. It is well known that if every item
t is fully allocated, i.e.,

∑
i∈N xit = 1, then envy-freeness

implies fair-share, and for two-agent instances (which is the
main focus of this paper) the two notions coincide.

The item valuations are not available to us up-front; in-

5441

stead, the items arrive online (one per round) and the agent
values for the item of round t are revealed when the item
arrives. The algorithm then makes an irrevocable decision
about how to allocate the item before moving on to the next
round. We evaluate our algorithms using worst-case analy-
sis, so one can think of the values being chosen by an adap-
tive adversary aiming to hurt the algorithm’s performance.
Throughout the paper, our algorithms do not need to know
T , the total number of rounds, but all our inapproximability
results apply even to algorithms that have this information.

We say an algorithm is non-adaptive if its allocation de-
cision for round t solely depends on the valuations at round
t, whereas an adaptive algorithm can use the valuations and
allocations of all the previous rounds. An interesting family
of non-adaptive algorithms parameterized by a value p are
ones that we call poly-proportional algorithms whose allo-
cation in each round t is proportional to vpit, i.e., each agent
i is allocated a fraction xit = vpit/

∑
j∈N v

p
jt. For p = 0 this

become the equal-split algorithm, for p = 1 the proportional
algorithm, and for p =∞ the greedy one.

Given some algorithm A, let xA(v) denote the overall
allocation that it outputs on an instance with agent values v,
and let xOPT(v) be the social welfare maximizing allocation.
A is an α-approximation to the optimal social welfare if

min
v

SW (xA(v))

SW (xOPT(v))
≥ α.

Note that our algorithms are constrained to be online
and always output fair-share outcomes, while the welfare-
maximizing benchmark is restricted by neither of the two.

Non-Adaptive Algorithms
Non-adaptive algorithms have the important benefit that they
need not keep track of historical information regarding the
agents’ allocation or preferences. A naive example of such
an algorithm is equal-split, i.e,. the poly-proportional algo-
rithm with p = 0. Since this algorithm splits every item
equally among the two agents, they both always receive
value exactly 1/2, and hence the outcome is fair-share. How-
ever, this outcome can be very inefficient, leading to a 50%
approximation to the optimal welfare (e.g., consider an in-
stance with v11 = v22 = 1 and v12 = v21 = 0).

Our first result analyzes the widely-used proportional al-
gorithm (p = 1) and shows that it guarantees 82.8% of the
social welfare. This is already a big improvement compared
to 50%, but we then also provide a fair-share algorithm that
improves this further, to 89.4%. Proofs missing from this
section can be found in the full version of this paper.
Theorem 1. The proportional algorithm satisfies fair-share
and gives a 0.828 approximation to the optimal welfare.

Proof. Due to space limitations, we defer the proof of the
fair-share property to the appendix in favor of including a
complete sketch of the efficiency proof. Given an instance
v, let vt = v1t and λt = v2t

v1t
for each t ∈ [T]. Let ALG be

the welfare of the proportional algorithm.

ALG =
∑
t∈[T]

v2t + (vtλt)
2

vt + vtλt
=
∑
t∈[T]

vt
1 + λ2t
1 + λt

.

Now, consider the following mathematical program:

minimize
∑
t∈[T] vt

1+λ2
t

1+λt

subject to
∑
t∈[T] vt =

∑
t∈[T] vtλt (1)∑

t∈[T]:λt≤1 vt +
∑
t∈[T]:λt>1 λtvt = 1 (2)

vt, λt ≥ 0, for all t ∈ [T]

The objective is to minimize the approximation to welfare
we receive from the algorithm. In this program, we don’t
enforce that the agents’ values add up to 1, but we simply
have them be equal to each other (constraint 1). Instead, we
ask that the optimal welfare is equal to 1 (constraint 2).

First, we argue that solving this program would return the
worst-case approximation to welfare. Consider an arbitrary
feasible solution v, λ to this program; dividing each agent’s
values (each vit) by their common total value

∑
t∈[T] vit

yields a feasible normalized instance of our problem. Given
the constraints of the program, the optimal social welfare
for this instance is equal to 1 over the normalization term∑
t∈[T] vit. Also, the social welfare of the proportional al-

gorithm is equal to the program’s objective divided by the
same normalization term. Therefore, the approximation fac-
tor for this instance is equal to the value of the objective.

