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Abstract

The connection between games and no-regret algorithms has
been widely studied in the literature. A fundamental result
is that when all players play no-regret strategies, this pro-
duces a sequence of actions whose time-average is a coarse-
correlated equilibrium of the game. However, much less is
known about equilibrium selection in the case that multiple
equilibria exist. In this work, we study the convergence of
no-regret bidding algorithms in auctions. Besides being of
theoretical interest, bidding dynamics in auctions is an im-
portant question from a practical viewpoint as well. We study
repeated game between bidders in which a single item is sold
at each time step and the bidder’s value is drawn from an
unknown distribution. We show that if the bidders use any
mean-based learning rule then the bidders converge with high
probability to the truthful pure Nash Equilibrium in a sec-
ond price auction, in VCG auction in the multi-slot setting
and to the Bayesian Nash equilibrium in a first price auc-
tion. We note mean-based algorithms cover a wide variety
of known no-regret algorithms such as Exp3, UCB, ε-Greedy
etc. Also, we analyze the convergence of the individual iter-
ates produced by such learning algorithms, as opposed to the
time-average of the sequence. Our experiments corroborate
our theoretical findings and also find a similar convergence
when we use other strategies such as Deep Q-Learning.

1 Introduction
The connection between Learning and Games has proven to
be a very innovative, practical, and elegant area of research
(see, e.g., (Fudenberg and Levine 1998; Cesa-Bianchi and
Lugosi 2006; Nisan et al. 2007)). Several fundamental con-
nections have been made between Learning and Game The-
ory. A folklore result is that if all players play low-regret
strategies in a repeated general-sum game, then the time-
averaged history of the plays converges to a coarse cor-
related equilibrium (see, e.g., (Blum and Mansour 2007)).
Similarly, low-swap-regret play leads to correlated equilib-
ria.

In this work, we are interested in the setting of multi-agent
learning in auction environments. Given the importance of
auctions and bidding in the online advertising ecosystem,
this is an important question from a practical point of view
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as well. In this setting, an auction takes input bids and deter-
mines the allocation of ad-slots and the prices for each ad-
vertiser. This is a highly repeated auction setting over a huge
number of queries which arrive over time. Advertisers get
feedback on the allocation and cost achieved by their chosen
bidding strategy, and can respond by changing their bids,
and often do so in an automated manner (we will assume
throughout that advertisers are profit-maximizing, although
there are potentially other goals as well). As each advertiser
responds to the feedback, it changes the cost landscape for
every other competing advertiser via the auction rules. As
advertisers respond to the auction and to each other, the dy-
namics lead them to an equilibrium. This results in the fol-
lowing fundamental question: Given a fixed auction rule, do
such bidding dynamics settle in an equilibrium and if so,
what equilibrium do they choose.

Surprisingly, neither the Auction Theory literature from
Economics nor the literature on Learning in Games provides
a definitive answer. Consider the simplest setting: a repeated
auction for a single item, where the allocation is either first-
price or second-price. Auction Theory suggests that bidders
converge to canonical equilibria (see, e.g., (Krishna 2002)):

• For a second-price auction (or more generally a VCG auc-
tion), bidders will choose to be truthful (bid their true
value every time) as this strategy weakly dominates ev-
ery other strategy, i.e., no other strategy can yield more
profit. This is a weakly dominating strategy Nash equili-
birum (NE).

• For a first price auction in which each advertiser’s value
is picked from some commonly known distribution in an
i.i.d. manner, each advertiser will underbid in a specific
way to achieve a Bayesian Nash Equilibrium (BNE). For
example, when there are two bidders and the value dis-
tribution is the uniform distribution on [0, 1], then each
advertiser will set its bid to be half of its true value.

