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Abstract

We study the price of anarchy (PoA) of simultaneous 2nd
price auctions (S2PA) under a new natural condition of no un-
derbidding, meaning that agents never bid on items less than
their marginal values. We establish improved (mostly tight)
bounds on the PoA of S2PA under no underbidding for dif-
ferent valuation classes (including unit-demand, submodular,
XOS, subadditive, and general monotone valuations), in both
full-information and incomplete information settings.
To derive our results, we introduce a new parameterized prop-
erty of auctions, termed (γ, δ)-revenue guaranteed, which im-
plies a PoA of at least γ/(1+δ). Via extension theorems, this
guarantee extends to coarse correlated equilibria (CCE) in
full information settings, and to Bayesian PoA (BPoA) in set-
tings with incomplete information and arbitrary (correlated)
distributions. We then show that S2PA are (1, 1)-revenue
guaranteed with respect to bids satisfying no underbidding.
This implies a PoA of at least 1/2 for general monotone val-
uation, which extends to BPOA with arbitrary correlated dis-
tributions. Moreover, we show that (λ, µ)-smoothness com-
bined with (γ, δ)-revenue guaranteed guarantees a PoA of at
least (γ + λ)/(1 + δ + µ). This implies a host of results,
such as a tight PoA of 2/3 for S2PA with submodular (or
XOS) valuations, under no overbidding and no underbidding.
Beyond establishing improved bounds for S2PA, the no un-
derbidding assumption sheds new light on the performance of
S2PA relative to simultaneous 1st price auctions.

1 Introduction
Simple auctions are often preferred in practice over com-
plex truthful auctions. Starting with the seminal paper of
Christodoulou, Kovács, and Schapira (2008), a lot of effort
has been given to the study of simultaneous item auctions.

In simultaneous item auctions with n bidders and m
items, every bidder i has a valuation function vi : 2[m] →
R+, where vi(S) is the value bidder i assigns to set S ⊆ [m].
Despite the combinatorial structure of the valuation, bidders
submit bids on every item separately and simultaneously.
In simultaneous first-price auctions (S1PA) every item is
sold in a 1st-price auction; i.e., the highest bidder wins and
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pays her bid, whereas in simultaneous second-price auctions
(S2PA) every item is sold in a 2nd-price auction; i.e., the
highest bidder wins and pays the 2nd highest bid.

Clearly, these auctions are not truthful; bidders don’t even
have the language to express their true valuations. The per-
formance of these auctions is often quantified by the price of
anarchy (PoA), which measures their performance in equi-
librium. Specifically, the PoA is defined as the ratio between
the performance of an auction in its worst equilibrium and
the performance of the optimal outcome. The price of anar-
chy in auctions has been of great interest to the AI commu-
nity, see the influential survey of Roughgarden, Syrgkanis,
and Tardos (2017), as well as recent work on learning dy-
namics in multi-unit auctions and games (Foster et al. 2016;
Brânzei and Filos-Ratsikas 2019).

PoA and BPoA of S2PA: Background. The price of anar-
chy has been studied both in complete and incomplete infor-
mation settings. In the former case, all valuations are known
by all bidders. In the latter case, every bidder knows her own
value and the probability distribution from which other bid-
der valuations are drawn. The common equilibrium notion
in this case is Bayes Nash equilibrium, and the performance
is quantified by the Bayesian PoA (BPoA) measure.

There are pathological examples showing that the PoA of
S2PA can be arbitrarily bad, even in the simplest scenario
of a single item auction with two bidders (Christodoulou,
Kovács, and Schapira 2016). A common approach towards
overcoming such pathological examples is the no overbid-
ding (NOB) assumption, stating that the sum of player bids
on the set of items she wins never exceeds its value. Conse-
quently, all PoA results of S2PA use the NOB assumption.

The PoA and BPoA of simultaneous item auctions depend
on the structure of the valuation functions. An important
class is that of subadditive (SA) valuations, also known as
complement-free valuations, where v(S)+v(T ) ≥ v(S∪T )
for every sets of items S, T . A hierarchy of complement-
free valuations is given in (Lehmann, Lehmann, and Nisan
2006), including unit-demand (UD), submodular (SM),
XOS (XOS), and subadditive (SA) valuations, with the fol-
lowing strict containment relation: UD ⊂ SM ⊂ XOS ⊂
SA (see Section 2.2 for formal definitions). Clearly, the
PoA can only degrade as one moves to a larger valuation
class. PoA and BPoA results under the no-overbidding as-
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sumption for the different classes have been obtained by
Christodoulou, Kovács, and Schapira (2008) and follow-
up work (Roughgarden 2009; Bhawalkar and Roughgarden
2011; Hassidim et al. 2011; Roughgarden 2012; Feldman
et al. 2013; Syrgkanis and Tardos 2013; Christodoulou et al.
2016), and are summarized in Table 1. MON refers to the
class of all monotone valuations.