Second, notice that for any fixed λ, the remaining pro-
gram, with variables only the vts, is a linear program with
T variables. By the fundamental theorem of linear program-
ming, a minimizer occurs at the region’s corner, i.e. there is
a minimizer with T constraints tight. Since the total num-
ber of constraints is T + 2, and the first two constraints are
tight, T−2 of the T tight constraints are non-negativity con-
straints. So the worst-case approximation occurs when there
are exactly two variables/rounds with a positive value for
agent 1. Without loss of generality (the proportional algo-
rithm is memoryless) these are the first two items.

Third, for every instance where agent 1 values only the
first two items, the approximation to optimal welfare is min-
imized when agent 2 also values only the first two items.

Now, consider the two rounds instance, in the original no-
tation, where agent 1 has value v1 for item 1 and 1 − v1
for item 2, while agent 2 has values 1 − v2 and v2. Without
loss of generality v1 ≥ 1 − v2, which implies v2 ≥ 1 − v1.
Therefore, OPT = SW (xOPT(v)) = v1 + v2, and

ALG =
v21 + (1− v2)2

v1 + 1− v2
+

(1− v1)2 + v22
v2 + 1− v1

.

Then, overloading notation, we have that the approximation
to the welfare is

α(v1, v2) =

v21+(1−v2)2
v1+1−v2 +

(1−v1)2+v22
v2+1−v1

v1 + v2
.

We analyze this function, by taking partial derivatives and
analyzing all critical points. We find that the worst approxi-
mation to optimal welfare is achieved for v1 = v2 = 1/

√
2,

and has value α
(

1√
2
, 1√

2

)
= 2(

√
2 − 1) ≈ 0.828. See the

full version of this paper for the missing details.

5442

Performance of Poly-Proportional Algorithms
We now study the family of poly-proportional algorithms
more broadly. As we mentioned in the introduction, poly-
proportional algorithms with higher values of p may lead
to increased social welfare, but they also make it increas-
ingly likely that the fair-share property will be violated. We
first show that we cannot increase p by too much before
losing fair-share: for any p > 2 the corresponding poly-
proportional algorithm does not satisfy fair-share.

Lemma 1. The poly-proportional algorithm with parameter
p does not satisfy fair-share for any p > 2.

Proof. Consider the following two item instance. The first
round has values x and 1 for agents 1 and 2, respectively,
while the second round has values 1 − x and 0. Agent 1
has utility x·xp

1+xp + 1 − x = 1 − x
xp+1 . For x = (1

p−1)1/p,
agent 1 gets utility u1 = 1− p−1

p (1
p−1)1/p. we have d

dpu1 =

− ln(p−1)(p−1)
p−1
p

p3 , notice that for any p > 2, d
dpu1 < 0.

Also since when p = 2 agent one’s utility is 1− 1
2 (1

1)1/2 =
1
2 , agent one’s utility is less than 1

2 for any p > 2.

Our main result in this section is for the poly-proportional
algorithm with parameter p = 2: we call this the quadratic-
proportional algorithm. We show that this algorithm satisfies
fair-share and achieves a 0.894 approximation to the optimal
welfare, a significant improvement over the proportional al-
gorithm. By Lemma 1, the quadratic-proportional algorithm
guarantees the optimal social welfare within the class of fair-
share poly-proportional algorithms.

Theorem 2. The quadratic-proportional algorithm satisfies
fair-share and achieves a 0.894 approximation to the opti-
mal social welfare.

Theorem 2 follows from Lemmas 2 and 3.

Lemma 2. The quadratic-proportional algorithm satisfies
fair-share.

Proof. It suffices to show that agent 1 gets utility at least 1/2
in all instances: if this holds, then the same holds for agent 2,
by symmetry. Given any instance, we first show that merging
and splitting certain items (rounds) results in a new instance
where agent 1 is worse off.