While these canonical equilibria make intuitive sense,
they are not the only equilibria in the respective games.
For example, consider a single-item setting in which bid-
der 1 has a value of 1.0 and bidder 2 has a value of 0.5 for
the item. While truthful bidding is an NE, any two values
b1, b2 ∈ [0.5, 1.0]2, with b1 > b2 also form an NE (in fact, an
Envy-Free NE). Thus, there are an infinite number of NEs,
with very different revenues. Similarly, in the Bayesian set-
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ting where the values are drawn from say, a uniform distri-
bution, there are many NEs as well. For example, one player
could bid 1 and the other player always bids 0 regardless of
their valuations. This issue of multiple equilibria is treated in
the Economics literature via various notions of equilibrium
selection but it is not clear if such selection occurs naturally
in settings such as ours, especially via bidding dynamics.

To take the Learning in Games approach to answering
the question, we have to fix the bidding dynamics. We as-
sume bidders use no-regret (mean-based) online learning al-
gorithms; these are natural and powerful strategies that we
may expect advertisers to use. A lot of commonly used no-
regret learning algorithms, e.g. multiplicative weights up-
date (MWU), follow the perturbed leader (FTPL), EXP3,
UCB, and ε-Greedy, are all special cases of mean-based no-
regret learning algorithms.

Indeed, there has been considerable work recently which
studies various questions in the online advertising setting un-
der this assumption (see, e.g., (Nekipelov, Syrgkanis, and
Tardos 2015)). Folklore results in Learning imply that un-
der low-regret dynamics the time-average of the advertisers’
bids will converge to a coarse correlated equilibrium (CCE)
of the underlying game. Hartline, Syrgkanis, and Tardos
(2015) shows that no-regret learning in Bayesian games con-
verges to Bayesian CCE in the time-average manner. How-
ever, there could be many CCEs in a game as well. Since
every NE is a CCE as well, the above examples hold for the
second-price auction. For the first price setting (even when
the values are drawn uniformly at random) another CCE is
for the two bidders to bid (v1 + v2)/2 + ε and (v1 + v2)/2
where v1 and v2 are the drawn values, and v1 > v2. Further,
since any convex combination of these CCEs is a valid CCE
(the set of CCE forms a polytope), there is an infinite number
of CCEs in both first and second price auctions. So again we
are left with the prediction dilemma: it is not clear which of
these CCEs a low-regret algorithm will converge to. Some of
the CCEs are clearly not good for the ecosystem, for revenue
or efficiency. Further, as we elaborate below, even if there is
a unique CCE in the games of interest, the convergence guar-
antee is only for the time-average rather than point-wise.

Questions
These examples directly motivate the questions we ask in
this paper:
• If the values are drawn in a bayesian setting, and the bid-

ders follow a low-regret learning algorithm in a repeated
second-price auction, do they converge to the truthful
equilibrium?

• Similarly, in a first price auction with i.i.d. values with
bidders values drawn from a uniform distribution [0, 1],
do they converge to the Bayesian Nash equilibrium (with
two bidders) of bidding half of true value?

• Do the bidding dynamics converge to such an equilib-
rium point-wise, i.e., in the last-iterate sense, or only in
the time-average sense?

• When there are multiple slots, do the bidders converge to
truthful equilibrium under VCG settings?

Given the current state of the literature, we see these as
fundamental questions to ask. The only guarantees we have
are those known for general games: Low-regret dynamics
converge to some CCE and there is no guarantee for the
last-iterate convergence. If it is the case that only the time
average converges, then that means that bidders may be re-
quired to keep changing their bidding strategy at every time
step (see the discussion on the non-point-wise-convergence
results in (Bailey and Piliouras 2018) below), and would
achieve very different rewards over time. This would not be
a satisfactory situation in the practical setting.

Our Results
Our main result is that when each of the bidders use a mean-
based learning rule (see Definition 2.2) then all bidders con-
verge to truthful bidding in a second-price auction and a
multi-position VCG auction and to the Bayes Nash Equi-
librium in a first-price auction.

Informal Main Theorem. Suppose n players whose value
are drawn from a distribution over space { 1

H ,
2
H , . . . , 1} bid

according to a mean-based learning algorithm in either (i)
a second-price auction; (ii) a first-price auction (for n =
2 and uniform value distribution); or (iii) a multi-position
VCG auction. Then, after an initial exploration phase, each
bidder bids the canonical Bayes Nash equilibrium with high
probability.