1.1 No Underbidding (NUB)
Let bi = (bi1, . . . , bim) denote the bid vector of bidder i,
where bij is the bid of bidder i for item j, and let b =
(b1, . . . ,bn) be the bid profile of all bidders. Consider the
following example (taken from Christodoulou, Kovács, and
Schapira (2016)), showing that the PoA for unit-demand
(UD) valuations is at most 1/2 (A valuation v is UD if there
exist v(1), . . . , v(m), such that v(S) = maxj∈S v(j) for ev-
ery set of items S).

Example 1.1. 2 bidders and 2 items, x, y. Bidder 1 is UD
with values v1(x) = 2, v1(y) = 1. Bidder 2 is UD with
values v2(x) = 1, v2(y) = 2. Consider the following bid
profile, which is a pure Nash equilibrium (PNE) that adheres
to NOB: b1x = b2y = 0, and b1y = b2x = 1. Under this bid
profile, bidders 1 and 2 receive items y and x, respectively,
for a social welfare of 2. The optimal welfare is 4.

Let us take a closer look at the Nash equilibrium in Exam-
ple 1.1. In this equilibrium bidder 1 prefers item x, yet bids
0 on item x, and gets item y instead. Bidder 1’s marginal
value for item x, given her current allocation (item y), is
v1(x | y) = v1(xy) − v1(y) = 1. Given her current alloca-
tion y, bidding 0 on item x is weakly dominated by bidding 1
on x. Indeed, if bidder 1 receives item x, in addition to item
y, her additional value is 1 and she pays at most 1. Therefore,
it is only natural for her to bid at least her marginal value.

If a bidder bids on an item less than the item’s marginal
value, we say that she underbids (see Definition 4.1). In Ex-
ample 1.1, bidder 1 underbids on item x. In Section 4 we
show that underbidding in a 2nd price auction is weakly
dominated in some precise technical sense.

In what sense is the outcome in Example 1.1 an equilib-
rium? While a Nash equilibrium is a descriptive, static no-
tion, it is based on the underlying assumption that players
engage in some dynamics, where they keep best responding
to the current situation until a stable outcome is reached. In
this dynamics, it is not likely that a player would bid on an
item less than its marginal value. This is exactly what the
no-underbidding assumption captures.

No-underbidding is not only a mere theoretical exercise.
In second price auctions a lot of empirical evidence suggests
that bidders tend to overbid, but not underbid (Kagel and
Levin 1993; Harstad 2000; Cooper and Fang 2008; Roider
and Schmitz 2012). It seems that ”laboratory second-price
auctions exhibit substantial and persistent overbidding, even
with prior experience” (Harstad 2000). The no-underbidding
assumption is also consistent with the assumption made by
Nisan et al. (2011) that bidders break ties in favor of the
highest bid that does not exceed their value. Yet, the POA
literature employs no-overbidding as a standard assumption,
and overlooked the no-underbidding phenomenon. The ob-

jective of this work is to better tie the theoretical work in
this area to empirical evidence, by providing a theoretical
foundation for the no-underbidding phenomenon.

Intuitively, no underbidding can improve welfare perfor-
mance, as it drives item prices up, so that items become less
attractive to low-value players. Consequently, bad equilib-
ria, in which items are allocated to players with relatively
low value, are excluded. A natural question is:

Main Question. What is the performance (measured by
PoA/BPoA) of simultaneous 2nd price item auctions under
no underbidding?

1.2 Our Contribution
We first introduce the notion of item no underbidding
(iNUB), where no agent underbids on items (see Defini-
tion 4.4). One might think that by imposing both NOB and
iNUB, the optimal welfare will be achieved. This is indeed
the case for a single item auction (where the optimal wel-
fare is achieved by imposing any one of these assumptions
alone). However, even a simple scenario with 2 items and 2
unit-demand bidders can have a PNE with sub-optimal wel-
fare. This is demonstrated in the following example.

Example 1.2. 2 bidders and 2 items, x, y. Bidder 1 is UD
with values v1(x) = 3, v1(y) = 2. Bidder 2 is UD with
values v2(x) = 2, v2(y) = 3. Consider the following PNE
bid profile, which adheres to both NOB and iNUB: b1x =
b2y = 1, b1y = b2x = 2. Under this bid profile, bidders 1
and 2 receive items y and x, respectively, for a social welfare
of 4. The optimal welfare is 6. Thus, the PoA is 2/3.

Submodular Valuations Our first result states that 2/3 is
the worst possible ratio for SM valuations and bid profiles
satisfying both NOB and iNUB, even in settings with in-
complete information (with a product distribution over val-
uations), see Corollary 5.5.

Beyond Submodular Valuations The above bounds do
not carry over beyond submodular valuations. Consider first
XOS valuations, defined as maximum over additive valua-
tions. In the full version we show that the (B)PoA of S2PA
with XOS valuations under iNUB is θ( 1

m ) . Moreover, for
XOS valuations, iNUB may not provide any improvement
over NOB alone. In particular, there exists an example where
the PoA with NOB and iNUB is 1

2 , matching the guarantee
provided by NOB alone (see full version).

To the best of our knowledge, this is the first PoA sep-
aration between SM and XOS valuations in simultaneous
item auctions (or even between UD and XOS). Beyond SA
valuations, the PoA can be arbitrarily bad under bid profiles
satisfying iNUB (see full version).