Merging a set S of items with values (v1t, v2t) creates a
new item with value (

∑
t∈S v1t,

∑
t∈S v2t). A split opera-

tion on an item with values (v1, v2), v1 ≥ v2, creates two
items, with values (v2, v2) and (v1 − v2, 0).

Claim 1. Let v be any instance, and let v′ be the instance
where we split all items t ∈ [T] such that v1t

v2t
> 1, with

v2t > 0. Then the utility of agent 1, in the quadratic-
proportional algorithm, in instance v′ is at most her utility
in instance v.

Proof. It suffices to show that the utility of agent 1 weakly
decreases after splitting a single item with values v1 =
x, v2 = y, such that xy ≥ 1. Let u be the utility of agent 1 (for

this item) before splitting and u∗ the utility after splitting.
We have that u = xp+1

xp+yp and u∗ = yp+1

2yp + x− y = x− y
2 .

u− u∗ =
yp+1 − 2xyp + yxp

2xp + 2yp
.

It suffices to show that this is non-negative for all x ≥ y.
Since 2xp + 2yp ≥ 0, we only need to show that yp+1 −
2xyp + yxp ≥ 0. Dividing both sides by yp+1, we have
1−2xy +(xy)p ≥ 0. For p = 2, the LHS is equal to (x/y−1)2

which is non-negative. Note that we used the fact that x > y
to ensure that splitting was a valid operation.

Claim 2. Let v be any instance, and let v′ be the instance
where we take two arbitrary items of v that satisfy v1t

v2t
≤ 1

and merge them. Then the utility of agent 1, in the quadratic-
proportional algorithm, in instance v′ is at most her utility
in instance v.

Proof. Let a and b be the two items we want to merge, with
corresponding values v1a, v2a, v1b and v2b. We show that

v31a
v21a + v22a

+
v31b

v21b + v22b
≥ (v1a + v1b)

3

(v1a + v1b)2 + (v2a + v2b)2
.

We can simplify this expression to:

(v2bv1a − v2av1b)2
(
v22bv1a + 2v2bv2a(v1a + v1b)

+v1b(v
2
2a − v1a(v1a + v1b))

)
≥ 0.

If v2bv1a − v2av1b = 0 we are done. Assume that this is
not the case. It suffices to show that

v22bv1a+2v2bv2a(v1a+v1b)+v1b(v
2
2a−v21a−v1av1b) ≥ 0.

First, we are going to drop the second term of the sum.
Second, since v1a

v2a
≤ 1, we have that v22a ≥ v21a, and the third

term is lower bounded by v1av21b. It thus remains to show
that v22bv1a − v1av21b ≥ 0, which holds since v1b

v2b
≤ 1.

We repeatedly apply Claims 1 and 2, until no splitting or
merging is possible, to get a worst case instance for agent
1. This instance will have multiple items with zero value for
agent 2 that we can simply combine into a single item. Since
splitting is no longer possible, there are no items t ∈ [T]
with v2t > 0 and v1t

v2t
> 1. Since merging is not possible

there is at most one item t with v1t
v2t
≤ 1. Therefore, we have

an instance with two items, one with both positive values
(that we cannot merge) and one with zero value for agent 2.
Let v be the value of agent 1 for item 1, and 1− v her value
for item 2. Agent 2’s values are 1 and 0.

Agent 1 has utility v3

v2+1 + 1 − v = 1 − v
v2+1 . It is easy

to confirm that this function is minimized for v = 1 where it
takes the value 1/2.

Lemma 3. The quadratic-proportional algorithm achieves
a 0.894 approximation to the optimal social welfare.

We start by showing that two item instances are the worst
case. This is, in fact, true for all algorithms in the poly-
proportional family.

5443

Claim 3. For any p, the worst-case instance (in terms of
approximation) for the poly-proportional algorithm with pa-
rameter p has at most two items.

Proof. Similarly to Theorem 1 one can write a mathematical
program with variables vt and λt that computes the worst-
case approximation to welfare, and then observe that for ev-
ery fixed choice of λ the remaining program is in fact linear.
Applying the fundamental theorem of linear programming
we conclude that at most two vt variables are non-zero. We
defer the details to the full version of this paper.