The formal statement of this theorem appears in Theo-
rem 3.1, Theorem 4.1, and Theorem 4.3 for second-price
auctions, first-price auctions, and multi-position VCG auc-
tions, respectively. Moreover, we show each bidder con-
verges to bid canonical Nash Equilibrium point-wise for any
time, which is in sharp contrast with previous time-average
convergence analysis.

Throughout this paper, we assume the learning algorithms
that the bidders use may be oblivious to the auction format
that is used by the seller.

We complement these results by simulating the above
model with experiments. In particular, we show that these
algorithms converge and produce truthful (or the canonical)
equilibria. Furthermore, we show that the algorithm con-
verges much quicker than the theory would predict. These
results indicate that these low-regret algorithms are quite ro-
bust in the context of Auctions.

Our Techniques
Our proof techniques involve a few key observations. For
second-price and VCG auctions, we want to show that the
bidding converges to truthful bidding. Firstly, note that if
the other bidders bid completely randomly then the truthful
arms have a slight advantage in profit. However, the other
bidders themselves bid according to their own instance of
the low-regret algorithms, thus the environment that a given
bidder sees is not necessarily random; hence we need more
insight. Fix a particular bidder, say bidder 1. In the begin-
ning of the learning algorithm, all bidders do bid randomly.
The next observation is that if the other bidders happened
to converge to truthful bidding, then again bidder 1 will see
completely random bids, because the other bidders’ values
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are picked randomly at each stage. Hence we can say that
both in the beginning and also if other bidders happen to
converge to (or for some reason were restricted to) truth-
ful bidding, then bidder 2 will see an advantage in truthful
bidding and converge to that. It remains to show that in the
interim period, when all bidders are learning, exploring, and
exploiting, the truthful strategy builds and retains an advan-
tage.

In a first price auction, the proofs follow the same struc-
ture. However there are some technical difficulties that one
must overcome. Initially, both bidders bid uniformly at ran-
dom and it is not difficult to show that bidding according to
the canonical NE gives an advantage. If the bidders happen
to converge to the BNE then, of course, bidding according
to the BNE is the optimal strategy for either player. It is not
clear, however, that when the opposing bid is not uniform
or bidding according to the BNE that an advantage is main-
tained. Our technical contribution here is to show that an
advantage for bidding the BNE is maintained which allows
both bidders to converge to the BNE.

Our results show that we can achieve high probability re-
sults we can show that the model will bid truthfully for all
time (assuming a modest exploratory period in the begining).
This requires a new partitioning argument which enables us
to apply concentrations results for all times. This technique
may be of independent interest.

Related Works
Our work lies in a wide area of the inter-disciplinary re-
search between mechanism design and online learning al-
gorithms, e.g., (Auer et al. 1995; Cesa-Bianchi and Lugosi
2006; Blum and Mansour 2007), and we only point out a
few lines of research which are more closely related to our
work.

In online advertising, the setting where bidders may be
running no-regret algorithms rather than best response, has
recently been investigated and has garnered a significant
amount of interest. For example, Nekipelov, Syrgkanis, and
Tardos (2015) study how to infer advertisers’ values under
this assumption. However, Bailey and Piliouras (2018) show,
somewhat surprisingly, that even in very simple games (e.g.,
a zero-sum matching pennies game), the no-regret dynamics
of MWU do not converge, and in fact the individual iterates
tend to diverge from the CCE. On the other hand, recent re-
sults in (Daskalakis and Panageas 2018; Mertikopoulos et al.
2019) show that certain Optimistic variants of Gradient De-
scent and Mirror Descent converge in the last-iterate to the
NE in certain zero-sum games. Our result can be seen as a
contribution in this stream of work as well, in that we show
that for the (non-zero sum) games arising from auctions that
we study, mean-based learning algorithms converge in the
last iterate, and, in fact, to the natural (Bayes) NE. On a re-
lated note, Papadimitriou and Piliouras (2019) shows there
is a conflict between the economic solution concepts and
those predicted by Learning Dynamics. In that framework,
one can consider this work as suggesting that perhaps there
is no such conflict between economic theory and learning,
in the context of games arising from auctions, as learning
converges to the solutions predicted by auction theory.