To deal with valuations beyond SM, we consider a dif-
ferent no underbidding assumption, which applies to sets of
items. For two sets S, T , the marginal value of T given S is
defined as v(T | S) = v(S ∪ T )− v(S). A bidder is said to
not underbid on a set S under bid profile b if

∑
j∈S bij ≥

vi(S | Si(b)). The new condition, set no underbidding
(sNUB), imposes the set no underbidding condition on every
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UD / SM XOS SA MON

PoA 1
2 ← 1

2 [2016] 1
2

† [2011] O
(

1√
m

)∼
[2011; 2013]

NOB iBPoA 1
2 ← 1

2 [2016] 1
4

∼ [2013] O
(

1√
m

)∼
[2011; 2013]

BPoA O
(

1
n1/4

)∼
[2011] O

(
1

n1/4

)∼
[2011] O

(
1

n1/4

)∼
[2011] O

(
1

n1/4

)∼
[2011]

Table 1: Previous results for PoA of S2PA under the NOB assumption. PoA is the price of anarchy under full information; iBPoA
and BPoA are the Bayesian PoA under independent valuation distributions and correlated valuation distributions, respectively.
† This result assumes strong no-overbidding, i.e. the sum of player bids on any set of items never exceeds its value for that set.
All results are tight, except those marked with ∼. Results derived as a special case of a more general result (to their right) are
marked with←.

bidder i with respect to the set S = S∗i (v)\Si(b) (see Defi-
nition 4.5). With the sNUB definition, the 2

3 PoA extends to
SA valuations in full information settings (see full version),
and to XOS valuations even in incomplete information set-
tings (with product distributions), see Corollary 6.1.

For incomplete information we show that the BPoA of
SA valuations is at least 1

2 for any joint distribution (even
correlated) and it can be obtained in a much stronger sense,
namely for every bid profile with non-negative sum of utili-
ties (even a non-equilibrium profile) satisfying sNUB. This
also holds for markets with arbitrary monotone valuations
(see full version).

The above results are summarized in Table 2.

Equilibrium existence PoA results make sense only when
the corresponding equilibrium exists. We show that every
market with XOS valuations admits a PNE satisfying sNUB
and NOB. For SA valuations, a PNE satisfying NOB might
not exist. However, under a finite discretized version of the
auction, a mixed Bayes Nash equilibrium is guaranteed to
exist, and we show that there is at least one bid profile that
admits both sNUB and NOB with arbitrary monotone valu-
ation functions.

S1PA vs. S2PA Interestingly, our results shed new light on
the comparison between simultaneous 1st and 2nd price auc-
tions. Table 3 specifies BPoA lower bounds for S1PA and
S2PA under NOB, assuming independent valuation distri-
butions. According to these results, one may conclude that
S1PA perform better than their S2PA counterparts.

Our new results shed more light on the relative perfor-
mance of S2PA and S1PA. When considering both no over-
bidding and no underbidding, the situation flips, and S2PA
are superior to S1PA.1 For XOS valuations, the 1 − 1/e
bound for S1PA persists, but for S2PA the bound improves
from 1

2 (< 1 − 1
e ) to 2

3 (> 1 − 1
e ). For SA valuations and

independent valuation distributions, S2PA under sNUB per-
forms as well as S1PA (achieving BPoA of 1

2 ), however in
S2PA the 1

2 bound holds also for correlated valuation distri-
butions. For valuations beyond SA, S2PA performs better ( 12
for S2PA and less than 1

2 for S1PA).

1Note that no overbidding and no underbidding are not reason-
able assumptions in 1st price auctions, where bidders pay their bids

2 Preliminaries
2.1 Auctions
Combinatorial auctions In a combinatorial auction a set
of m non-identical items are sold to a group of n players.
Let Si be the set of possible allocations to player i, Vi the set
of possible valuations of player i, and Bi the set of actions
available to player i. Similarly, we let S ⊆ S1× . . .×Sn be
the allocation space of all players, V = V1× . . .×Vn be the
valuation space, and B = B1× . . .×Bn be the action space.
An allocation function maps an action profile to an alloca-
tion S = (S1, . . . , Sn) ∈ S , where Si is the set of items allo-
cated to player i. A payment function maps an action profile
to a non negative payment P = (P1, . . . , Pn) ∈ R+, where
Pi is the payment of player i. We assume that the valuation
function vi : Si → R+ of a player i, where vi ∈ Vi, is mono-
tone and normalized, i.e., ∀S ⊆ T ⊆ [m], vi(S) ≤ vi(T )
and also vi(∅) = 0. We let v = (v1, . . . , vn) be the valua-
tion profile. An outcome is a pair of allocation S and pay-
ment P and the revenue is the sum of all payments, i.e.
R(b) =

∑
i∈[n] Pi(b). We assume a quasi-linear utility

function, i.e. ui(Si, Pi, vi) = vi(Si)−Pi. We are interested
in measuring the social welfare, which is the sum of bidder
valuations, i.e., SW (S,v) =