Proof of Lemma 3. Given Claim 3 we only need to consider
two item instances. Let v1 and 1 − v2 be the agents’ values
for item 1, and 1− v1 and v2 their values for item 2.

Without loss of generality, assume that v1 > 1 − v2
(and therefore v2 > 1 − v1). The optimal welfare becomes
OPT = v1+v2. Consider the performance of our algorithm:

ALG =
v31+(1−v2)3
v21+(1−v2)2 +

(1−v1)3+v32
(1−v1)2+v22

.

The approximation to welfare is

α(v1, v2) =
ALG

OPT
=

(1−v1)3+v32
(1−v1)2+v22

+
(1−v2)3+v31
(1−v2)2+v21

v1 + v2

In the remainder of the proof we take partial derivatives with
respect to v1 and v2 and analyze the critical points, using
numerical solvers for part of the proof. The worst extreme
point is (0.6265, 0.6265), which gives α(0.6265, 0.6265) >
0.894. See the full version of this paper for details.

Adaptive Algorithms
Moving beyond non-adaptive algorithms, in this section we
consider the benefits of being adaptive. In deciding how to
allocate the item of each round t, adaptive algorithms can
take into consideration, e.g., the utility of each agent so far,
or what portion of their total value is yet to be realized. But,
what would be a useful way to leverage this information in
order to achieve improved approximation guarantees?

We propose a natural way to modify the family of poly-
proportional mechanisms studied in the previous section.
Specifically, we use the additional information to “guard”
against the violation of the fair-share property. To motivate
this modification, assume that at the end of some round c
during the execution of a poly-proportional with p > 2 the
utility that one of the agents has received so far plus her
value for all remaining items is exactly 1/2, i.e.,

c∑
t=1

vitxit +
T∑

t=c+1

vit =
1

2
.

This would mean that, unless that agent receives all of the
remaining items that she has positive value for in full, then
she would not receive her fair share. We refer to this as a
critical point and use it to define the family of guarded poly-
proportional algorithms parameterized by p: while no agent
has reached a critical point, the algorithm is identical to the
corresponding non-adaptive poly-proportional one; but, if
some agent reaches a critical point, then all the remaining

items are fully allocated to that agent. It therefore leverages
adaptivity in a simple way, by checking for critical points.

Note that a critical point may not necessarily arise only at
the beginning or at the end of a round. However, it is easy
to show that we can assume this is the case without loss of
generality. Roughly speaking, if a critical point is reached
during the execution of some round t while a fraction f of
that item has been allocated, then we can divide that item
into two pieces (of size f and 1 − f), creating an instance
with T + 1 items where the critical point is reached at the
end of round t, and without affecting the outcome of the
algorithm. We discuss this in more detail in the full version
of this paper.

If some agent reaches a critical point then, clearly, these
algorithms ensure that the agent will receive her fair share.
But, this does not imply that the other agent will also receive
her fair share. For this to be true, the other should have re-
ceived her fair share before that critical point, because she
will receive no more items. Our next result shows that, in
fact, this family of algorithms always satisfies fair-share.

Lemma 4. The guarded poly-proportional algorithm with
parameter p satisfies fair-share for all p ≥ 0.

Proof. If there is no critical point the statement trivially
holds, so assume, without loss of generality, that agent 1
reaches a critical point at round c. By definition, we have
that

∑c
t=1 v1t · x1t +

∑T
t=c+1 vit = 1/2. By the normaliza-

tion assumption,
∑c
t=1 v1t · (x1t + x2t) +

∑T
t=c+1 vit = 1.

We get
∑c
t=1 v1t · x2t =

∑c
t=1 v1t ·

vp2t
vp1t+v

p
2t

= 1
2 . That is, it

remains to show that fair-share is satisfied for agent 2.
Similarly to the proof of Theorem 1 and Lemma 2 we will

write a mathematical program with variables vt = v1t and
λt = v2t

v1t
, for all t ∈ [t]. The goal of the program this time

will be to find a worst-case instance with respect to agent 2,
given that c is a critical point for agent 1.