Our work is also related with Learning to bid litera-
ture, e.g., (Weed, Perchet, and Rigollet 2016; Feng, Podi-
mata, and Syrgkanis 2018; Balseiro et al. 2019), where these
papers focus on designing a good learning algorithm for the
bidders in repeated auctions. In addition, Braverman et al.
(2018) considers how to design a mechanism to maximize
revenue against bidders who adopt mean-based learning al-
gorithms. In contrast, the auctions are fixed in our setting
and we are interested in understanding the bidder dynamics.

Last but not least, Feldman, Lucier, and Nisan (2016)
characterize multiple equilibria (NE, CE, and CCE) in first
price auctions, under the prior-free (non-Bayesian) setting,
and study the revenue and efficiency properties of these
equilibria. They show there are auctions in which a CCE
can have as low as 1 − 2/e ' 0.26 factor of the second
highest value (although not lower), and there are auctions in
which a CCE can have as low as 0.81 of the optimal effi-
ciency (but not lower). However, our results show that even
though there may be “Bad” CCEs, the natural dynamics do
not reach them, and instead, converge to the classic canoni-
cal Nash equilibrium.

2 Model and Notations
We consider the setting that there is a single seller repeat-
edly selling one good to n bidders per round. At each time t,
each bidder i’s valuation vi,t is i.i.d. drawn from an unknown
(CDF) distribution Fi and bidder i will submit a bid bi,t
based on vi,t and historical information. In this paper, we as-
sume the value and the bid of each bidder at any time are al-
ways in a 1

H -evenly-discretized space V = { 1
H ,

2
H , · · · , 1},

i.e, vi,t, bi,t ∈ V, ∀i, t. Let vt = (v1,t, · · · , vn,t) be the val-
uation profile of n bidders at time t, v−i,t be the valuation
profile of bidders other than i, and similarly for bt and b−i,t.
Let F be the (CDF) distribution of vt and fi be the prob-
ability density function (PDF) of bidder i’s value. Denote
mi,t = maxj 6=i bj,t as the maximum bid of the bidders other
than i and zi,t = maxj 6=i vj,t be the maximum value of the
bidders other than i. We denote Gi as the (CDF) distribution
of zi,t and gi as the associated PDF. For theoretical purpose,
we propose an assumption about Gi in the following,

Assumption 2.1 (Thickness Assumption of Gi). There ex-
ists a constant τ > 0 (may depend on n), s.t., gi(v) ≥
τ, ∀i ∈ [n], v ∈ V . Without loss of generality1, we assume
τ ≤ 1

Hn−1 .

We assume the each bidder runs a no-regret learning al-
gorithm to decide her bid at each time. Specifically, in this
paper, we are interested in a broad class of no-regret learning
algorithm known as mean-based (contextual) learning algo-
rithm (Braverman et al. 2018); these include the multiplica-
tive weights update (MWU), Exp3, and ε-Greedy algorithms
as special cases.

In this paper, we focus on the contextual version of mean-
based learning algorithms, which can be used to model
learning algorithms of the bidders in repeated auctions, de-
fined in the following.

1It is without loss of generality, since if τ > 1
Hn−1 , we redefine

τ := min
{
τ, 1

Hn−1

}
.
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Definition 2.2 (Mean-based Contextual Learning Algo-
rithm). Let ra,t(c) be the reward of action a at time t when
the context is c and σa,t(c) =

∑t
s=1 ra,s(c). An algorithm

for the contextual bandits problem is γt-mean-based if it
is the case that whenever σa,t(c) < σb,t(c) − γtt, then
the probability pa,t(c) that the algorithm plays action a on
round t + 1, given context c, is at most γt. We say an algo-
rithm is mean-based if it is γt-mean-based for some γt such
that γtt is increasing and γt → 0 as t→∞. 2

In the repeated auctions setting, the context information
received by each bidder i at time t is the realization of the
valuation vi,t. The reward function rib,t for bidder i can be
defined as

∀v ∈ [0, 1], rib,t(v) := ui,t((b, b−i,t); v), (1)

where ui,t((b, b−i,t); v) is the utility of bidder i at time t
when the bidder i bids b and the others bid b−i,t, if bidder i
values the good v.