∑
i∈[n] vi(Si). Given a val-

uation profile v, an optimal allocation is an allocation that
maximizes the SW over all possible allocations. We denote
by OPT (v) the value of SW under optimal allocation.
Simultaneous item bidding auction. In a simultaneous
item bidding auction (simultaneous item auction, in short)
each item j ∈ [m] is simultaneously sold in a separate auc-
tion. An action profile is a bid profile b = (b1, . . . ,bn),
where bi = (bi1, . . . , bim) is an m-vector s.t. bij is the bid
of player i for item j. The allocation of each item j is deter-
mined by the bids (b1j , . . . , bnj). We use Si(b) to denote the
items won by player i and pj(b) to denote the price paid for
item j by the winner of item j. As allocation and payment
are uniquely defined by the bid profile, we overload notation
and write ui(b, vi) and SW (b,v).

In a simultaneous second price auction (S2PA), each item
j is allocated to the highest bidder, who pays the second
highest bid, i.e., Pi =

∑
j∈Si(b)

maxk 6=i bkj .
In a simultaneous first price auction (S1PA), each item j

is allocated to the highest bidder, who pays her bid for that
item, i.e., Pi =

∑
j∈Si(b)

bij .
Ties are broken arbitrarily but consistently.
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UD / SM XOS SA MON
iNUB (B)PoA 1

2* Θ
(

1
m

)
* arbitrarily bad*

sNUB (B)PoA 1
2 ← 1

2 ← 1
2 ← 1

2*

NOB+ PoA 2
3 ← 2

3* 2
3

†* 1
2*

sNUB iBPoA 2
3 ← 2

3* 1
2 ← 1

2*
BPoA 1

2 ← 1
2 ← 1

2 ← 1
2*

Table 2: New results for PoA of S2PA. PoA is the price of anarchy under full information; iBPoA and BPoA are the Bayesian
PoA under independent and correlated valuation distributions, respectively. † This result assumes strong no-overbidding, i.e.
the sum of player bids on any set of items never exceeds its value for that set. All results are tight. Results derived in this paper
are marked with *. Results derived as special cases of more general result (to their right) are marked with←.

UD / SM XOS SA MON

S2PA NOB 1
2 ← 1

2 [2016] 1
4 [2013] O

(
1√
m

)
[2011; 2013]

S1PA 1− 1
e ← 1− 1

e [2013; 2016] 1
2 [2013; 2016] 1

m [2011]

S2PA sNUB+NOB 2
3 ← 2

3

∗ 1
2 (corr) ← 1

2

∗ (corr)

Table 3: BPoA results for S1PA and S2PA. (corr) refers to bounds that hold also for correlated distributions. Results derived in
this paper are marked with *. Results derived as special cases of more general results (to their right) are marked with←.

Full information setting: solution concepts and PoA.
In the full information setting, the valuation profile v =
(v1, . . . , vn) is known to all players. The standard equi-
librium concepts in this setting are pure Nash equilibrium
(PNE), mixed Nash equilibrium (MNE), correlated Nash
equilibrium (CE) and coarse correlated Nash equilibrium
(CCE), where PNE ⊂ MNE ⊂ CE ⊂ CCE. Following
are the definitions PNE and CCE, the definitions of MNE
and CE are presented in the full version. As standard, for a
vector y, we denote by y−i the vector y with the ith compo-
nent removed, and by ∆(Ω) the space of probability distri-
butions over a finite set Ω.
Definition 2.1 (Pure Nash Equilibrium (PNE)). A bid pro-
file b ∈ B1 × . . . × Bn is a PNE if for any i ∈ [n] and for
any b

′

i ∈ Bi, ui(b, vi) ≥ ui(b
′

i,b−i, vi).
Definition 2.2 (Coarse Correlated Nash Equilibriun
(CCE)). A bid profile of randomized bids b ∈ ∆(B1 ×
. . . × Bn) is a CCE if for any i ∈ [n] and for any b

′

i ∈ Bi,
Eb [ui(b, vi)] ≥ Eb

[
ui(b

′

i,b−i, vi)
]
.

For a given instance of valuations v, the price of anarchy
(PoA) with respect to an equilibrium notion E is defined as:
PoA(v) = infb∈E

Eb[SW (b,v)]
OPT (v) . For a family of valuations

V, PoA(V) = minv∈V PoA(v).

Incomplete information setting: solution concepts and
Bayesian PoA. In an incomplete information setting, player
valuations are drawn from a commonly known, possibly cor-
related, joint distribution F ∈ ∆(V1 × . . . × Vn), and the
valuation vi of each player is a private information which is
known only to player i. The strategy of player i is a function
σi : Vi → Bi. Let Σi denote the strategy space of player i
and Σ = Σ1 × . . . × Σn the strategy space of all players.
We denote by σ(v) = (σ1(v1), . . . , (σn(vn)) the bid vector

given a valuation profile v.
In some cases, we assume that the joint distribution of the

valuations is a product distribution, i.e., F = F1 × . . . ×
Fn ∈ ∆(V1) × . . . × ∆(Vn). In these cases, each valua-
tion vi is independently drawn from the commonly known
distribution Fi ∈ ∆(Vi).