Agent 1’s utility of resources allocated to agent 2 can
be expressed as

∑
t≤c vt

λp
t

1+λp
t

, while agent 2 has utility∑
t≤c vt

λp+1
t

1+λp
t

. Consider the program

minimize
∑
t≤c vt

λp+1
t

1+λp
t

subject to
∑c
t=1 vt

λp
t

1+λp
t

= 1
2∑c

t=1 vt ≤ 1∑c
t=1 vtλt ≤ 1

vt, λt ≥ 0 for all t ∈ [c]

Notice that given a feasible solution to this program
one can always construct a valid online allocation instance,
where the guarded poly-proportional algorithm with param-
eter pwill reach critical point c for agent 1 and agent 2’s util-
ity is exactly the objective function, and vice versa. Proving
the lemma is therefore equivalent to showing that the opti-
mal solution u2 of this program above is at least 1

2 .
Consider any fixed choice for the λt variables: the remain-

ing program is linear, and therefore, by the fundamental the-
orem of linear programming we know that there exists an
optimal solution with c tight constraints (since there are c

5444

Figure 1: Approximation to the optimal welfare by guarded
poly-proportional algorithms for different values of p, de-
pending on whether the instance has a critical point or not

variables). The first constraint is already tight, so we have
c− 1 other tight constraints. At least c− 3 of those are non-
negativity constraints, so we have at most 3 positive vari-
ables. In the remainder of the proof we consider all the cases;
details are deferred to the full version

For non-adaptive algorithms, we observed that efficiency
increases with p but, unfortunately, the largest value that
yields a fair-share algorithm is p = 2. For the guarded poly-
proportional family we can get a fair-share algorithm for all
p, but how does the efficiency depend on this value? For
larger values of p, the algorithm is trying to maximize so-
cial welfare more aggressively, but this means that it is more
likely to reach a critical point, after which it is forced to
be inefficient. Based on a class of instances provided in the
paper’s full version, Figure 1 provides approximation upper
bounds quantifying precisely this trade-off: if for each p we
restrict our attention to instances where the corresponding
poly-proportional algorithm does not reach a critical point,
then the performance increases with p. But, as p increases,
the set of instances with a critical point keeps growing and
the greediness of the algorithm gradually hurts its efficiency.

For each value of p the points in the plot upper bound
the algorithm’s approximation, so the most promising choice
is p = 2.7, where the two points meet. Our main result is
that the guarded poly-proportional with parameter p = 2.7
achieves a 0.916 approximation to the optimal social welfare
which, as the figure indicates, is essentially optimal within
the family of guarded poly-proportional algorithms.
Theorem 3. The guarded poly-proportional algorithm with
parameter p = 2.7 achieves a 0.916 approximation to the
optimal social welfare.

Proof. Let α be the approximation to the optimal welfare
of the algorithm. We encode an instance with variables
vt = v1t, and λt = v2t

v1t
, for all t ∈ [T]. Let c be the

critical point (if any) and without loss of generality, as-
sume that agent 1 reaches her critical point. Agent 2’s utility∑
t≤c vtλt ·

(vtλt)
p

vpt +(vtλt)p
=
∑
t≤c vt

λp+1
t

1+λp
t

. Agent 1’s utility

is
∑
t≤c vt

1
1+λp

t
+
∑T
t=c+1 vt. Similarly to Theorem 1 and

Lemma 3 we write a mathematical program for the optimal
approximation ratio:

minimize
∑c
t=1 vt

1+λp+1
t

1+λp
t

+
∑T
t=c+1 vt

subject to
∑T
t=1 vt = 2(

∑c
t=1 vt

1
1+λp

t
+
∑T
t=c+1 vt)∑T

t=1 vt =
∑T
t=1 vtλt∑

t∈[T]:λt≤1 vt +
∑
t∈[T]:λt>1 λtvt = 1

vt ≥ 0, for all t ∈ [T]
λt ≥ 0, for all t ∈ [T]

The first constraint encodes the fact that c is a critical
point: the LHS is the total value of agent 1, while the RHS
is twice the utility of agent 1. These should be equal since c
is a critical point for agent 1. The second constraint equal-
izes the agents’ values (instead of normalizing them to 1),
while the third constraint normalizes the optimal welfare to
1. One can go from an arbitrary feasible solution of this pro-
gram to a valid instance by dividing each vit by

∑T
t=1 vt,

and vice versa, while the approximation to the optimal wel-
fare (which is equal to the welfare when the optimal welfare
is 1) is exactly the objective of this program.