Learning Algorithms of Mean-Based Bidders
In this paper, we focus on the setting where each bidder i
runs a γt-means-based contextual learning algorithm to sub-
mit the bid3. In addition, we assume each bidder runs sev-
eral pure exploration steps in the beginning to estimate the
reward of each action (bid) for each context (value). We as-
sume each bidder runs T0 pure exploration steps: at each
pure exploration step, each bidder i uniformly generates a
bid from B at random, regardless of the realization of value
vi,t. To summarize, we describe the learning algorithm of
mean-based bidders in Algorithm 1.

Algorithm 1 Mean-based (Contextual) Learning Algorithm
of Bidder i

1: procedure MBL(γt, T0)
2: for t = 1, 2, . . . , T0 do
3: Choose bid bi,t uniformly from V at random.
4: end for
5: for t = T0 + 1, T0 + 2, . . . do
6: Observes value vt.
7: Choose bid bi,t following a γt-mean-based

learning algorithm.
8: end for
9: end procedure

In the learning to bid literature, there are different feed-
back models: full information feedback (Papadimitriou and
Piliouras 2019), bandit feedback (Weed, Perchet, and Rigol-
let 2016; Feng, Podimata, and Syrgkanis 2018), or cross-
learning feedback (Balseiro et al. 2019). However, our re-
sults hold for any feedback model, as long as each bid-

2The mean-based learning algorithms proposed by (Braverman
et al. 2018) set γt be a constant, which only depends on total num-
ber of time steps T . Here we extend it to be a time-dependent vari-
able, which is used to show our anytime convergence results.

3Indeed, our analysis can be extended to the setting where each
mean-based bidder has different γt parameters. We assume they
share parameters γt, for notation simplicity.

der uses the general mean-based learning algorithm to bid,
shown in Algorithm 1.

3 Second Price Auctions with Mean-based
Bidders

In this section, we analyze the learning dynamics of mean-
based bidders in (repeated) second price auctions. In second
price auctions, the utility function of each bidder i at time t
can be represented as,

ui,t((b, b−i,t); v) = (v −mi,t) · I{b ≥ mi,t} (2)
Since the bids of each bidder are in a discrete space, we

break ties randomly throughout this paper. We first show the
following main theorem in this section, which proves that
the mean-based learners converge to truthful reporting point-
wisely, in the repeated second price auctions.
Theorem 3.1. Suppose assumption 2.1 holds and T0 is
large enough, such that exp

(
− τ2T0

32n2H2

)
≤ 1

2 and γt ≤
τ

8nH , ∀t ≥ T0. Then at time t > T0, each γt-mean-
based learner i will submit bt = vi,t in repeated sec-
ond price auctions with probability at least p(t) = 1 −
Hγt − 4 exp

(
− τ2T0

32n2H2

)
, for any fixed vi,t. Note p(t) →

1− 4 exp
(
− τ2T0

32n2H2

)
when t→∞.

Our main results for second price auctions show an any-
time convergence for each bidder: as long as T0 is large
enough, each bidder will bid truthfully at any time t, with
high probability. The main technical contribution in this pa-
per is the proof for Theorem 3.1.

Proof of Theorem 3.1
In this section, we summarize the proof of Theorem 3.1. To
show that, we propose the following lemmas, in which the
complete proofs are deferred to Appendix B.