The standard equilibrium concepts in the incomplete in-
formation setting are the Bayes Nash equilibrium (BNE) and
the mixed Bayes Nash equilibrium (MBNE):

Definition 2.3 (Bayes Nash Equilibriun (BNE)). A strat-
egy profile σ is a BNE if for any i ∈ [n], any vi ∈
Vi and any b

′

i ∈ Bi, Ev−i|vi [ui(σi(vi), σ−i(v−i), vi)] ≥
Ev−i|vi [ui(b

′

i, σ−i(v−i), vi)]

Note that if player valuations are independent, we can
omit the conditioning on vi in Definition 2.3. The definition
for MBNE is similar to BNE, but with another expectation
over the strategy profile σ (see definition in the full version).
The Bayes Nash price of anarchy is:

BPoA = inf
F, σ∈BNE

Ev [SW (σ(v),v)]

Ev [OPT (v)]

The mixed BPoA is defined similarly w.r.t. MBNE.

2.2 Valuation Classes
Hereinafter we present the valuation functions considered in
this paper. As standard, for a valuation v, item j and set S,
we denote the marginal value of j, given S, as v(j|S); i.e.,
v(j|S) = v(S ∪ {j})− v(S). Similarly, the marginal value
of a set S

′
, given a set S, is v(S

′ |S) = v(S ∪ S′) − v(S).
Following are the valuation classes we consider:

• Unit-demand (UD): There exist values v1, . . . , vm s.t.
v(S) = maxj∈S vj ∀S ⊆ [m].

5394



• Submodular (SM): ∀S ⊆ T ⊆ [m] and j /∈ T , v(j | S) ≥
v(j | T ).

• XOS (fractionally subadditive): There exists a set L of
additive valuations {a`(·)}`∈L, s.t. ∀S ⊆ [m], v(S) =
max`∈L a`(S).

• Subadditive (SA): ∀S, T ⊆ [m], v(S)+v(T ) ≥ v(S∪T ).

• Monotone (MON): ∀S ⊆ T ⊆ [m], v(S) ≤ v(T ).

A strict containment hierarchy of the above valuation classes
is known: UD ⊂ SM ⊂ XOS ⊂ SA ⊂MON .

Lemma 2.4. For any SM function v and any sets S, S
′
:∑

j∈S′ v(j | S) ≥ v(S′ | S).

In the full version we generalize the SM class to α−SM,
where the parameter α denotes “how far” the valuation is
from a SM valuation, and generalize our results to α−SM.

2.3 Smooth Auctions

We use the following smoothness definition, based on
Roughgarden (2009); Roughgarden, Syrgkanis, and Tardos
(2017):

Definition 2.5 (Smooth auction). An auction is
(λ, µ)−smooth for parameters λ, µ ≥ 0 with respect
to a bid space B′ ⊆ B1 × . . . × Bn, if for any valuation
profile v ∈ V1 × . . . × Vn and any bid profile b ∈ B′ there
exists a bid b∗i (v) ∈ Bi for each player i, s.t.:∑
i∈[n]

ui(b
∗
i (v),b−i, vi) ≥ λ ·OPT (v)− µ · SW (b,v) (1)

It is shown in Roughgarden (2009); Roughgarden,
Syrgkanis, and Tardos (2017) that for every (λ, µ)−smooth
auction, the social welfare of any pure NE is at least λ

1+µ .
Via extension theorems, this bound extends to CCE in full-
information settings and to Bayes NE in settings with incom-
plete information (under independent distribution of valua-
tions).

A standard assumption in essentially all previous work
on the PoA of S2PA (Christodoulou, Kovács, and Schapira
2016; Feldman et al. 2013; Roughgarden 2012, 2009;
Bhawalkar and Roughgarden 2011) is no overbidding,
meaning that players do not overbid on items they win. I.e.,

Definition 2.6 (No overbidding (NOB)). Given a valua-
tion profile v ∈ V1 × . . . × Vn, a bid profile b ∈ B
is said to satisfy NOB if for every player i it holds that∑
j∈Si(b)

bij ≤ vi(Si(b)).

Theorem 2.7. (based on (Christodoulou, Kovács, and
Schapira 2016; Roughgarden 2009)): S2PA with XOS val-
uations is (1, 1)−smooth, w.r.t. bid profiles satisfying NOB.

Theorem 2.7 implies a lower bound of 1
2 on the Bayesian

PoA of S2PA with XOS valuations. This result is tight, even
with respect to UD valuations in full information settings
(Christodoulou, Kovács, and Schapira 2016).

3 Revenue Guaranteed Auctions
In this section we define a new parameterized notion called
revenue guaranteed and infer results for the PoA of revenue
guaranteed auctions in full information setting and pure NE.
Similarly to the smoothness framework, we augment our re-
sults with two extension theorems, one for PoA with respect
to CCE, and one for BPoA in settings with incomplete in-
formation. Moreover, the BPoA result holds also in cases
where the joint distribution of bidder valuations is correlated
(whereas previous BPoA results hold only under a prod-
uct distribution over valuations). Combining the two tools
of smoothness and revenue guaranteed, we get an improved
bound.
Definition 3.1 (Revenue guaranteed auction). An auction
is (γ, δ)−revenue guaranteed for some 0 ≤ γ ≤ δ ≤ 1 with
respect to a bid space B′ ⊆ B1×. . .×Bn, if for any valuation
profile v ∈ V1× . . .×Vn and for any bid profile b ∈ B′ the
revenue of the auction is at least γ ·OPT (v)−δ ·SW (b,v).