Now observe that for every fixed choice of the λt variables
we get a linear program (with respect to the vt variables):

minimize
∑c
t=1 vtat +

∑T
t=c+1 vt

subject to
∑T
t=1 vt = 2(

∑c
t=1 vtbt +

∑T
t=c+1 vt)∑T

t=1 vt =
∑T
t=1 vtλt∑

t∈[T]:λt≤1 vt +
∑
t∈[T]:λt>1 λtvt = 1

vt ≥ 0, for all t ∈ [T]

where at = 1+(λt)
p+1

1+(λt)p
and bt = 1

1+(λt)p
.

By the fundamental theorem of linear programming, we
must have T tight constraints, and we have T + 3 total con-
straints (with the first three being tight), so any optimal so-
lution should have exactly 3 strictly positive vt variables.

We take cases depending on the value of c. Specifically,
our three strictly positive vt variables are either all three af-
ter the critical point, two and one, one and two, or all three
before the critical point. The first case is, of course, impos-
sible (since the first constraint cannot be satisfied), so we
consider each of the other ones.

For each of the cases considered we write a closed form
for the approximation to the welfare, as a function of the λts,
we then minimize. For c = 1 (one item before, two items
after the critical point) we get a worst-case approximation of
0.916. c = 3, corresponding to no critical points, also gives a
worst-case approximation. This corresponds to the intuition
from Figure 1. Details can be found in the full version.

We complement our positive result by showing that no
fair-share adaptive algorithm, even with full knowledge of
the number of items T , can achieve an approximation to the
welfare much better than the guarded poly-proportional fam-
ily. We defer the proof to the full version of this paper.
Theorem 4. There is no fair-share algorithm that achieves
an approximation to the optimal welfare better than 0.933.

5445

Instances Involving Multiple Agents
We now briefly turn to instances with n ≥ 3. Caragiannis
et al. (2012) prove that even if we knew all the values in ad-
vance, the price of fairness, i.e., the worst-case ratio of the
optimal social welfare of a fair-share outcome over the social
welfare of the optimal outcome, isO(1/

√
n). Our next result

shows that the proportional algorithm matches this bound
in an online manner, and therefore achieves the optimal ap-
proximation. We defer the proof to the full version.
Theorem 5. The proportional algorithm guarantees a 1

2
√
n

,
i.e., Ω(1/

√
n), approximation to the optimal social welfare.

The next result shows that even if we were to restrict the
benchmark to be the optimal social welfare subject to the
fair-share constraint, still, no online algorithm could achieve
an approximation better than Ω(1/

√
n). Therefore the pro-

portional algorithm is also optimal with respect to the com-
petitive ratio measure, which quantifies the worst-case loss
of welfare due to the online aspect of the problem alone.
Theorem 6. No online fair-share algorithm can achieve a

3
√
n

n+
√
n−1 approximation to the optimal offline fair-share al-

gorithm. That is, the best feasible approximation is O(1√
n

).

Proof. Consider an instance with n agents and
√
n + n

rounds. In the first
√
n rounds, for the first

√
n agents, we

have vii = n−1
n , and vit = 0, t 6= i. For the remaining

n−
√
n agents, we have vjt = n−1

n·
√
n

, for all j >
√
n. Then,

in the last n rounds, we have vii+√n = 1
n , and vit = 0

elsewhere, for all i ∈ N .
In the offline problem, each agent gets 1

n from the last n
rounds. Therefore the optimal offline fair-share welfare is

OPT =
√
n · n− 1

n
+ n · 1

n
=
n− 1√
n

+ 1.

We now focus our attention on round
√
n. Note that each

agent has remaining value 1/n at this round. An online fair-
share algorithm needs to plan for the event that the remain-
ing values are all realized in the next round,

√
n + 1. In

order to satisfy fair-share in this scenario, each agent must
have utility at least n−1n

1
n = n−1

n2 at the end of round
√
n.