Firstly, we characterize that in the pure exploration phase,
each bidder gains significantly greater utility when bidding
truthfully.
Lemma 3.2. For any fixed value v, any bid b 6= v and any
time t ≤ T0, we have for each bidder i,

P
(
ui,t((v, b−i,t); v)− ui,t((b, b−i,t); v) ≥ 1

H

)
≥ τ

n

Then by a standard Chernoff bound, we can argue the ac-
cumulative utility advantage obtained by bidding truthfully
will be large enough, for any time t in exploration phase.
Lemma 3.3. For any fixed v, any bid b 6= v and any time
t ≤ T0, we have for each bidder i,∑
s≤t

ui,s((v, b−i,s); v)− ui,s((b, b−i,s); v) ≥ τt

2nH

holds with probability at least 1− exp
(
− τ2t

2n2H2

)
.

Finally, we show that if the cumulative utility advantage
of truthful bidding is large enough to satisfy requirements of
the mean-based learning algorithms, then truthful bidding
still gains significant greater utility for each bidder at time
t > T0.
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Lemma 3.4. For any t > T0, suppose∑
s≤t ui,s((v, b−i,s); v) − ui,s((b, b−i,s); v) ≥ γtt

holds for any fixed v, b 6= v and each bidder i, then

ui,t+1((v, b−i,t+1); v)− ui,t+1((b, b−i,t+1); v) ≥ 1

H

holds with probability at least τ
2n , for any fixed value v, bid

b 6= v and each bidder i.

Given the above three auxiliary lemmas, we prove Theo-
rem 3.1 in the following.

Proof of Theorem 3.1. One of the key techniques used in
this paper is the partitioning of the time steps into buck-
ets with a geometric partitioning scheme. In particular, we
divide time steps t > T0 to several episodes as follows,
Γ1 = [T0 + 1, T1],Γ2 = [T1 + 1, T2], ..., such that ∀k ≥ 1,
Tk =

⌊
τTk−1

4γTknH

⌋
. We always choose the smallest Tk to sat-

isfy this condition.4 The total time steps of each episode
|Γk| = Tk − Tk−1, ∀k ≥ 1. Then we show the following
claim, which states that in each time bucket the expected
utility doesn’t deviate too much.

Claim 3.5. Let event Ek be
∑
s≤Tk ui,s((v, b−i,s); v) −

ui,s((b, b−i,s); v) ≥ τTk
4nH holds for all i, given any fixed

v, b 6= v. Then the event Ek holds with probability at least
1−

∑k
`=0 exp

(
− |Γ`|τ

2

32n2H2

)
.

We prove the above claim by induction. If k = 0, the
claim holds by Lemma 3.3. We assume the claim holds for
k, then we argue the claim still holds for k+ 1. We consider
any time t ∈ Γk+1, given event Ek holds, we have∑

s≤t ui,s((v, b−i,s); v)− ui,s((b, b−i,s); v)

≥
∑
s≤Tk ui,s((v, b−i,s); v)− ui,s((b, b−i,s); v)

≥ τTk
4nH ≥ γtt, (3)

where the first inequality is based on the fact that truth-
telling is the dominant strategy in second price auctions, the
second inequality holds because of the induction assumption
and the last inequality hold because ∀t ∈ Γk+1,

γtt ≤ γTk+1
Tk+1 = γTk+1

⌊
τTk

4γTk+1
nH

⌋
≤ τTk

4nH
.

Then by Lemma 3.4, given Ek holds, for any t ∈ Γk+1 we
have,

P
(
ui,t((v, b−i,t); v)− ui,t((b, b−i,t); v) ≥ 1

H

∣∣∣Ek) ≥ τ

2n

Thus, E
[
ui,t((v, b−i,t); v)− ui,t((b, b−i,t); v)

∣∣∣Ek] ≥
τ

2nH for any t ∈ Γk+1. Letting ∆s = ui,s((v, b−i,s); v) −
ui,s((b, b−i,s); v), by Azuma’s inequality (for martingales),

4Tk always exists since γtt→∞ as t→∞.

we have

P

 ∑
s∈Γk+1

∆s ≤
τ |Γk+1|

4nH

∣∣∣Ek


≤ P

 ∑
s∈Γk+1

∆s ≤
∑

s∈Γk+1

E
[
∆s

∣∣∣Ek]− τ |Γk+1|
4nH

∣∣∣Ek


≤ exp

(
−|Γk+1|τ2

32n2H2

)
Therefore, the event Ek+1 holds with probability at least(
1− e−

|Γk+1|τ
2

32n2H2

)
· P(Ek) ≥ 1−

k+1∑
`=0

exp

(
− |Γ`|τ

2

32n2H2

)
,

which completes the induction and verifies the correctness
of Claim 3.5. Given Claim 3.5, we have the following argu-
ment,