3.1 Full Information
The following theorem establishes welfare guarantees on ev-
ery pure bid profile of a (γ, δ)−revenue guaranteed auction
in which the sum of player utilities is non-negative.
Theorem 3.2. If an auction is (γ, δ)−revenue guaranteed
w.r.t. a bid space B′ ⊆ B1 × · · · × Bn, then for any pure
bid profile b ∈ B′, in which the sum of player utilities is
non-negative, the SW is at least γ

1+δ of the optimal SW.

Proof. Using quasi-linear utilities and non-negative sum of
player utilities, 0 ≤

∑
i∈[n] ui(b, vi) =

∑
i∈[n] vi(Si(b))−∑

i∈[n] Pi(b) = SW (b,v) −
∑
i∈[n] Pi(b). By the

(γ, δ)−revenue guaranteed property,
∑
i∈[n] Pi(b) ≥

γOPT (v)− δSW (b,v). Punting it all together, we get:

0 ≤ SW (b,v)−
∑
i∈[n]

Pi(b) ≤ (1+δ)SW (b,v)−γOPT (v).

(2)
Rearranging gives: SW (b,v) ≥ γ

1+δOPT (v), as required.

Definition 3.1 considers pure bid profiles, but Theo-
rem 3.2 applies to the more general setting of randomized
bid profiles, possibly correlated, as cast in the following ex-
tension theorem.
Theorem 3.3. If an auction is (γ, δ)−revenue guaranteed
with respect to a bid space B′ ⊆ B1 × . . . × Bn, then for
any bid profile b ∈ ∆(B′), in which the sum of the expected
utilities of the players is non-negative, the expected social
welfare is at least γ

1+δ of the optimal social welfare.

The proof is identical to the proof of Theorem 3.2, except
adding expectation over b to every term, using the fact the
the auction is (γ, δ)−revenue guaranteed for every b in the
support of b, and using linearity of expectation.

Clearly, in every equilibrium (including CCE) the ex-
pected utility of every player is non-negative. It therefore
follows that the expected welfare in any CCE is at least γ

1+δ
of the optimal social welfare.
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For an auction that is both smooth and revenue guaran-
teed, we give a better bound on the price of anarchy:

Theorem 3.4. If an auction is (λ, µ)−smooth with respect
to a bid space B′ and (γ, δ)−revenue guaranteed with re-
spect to a bid space B”, then the expected social welfare at
any CCE ∈ ∆(B′ ∩ B”) of the auction is at least λ+γ

1+µ+δ of
the optimal social welfare.

Proof. Let b ∈ ∆(B′ ∩ B”) be a CCE of the auction. Since
the auction is (λ, µ)−smooth with respect to a bid space B′
(Roughgarden 2009):∑
i∈[n]

Eb [ui(b, vi)] ≥ λ ·OPT (v)− µ · Eb [SW (b,v)]

From Equation (2) we get,

Eb [SW (b,v)]−
∑
i∈[n]

Eb [Pi(b)] ≤

(1 + δ) · Eb [SW (b,v)]− γ ·OPT (v)

As utilities are quasi-linear, the left hand side of the
above two inequalities are equal. Rearranging, we get:
Eb [SW (b,v)] ≥ λ+γ

1+µ+δOPT (v), as required.

3.2 Incomplete Information: Extension Theorem
Following is an extension theorem for settings with incom-
plete information.

Theorem 3.5. If an auction is (γ, δ)−revenue guaranteed
with respect to a bid space B′ ⊆ B1×· · ·×Bn, then for every
joint distributionF ∈ ∆(V1×. . .×Vn), possibly correlated,
and every strategy profile σ : V1 × . . . × Vn → ∆(B′), in
which the expected sum of player utilities is non-negative,
the expected social welfare is at least γ

1+δ of the expected
optimal social welfare.

As the expected utility of each player is non-negative at
any equilibrium strategy profile, we infer that if an auction
is (γ, δ)−revenue guaranteed w.r.t. a bid space B′, then for
every joint distribution F ∈ ∆(V1 × . . . × Vn), possibly
correlated, the expected SW at any MBNE, σ : V1 × . . . ×
Vn → ∆(B′), is at least γ

1+δ of the expected optimal SW.
For an auction that is both smooth and revenue guaran-

teed, we give a better bound on the price of anarchy, if the
joint distribution F is a product distribution:

Theorem 3.6. If an auction is (λ, µ)−smooth with respect
to a bid space B′ and (γ, δ)−revenue guaranteed with re-
spect to a bid space B”, then for every product distribution
F , every mixed Bayes Nash equilibrium, σ : V1×. . .×Vn →
∆(B′ ∩ B”), has expected social welfare at least λ+γ

1+µ+δ of
the expected optimal social welfare.