Consider an agent i with i >
√
n. Since her value for all

the items before round
√
n is vit = n−1

n
√
n

, to give this agent

utility at least n−1n2 her total allocation must be
∑√n
t=1 xit ≥

n−1
n2

n
√
n

n−1 = 1√
n

. This is true for all i >
√
n, so there is

√
n− (n−

√
n) 1√

n
= 1 of the resources, in the first

√
n, to

be allocated among the first
√
n agents. No matter how this

is split, the contribution to the welfare is the same. Let U t
be the social welfare at the end of round t. We have

U
√
n = 1 · n− 1

n
+ (n−

√
n)
n− 1

n2
= 2− 2

√
n+ n+ 1

n
√
n

.

For the last n rounds our algorithm can make an optimal
choice: ALG = U

√
n + n · 1n = 3− 2

√
n+n+1
n
√
n

< 3. There-

fore, we have α = ALG
OPT < 3

n−1√
n

+1
= 3

√
n

n+
√
n−1 .

Characterization of Fair-Share Algorithms
Our final result provides an interesting characterization of
fair-share algorithms that could enable the design of novel
algorithms in this setting. This characterization uses a very
simple condition, which we refer to as doomsday compati-
bility, and we show that this myopic condition is necessary,
but also sufficient, for guaranteeing that the final outcome
will satisfy fair-share.

Definition 1 (Doomsday Compatibility). We say an alloca-
tion xt = {xit}i∈N at day t is doomsday compatible if there
exists some allocation xt+1 that would make the overall out-
come satisfy fair-share, if t+ 1 was the last round, i.e., if all
the agents’ remaining value was realized in round t+ 1.

Proposition 1. An online algorithm satisfies the fair-share
property if and only if its allocation in every round t is
doomsday compatible.

Proof. First, it is easy to show that doomsday compatibility
in every round t is sufficient for an online algorithm to sat-
isfy fair-share. If this condition is satisfied for all t, then it
is also satisfied for t = T − 1 and t = T , and thus the final
outcome is guaranteed to satisfy fair-share.

Now, we show that this condition is also necessary for
the algorithm to satisfy fair-share. Assume that there exists
a round t such that the online algorithm’s allocation in this
round is not doomsday compatible. Then, clearly this algo-
rithm would not be fair-share for the instance where t+ 1 is
indeed the last round, i.e., where all of the agents’ remaining
value is realized in round t+ 1.

Theorem 7. If an algorithm is doomsday-compatible in
some round t < T , then there always exists an allocation
xt+1 such that it is also doomsday compatible in round t+1.

Proof. Consider any round t where the algorithm’s alloca-
tion is doomsday compatible. This means that there exists
some allocation x̃ that would achieve fair-share if t+ 1 was
the last round. In order to show that we can always maintain
doomsday compatibility in round t + 1, it suffices to show
that there always exists some allocation xt+1 for that round
and an allocation xt+2 for the next round such that the al-
gorithm would satisfy fair-share if t+ 2 were the last round.
We show that, in fact, using x̃ for both rounds t+1 and t+2
would satisfy this condition.

To verify this fact, let v̄it be the remaining value for each
agent i after round t, and let ui be the total utility each agent
received up to round t. Since x̃ would make the outcome
fair-share if t+ 1 was the last round, for any agent i we have
ui + v̄itx̃ ≥ 1

n . Now, if on the other hand t+ 2 was the last
round, let xt+1 = x̃ and xt+2 = x̃. Then, for any agent i we
would have

ui + vi(t+1)x
t+1 + (v̄it − vi(t+1))x

t+2

=ui + vi(t+1)x̃ + (v̄it − vi(t+1))x̃

=ui + v̄itx̃ ≥
1

n
.

Therefore, for xt+1 = x̃, there exists a xt+2 = x̃ such that
the algorithm is doomsday compatible in round t+ 1.

5446

Acknowledgments
Part of this work took place when Vasilis Gkatzelis and
Alexandros Psomas were visiting the Simons Institute for
the Theory of Computing. Also, part of this work was done
while Alexandros Psomas was at Google Research, Moun-
tain View. This work was partially supported by NSF grants
CCF-1755955 and CCF-2008280.