For any time t > T0, there exists k(t), s.t., t ∈ Γk(t), if
the event Ek(t) happens, the bidder i will report truthfully
with probability at least 1 − Hγt, by the definition of γt-
mean-based learning algorithms and the same argument as
Eq. (3). Therefore, at any time t > T0, each bidder i will
report truthfully with probability at least

1−Hγt −
k(t)∑
`=0

exp

(
− |Γ`|τ

2

32n2H2

)

Then we bound
∑k(t)
`=0 exp

(
− |Γ`|τ

2

32n2H2

)
through the follow-

ing claim, where the proof is deferred to Appendix B.

Claim 3.6. Given γt ≤ τ
8nH , ∀t > T0,∑k(t)

`=0 exp
(
− |Γ`|τ

2

32n2H2

)
≤ 4 exp

(
− τ2T0

32n2H2

)
, when T0

is large enough s.t. exp
(
− τ2T0

32n2H2

)
≤ 1

2 .

Combining the above claim, we complete the proof for
Theorem 3.1.

4 Generalizations to Other Auctions
In this section, we generalize our results further to first
price auctions when each bidder’s valuation is drawn uni-
formly from V , and multi-position auctions when we run the
Vickrey-Clarke-Groves (VCG) mechanism. For both cases,
we break ties randomly.

First Price Auctions
In first price auctions, the highest bidder wins and pays her
bid. Therefore the utility function of each bidder i at time t
can be defined as,

ui,t((b, b−i,t); v) = (v − b) · I{b ≥ mi,t} (4)

It is well-known, first price auctions are not truthful and
each bidder will underbid her value to manipulate the auc-
tions. Bayesian Nash Equilibrium (BNE) bidding strategy is
hard to characterize in general first price auctions. Only the
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BNE bidding strategy for i.i.d bidders in first price auctions,
is fully understood, e.g. (Krishna 2002).

In this paper, for simplicity, we focus on the setting that
there are two i.i.d bidders with uniform value distribution
over V . The BNE bidding strategy for each bidder is b = v

2
when the value is v (Krishna 2002), if the value space V =
[0, 1]. In this work, we assume V =

{
1
H ,

2
H , · · · , 1

}
and we

break ties randomly. Under this case, we show each mean-
based bidder will converge to play near-BNE bidding strat-
egy point-wisely if the number of initial exploration steps T0

is large enough in the following.

Theorem 4.1. Suppose there are two bidders and each bid-
der’s value is i.i.d drawn uniformly from V at random, H
is a even positive number, and T0 is large enough, such
that γt ≤ 1

4H3 , ∀t ≥ T0. Then at time t > T0, each γt-
mean-based learner i in repeated first price auctions will
bid bt, s.t. v

2 ≤ bt < v
2 + 1

H with probability at least

1−Hγt− exp
(
− (H−1)T0

32(4H3+1)H4

)
log t

log
(

4H3+H

4H3+1

) , for any fixed

vi,t.

The proof is significantly different than the proof of sec-
ond price auctions. Firstly, random tie-breaking makes the
analysis more difficult in first price auctions compared with
the one in second price auctions. Secondly, b = d v2 e

5 is not
a dominant bidding strategy, we need a more complex time-
splitting scheme to make induction procedure works in first
price auctions. We defer the proof to Appendix B. We be-
lieve our proof for firs price auctions is general enough and
can be extended to handle more than two bidders setting.

Multi-Position VCG Auctions
In multi-position auctions, there are k positions where k < n
and position multipliers p1 ≥ · · · ≥ pk ≥ 0 = pk+1 =
· · · = pn (position multipliers determine the relative values
or click-through rates of the different positions). In particu-
lar, we will also say that pi − pi+1 ≥ ρ for all i ≤ k. In
this paper, we run VCG mechanism for multi-position auc-
tions. For more details of multi-position VCG auctions, see
Appendix A.