Remark. In the full version we give an incomplete informa-
tion definition of revenue guaranteed auctions, which allows
us to get positive results for auctions that are revenue guar-
anteed only in expectation.

4 S2PA with No-Underbidding
We first define what it means to underbid on an item. Let
b−j denote the bids of all bidders on items [m] \ {j}.
Definition 4.1 (item underbidding). Fix b−j . Player i is
said to underbid on item j if: bij < vi(j | Si(b−j)), where
Si(b−j) = {k | k 6= j, bik = maxl {blk}}.

That is, we say that player i underbids on item j in a bid
profile b if i’s bid on item j is smaller than the marginal
valuation of j w.r.t the set of items other than j won by i.

We next show that underbidding is weakly dominated in
a precise sense that we define next. Consider a bid profile b.
Let b−j be the bids of all bidders on all items except j, and
let b−ij be the bids on item j of all players, except player i.

Definition 4.2 (weakly dominated). A bid b′ij is weakly
dominated by bid bij , with respect to b−j , if the following
two conditions hold:

1. ui(bij , b−ij ,b−j ; vi) ≥ ui(b′ij , b−ij ,b−j ; vi), ∀b−ij
2. There exists b−ij such that inequality (1) holds strictly.

The following lemma shows that underbidding on an item
is weakly dominated by bidding its marginal value.

Lemma 4.3. In S2PA, for every player i, every item j, and
every bid profile b−j , underbidding on item j is weakly dom-
inated by bidding bij = vi(j | Si(b−j)), with respect to b−j .

Motivated by the above lemma, we next define the notion
of item no underbidding (iNUB):

Definition 4.4 (Item No-UnderBidding (iNUB)). Given a
valuation profile v ∈ V1 × . . . × Vn, a bid profile b ∈ B
satisfies iNUB if there exists a welfare maximizing allo-
cation, S∗(v), such that for every player i and every item
j ∈ S∗i (v)\Si(b) it holds that: bij ≥ vi(j | Si(b)).

We also define the notion of set no underbidding (sNUB):

Definition 4.5 (Set No underbidding (sNUB)). Given a
valuation profile v ∈ V1× . . .×Vn, we say that a bid profile
b ∈ B satisfies sNUB if there exists a welfare maximizing
allocation, S∗(v), such that for every player i, it holds that∑
j∈S′ bij ≥ vi(S′ | Si(b)), where S′ = S∗i (v)\Si(b).

In Section 5 we show that if valuations are submodular,
every bid profile that satisfies iNUB, also satisfies sNUB.
The opposite is not necessarily true, as demonstrated in the
full version. For unit-demand bidders, iNUB and sNUB co-
incide (as one can assume w.l.o.g. that every bidder receives
a single item in an optimal allocation).

Lemma 4.6. Consider an S2PA and a valuation v. Let
S∗(v) = (S∗1 (v), . . . , S∗n(v)) be a welfare-maximizing al-
location. Then, for every bid profile b the following holds:

n∑
i=1

∑
j∈Si(b)

pj(b) ≥
n∑
i=1

∑
j∈S∗i (v)\Si(b)

bij

The following shows that sNUB is a powerful property.

Theorem 4.7. S2PA is (1, 1)−revenue guaranteed w.r.t. bid
profiles satisfying sNUB for any MON valuations.
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Proof. In what follows, the first inequality follows by
Lemma 4.6, the second inequality follows by sNUB, and the
last inequality follows by monotonicity of valuations:∑n

i=1

∑
j∈Si(b)

pj(b) ≥
∑n
i=1

∑
j∈S∗i (v)\Si(b)

bij ≥∑n
i=1 [ vi ( Si(b) ∪ (S∗i (v)\Si(b)) )− vi (Si(b)) ] =∑n
i=1 [ vi( Si(b) ∪ S∗i (v) )− vi(Si(b)) ] ≥∑n
i=1 [ vi(S

∗
i (v))− vi(Si(b)) ] = OPT (v)− SW (b,v)

The following follows from Theorems 4.7 and 3.5.
Corollary 4.8. In an S2PA with monotone valuations, for
every joint distribution F ∈ ∆(V1 × . . . × Vn), possibly
correlated, every mixed Bayes Nash equilibrium that satis-
fies sNUB has expected social welfare at least 1

2 of the ex-
pected optimal social welfare.
Remark. In the full version we give incomplete information
definition of no-underbidding strategy profiles, which allows
us to get positive results for a wider strategy space.

5 S2PA with Submodular (SM) Valuations
In this section we study S2PA with SM valuations. We first
show that for this class of valuations, the notion of iNUB
suffices for establishing positive results.
Theorem 5.1. Every S2PA with SM valuations is
(1, 1)−revenue guaranteed w.r.t. bids satisfying iNUB.

An immediate corollary from Theorems 3.5 and 5.1 is:
Corollary 5.2. In an S2PA with SM valuations, for every
joint distributionF ∈ ∆(V1×. . .×Vn), possibly correlated,
and every strategy profile σ that satisfies iNUB for which the
expected sum of player utilities is non-negative, the expected
social welfare is at least 1

2 of the expected optimal social
welfare.