References
Aziz, H. 2019. Justifications of welfare guarantees under
normalized utilities. SIGecom Exch. 17(2): 71–75.
Benade, G.; Kazachkov, A. M.; Procaccia, A. D.; and Pso-
mas, C.-A. 2018. How to make envy vanish over time. In
Proceedings of the 2018 ACM Conference on Economics
and Computation, 593–610.
Bogomolnaia, A.; Moulin, H.; and Sandomirskiy, F.
2019. A simple Online Fair Division problem. CoRR
abs/1903.10361.
Brânzei, S.; Gkatzelis, V.; and Mehta, R. 2017. Nash Social
Welfare Approximation for Strategic Agents. In Daskalakis,
C.; Babaioff, M.; and Moulin, H., eds., Proceedings of the
2017 ACM Conference on Economics and Computation,
EC ’17, Cambridge, MA, USA, June 26-30, 2017, 611–628.
ACM.
Caragiannis, I.; Kaklamanis, C.; Kanellopoulos, P.; and Ky-
ropoulou, M. 2012. The Efficiency of Fair Division. Theory
Comput. Syst. 50(4): 589–610.
Christodoulou, G.; Sgouritsa, A.; and Tang, B. 2016. On
the Efficiency of the Proportional Allocation Mechanism for
Divisible Resources. Theory Comput. Syst. 59(4): 600–618.
Feldman, M.; Lai, K.; and Zhang, L. 2009. The
Proportional-Share Allocation Market for Computational
Resources. IEEE Transactions on Parallel and Distributed
Systems .
Friedman, E.; Psomas, C.-A.; and Vardi, S. 2015. Dynamic
fair division with minimal disruptions. In Proceedings of the
sixteenth ACM conference on Economics and Computation,
697–713.
Friedman, E.; Psomas, C.-A.; and Vardi, S. 2017. Controlled
dynamic fair division. In Proceedings of the 2017 ACM Con-
ference on Economics and Computation, 461–478.
Gorokh, A.; Banerjee, S.; Jin, B.; and Gkatzelis, V. 2020.
Online Nash Social Welfare via Promised Utilities. CoRR
abs/2008.03564.
He, J.; Procaccia, A. D.; Psomas, A.; and Zeng, D. 2019.
Achieving a fairer future by changing the past. In Proceed-
ings of the 28th International Joint Conference on Artificial
Intelligence, 343–349. AAAI Press.
Im, S.; Moseley, B.; Munagala, K.; and Pruhs, K. 2020. Dy-
namic Weighted Fairness with Minimal Disruptions. Pro-
ceedings of the ACM on Measurement and Analysis of Com-
puting Systems 4(1): 1–18.
Kash, I. A.; Procaccia, A. D.; and Shah, N. 2014. No Agent
Left Behind: Dynamic Fair Division of Multiple Resources.
J. Artif. Intell. Res. 51: 579–603.

Prendergast, C. 2017. How Food Banks Use Markets to Feed
the Poor. Journal of Economic Perspectives 31(4).
Walsh, T. 2011. Online cake cutting. In International Con-
ference on Algorithmic DecisionTheory, 292–305. Springer.
Zeng, D.; and Psomas, A. 2020. Fairness-Efficiency Trade-
offs in Dynamic Fair Division. In Biró, P.; Hartline, J.; Os-
trovsky, M.; and Procaccia, A. D., eds., EC ’20: The 21st
ACM Conference on Economics and Computation, Virtual
Event, Hungary, July 13-17, 2020, 911–912. ACM.
Zhang, L. 2005. The Efficiency and Fairness of a Fixed
Budget Resource Allocation Game. In Caires, L.; Ital-
iano, G. F.; Monteiro, L.; Palamidessi, C.; and Yung, M.,
eds., Automata, Languages and Programming, 32nd Inter-
national Colloquium, ICALP 2005, Lisbon, Portugal, July
11-15, 2005, Proceedings, volume 3580 of Lecture Notes in
Computer Science, 485–496. Springer.

5447