Denote z(k)
i be the k-th largest value from the bidders

other than bidder i, G(k)
i be the (CDF) distribution of z(k)

i ,
and g(k)

i be the associated PDF. We propose the following
thickness assumption for distribution G(k)

i , for our theoreti-
cal purpose.

Assumption 4.2 (Thickness Assumption of G(k)
i ). There

exists a constant τ > 0 (may depend on n), s.t., g(k)
i (v) ≥

τ, ∀i ∈ [n], ∀v ∈ V . Without loss of generality, we assume
τ ≤ 1

Hn−1 .

It is well-known that the VCG auction is truthful. Apply-
ing the same technique, we can show the truthful bid has
an advantage compared with all the other bids in the ex-
ploration phase, as well as in the mean-based exploitation
phase. Similarly, we show the following convergence results
of mean-based bidders in multi-position VCG auctions.

5dxe means rounding x up to the nearest point in V .

Theorem 4.3. Suppose assumption 4.2 holds and T0 is
large enough, such that exp

(
− τ2ρ2T0

32n2H2

)
≤ 1

2 and γt ≤
τρ

8nH , ∀t ≥ T0. Then at time t > T0, each γt-mean-based
learner i will bt = vi,t in repeated multi-position VCG auc-

tions with probability at least 1−Hγt− 4 exp
(
− τ2ρ2T0

32n2H2

)
,

for any fixed vi,t.

5 Experiments
In this section, we describe the experiments using Contex-
tual Mean-Based Algorithms and Deep-Q Learning agents
participating in repeated first price and second price auc-
tions. In these repeated auctions, the private valuations of
both players are sampled independently from identical uni-
form distributions. The observation for each agent is defined
by its private valuation and its reward by the auction out-
come (with ties broken randomly).

In the first set of experiments, we study the convergence
of two independent learning agents following an ε-Greedy
policy in first and second price auction. We use the setting
of H = 10 wherein both agents only observe their private
valuation and the respective reward as an auction outcome.

In both cases, we observe the bidders converge to the
BNE after several time steps. There is a slight gap between
the (observed) mean reward and utility under BNE as the
value of ε (randomly exploration probability) has a floor of
0.05. We also observe that in the exploitation phase, the bid-
ding converges completely to the BNE in the contextual ban-
dit setting, which exactly matches our theory in Figures 1a
and 2a. More experiments are shown in Appendix C.

Extensions to Deep-Q Learning
Contextual Mean Based Algorithms are a broad class of al-
gorithms but can be very expensive to implement if we run
a new instance for each possible value and the number of
values are large. In line with modern machine learning, one
way to mitigate this in practice is to augment it via Deep
Q-Learning. To be more concrete, we model the learner by
using a deep network with input as the private value and ask
it to choose one of many bids. We model this as a reinforce-
ment learning problem where the agents state is input into a
deep neural network. The agent’s rewards are then observed
over time with a chosen discount rate. The details of Deep
Q-Learning model and the set of hyperparameters used to
train the two Q models are outlined in Appendix C.

We use the setting of H = 100 and consider the obser-
vation of the agent as its private valuation. Again, we ob-
serve that both agents converge to BNE, shown in Figures 1b
and 2b. We also study the model with a wider set of states in-
cluding previously chosen bids and empirically observe the
convergence of independent DQN agents to BNE for both
auctions (discussed further in Appendix C).
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(a) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder (right) in the exploitation
phase of contextual ε-Greedy algorithm in second price auctions.

(b) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder (right) in the exploitation
phase of Deep-Q Learning algorithm in second price auctions.

Figure 1: Simulation results for second price auctions

(a) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder (right) in the exploitation
phase of contextual ε-Greedy algorithm in first price auctions.

(b) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder (right) in the exploitation
phase of Deep-Q Learning algorithm in first price auctions.

Figure 2: Simulation Results for first price auctions
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