The 1
2 bound is tight, even with respect to unit-demand

valuations and even in equilibrium, as shown in the follow-
ing proposition.
Proposition 5.3. There exists an S2PA with UD valuations
that admits a PNE satisfying iNUB, where the social welfare
in equilibrium is 1

2 of the optimal social welfare.

Proof. Consider an S2PA with two unit demand players and
2 items, {x, y}, where v1(x) = 2, v1(y) = 1, v2(x) = 1
and v2(y) = 2. An optimal allocation gives item x to player
1 and item y to player 2, for a welfare of 4. Consider the
following bid profile b: b1x = 1, b1y = 100, b2x = 100 and
b2y = 1. Player 1 wins item y for a price of 1, and player 2
wins item x for a price of 1. It is easy to see that b is a PNE
that satisfies iNUB. The social welfare of this equilibrium is
2, which is 1

2 of the optimal social welfare.

For SM valuations, iNUB implies sNUB:
Proposition 5.4. For every SM valuation v, every bid pro-
file b that satisfies iNUB also satisfies sNUB.

Proof. By iNUB, for every item j ∈ S∗i (v) \ Si(b),
it holds that bij ≥ vi(j | Si(b)). It follows that∑
j∈S∗i (v)\Si(b)

bij ≥
∑
j∈S∗i (v)\Si(b)

vi(j | Si(b)) ≥
vi(S

∗
i (v) \ Si(b) | Si(b)). The last inequality follows by

Lemma 2.4.

Therefore, Theorem 4.7 and Corollary 4.8 also apply to
every SM valuation that satisfies iNUB.

For profiles satisfying both iNUB and NOB, we get a bet-
ter bound as a corollary from Theorems 5.1, 2.7, and 3.6.
Corollary 5.5. In an S2PA with SM valuations, for every
product distribution F , every mixed Bayes Nash equilibrium
that satisfies both NOB and iNUB has expected social wel-
fare at least 2

3 of the expected optimal social welfare. This
result is tight.

The bound of 2
3 for SM valuations is tight even with re-

spect to a PNE with UD valuations (see Example 1.2).
In the next section, we show that every S2PA with XOS

valuations admits a PNE that satisfies both NOB and sNUB
(Theorem 6.2). Since every submodular valuation is XOS,
the existence result applies also to submodular valuations.

6 S2PA with XOS Valuations
XOS Valuations under iNUB: For XOS valuations,
iNUB does not imply sNUB, thus iNUB does not lead auto-
matically to good PoA. An example with PoA of 2

m is given
in the full version.
XOS Valuations under sNUB: As Theorem 4.7 and Corol-
lary 4.8 apply for MON valuation functions, the PoA is at
least 1

2 with respect to bid profiles satisfying sNUB. An im-
mediate corollary from Theorems 2.7, 4.7 and 3.6 is:
Corollary 6.1. In an S2PA with XOS valuations, for every
product distribution F , every mixed Bayes Nash equilibrium
that satisfies both NOB and sNUB has expected social wel-
fare at least 2

3 of the expected optimal social welfare.
This result is tight (see Example 1.2). We next show that

every S2PA with XOS valuations admits a PNE that satisfies
both NOB and sNUB.
Theorem 6.2. In S2PA with XOS valuations there always
exists at least one PNE that satisfies both NOB and sNUB.

Proof. Christodoulou, Kovács, and Schapira (2016) showed
that every S2PA with XOS valuations admits a PNE satis-
fying NOB. We show that the same PNE satisfies sNUB as
well. Let S∗(v) = (S∗1 (v), . . . , S∗n(v)) be a welfare max-
imizing allocation, and let a∗i be an additive valuation such
that vi(S∗i (v)) =

∑
j∈S∗i (v)

a∗ij . Consider the bid profile in
which every player bids according to the maximizing addi-
tive valuation with respect to her set S∗i (v), i.e., bij = a∗ij
for every j ∈ S∗i (v) and bij = 0 otherwise. One can eas-
ily verify that this bid profile is a PNE that satisfies NOB.
It thus remains to show that it also satisfies sNUB. Recall
that sNUB imposes restrictions on the bid values of the set
S′ = S∗i (v)\Si(b). Under the above bid profile we have
Si(b) = S∗i (v), i.e., S′ = ∅ and sNUB holds trivially.

Acknowledgments
We thank Noam Nisan and Tomer Ezra for insightful com-
ments.

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
866132), and by the Israel Science Foundation (grant num-
ber 317/17).

5397



References
Bhawalkar, K.; and Roughgarden, T. 2011. Welfare Guar-
antees for Combinatorial Auctions with Item Bidding. In
Randall, D., ed., Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011,
700–709. SIAM. doi:10.1137/1.9781611973082.55. URL
https://doi.org/10.1137/1.9781611973082.55.

Brânzei, S.; and Filos-Ratsikas, A. 2019. Walrasian Dynam-
ics in Multi-Unit Markets. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, 1812–1819.
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