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Abstract

We study a setting in which a community wishes to identify
a strongly supported proposal from a large space of alterna-
tives, in order to change the status quo. We describe a delib-
eration process in which agents dynamically form coalitions
around proposals that they prefer over the status quo. We for-
mulate conditions on the space of proposals and on the ways
in which coalitions are formed that guarantee deliberation to
succeed, that is, to terminate by identifying a proposal with
the largest possible support. Our results provide theoretical
foundations for the analysis of deliberative processes in sys-
tems for democratic deliberation support, such as, e.g., Liq-
uidFeedback or Polis.

1 Introduction
Democratic decision-making requires equality in voting on
alternatives, and social choice theory provides us with a
plethora of useful tools for preference aggregation (Zwicker
2016). However, another important dimension, which has re-
ceived considerably less attention in the literature, is equal-
ity in deciding on which alternatives to vote upon. In prac-
tice, agents engaging in group decisions do not just vote on
an externally determined set of choices: rather, they make
proposals, deliberate over them, and join coalitions to push
their proposals through. Understanding these processes is
critical for interactive democracy applications (Brill 2018),
which provide support for online voting and deliberation
to self-governing communities of users that need to make
democratic decisions; relevant examples are the LiquidFeed-
back1 (Behrens et al. 2014) and the Polis2 platforms.

In this paper, we aim to provide a plausible model of de-
liberative processes in self-governed online systems. We ab-
stract away from the communication mechanisms by means
of which deliberation may be concretely implemented, and
focus instead on the coalitional effects of deliberation, that
is, on how coalitions in support of various proposals may
be formed or broken in the face of new suggestions. In our
model, agents and alternatives are located in a metric space,
and there is one distinguished alternative, which we refer to
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as the status quo. We assume that the number of alterna-
tives is large (possibly infinite), so that the agents cannot be
expected to rank the alternatives or even list all alternatives
they prefer to the status quo. Rather, during the delibera-
tive process, some agents formulate new proposals, and then
each agent can decide whether she prefers a given proposal p
to the status quo, i.e., whether p is closer to her location
than the status quo alternative; if so, she may join a coali-
tion of users supporting p. Importantly, such coalitions are
dynamic: a user may move to another coalition if she thinks
that its proposal is more likely to attract a large number of
supporters; or, two coalitions may merge, possibly leaving
some members behind. We assume that agents are driven by
a desire to get behind a winning proposal; thus, they may
prefer a larger coalition with a less appealing proposal to a
smaller coalition with a more appealing proposal, as long as
the former proposal is more attractive to them than the status
quo. The deliberation succeeds if it identifies a most popular
alternative to the status quo.

This process is democratic in that each participant who
is capable of formulating a new proposal is welcome to do
so; furthermore, participants who do not have the time or
sophistication to work out a proposal can still take part in
the deliberation by choosing which coalition to join. Also,
participants could be assisted by AI-enabled tools, to help
them search for a suitable compromise proposal.

To flesh out the broad outline of the deliberative coali-
tion formation process described above, we specify rules
that govern the dynamics of coalition formation. We explore
several such rules ranging from single-agent moves to more
complex transitions where two coalitions merge behind a
new proposal, possibly leaving some dissenting members
behind. Our aim is to understand whether the agents can suc-
ceed at identifying credible alternatives to the status quo if
they conduct deliberation in a certain way.

We concentrate on how the properties of the underlying
abstract space of proposals and the coalition formation op-
erators available to the agents affect the guaranteed success
of the deliberative coalition formation process. We show
that, as the complexity of the proposal space increases, more
complex forms of coalition formation are required in or-
der to guarantee success. Intuitively, this seems to suggest
that complex deliberative spaces require more sophisticated
coalition formation abilities on the side of the agents.
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Specifically, we study four ways in which agents can form
coalitions: (1) by deviating, when a single agent moves to
another coalition; (2) by following, when a coalition joins
another coalition in supporting its proposal; (3) by merg-
ing, when two coalitions join forces behind a new proposal;
(4) by compromising, when agents belonging to two coali-
tions form a new larger coalition, possibly leaving dissenting
agents behind. We refer to these types of coalition formation
operations as transitions.

We show that, for each class of transitions, the deliber-
ation process is guaranteed to terminate; in fact, for single-
agent, follow and merge transitions the number of steps until
convergence is at most polynomial in the number of agents.
Furthermore, follow transitions are sufficient for delibera-
tion to succeed if the set of possible proposals is a subset
of the 1-dimensional Euclidean space, but this is no longer
the case in two or more dimensions; in contrast, compro-
mise transitions are sufficient in sufficiently rich subsets of
Rd for each d ≥ 1. However, the ‘richness’ is essential: we
provide an example where the space of proposals is a finite
subset of R3, but compromise transitions are not capable of
identifying most popular proposals.

We view our work as an important step towards modeling
a form of pre-vote deliberation usually not studied within the
social choice literature: how voters can identify proposals
with large support. Such a theory provides formal founda-
tions for the design and development of practical systems
that can support egalitarian deliberative decision-making,
for instance by helping agents to identify mutually benefi-
cial compromise positions (di Fenizio and Velikanov 2016).
Related Work Many social choice settings are naturally
embedded in a metric space, and there is a large literature
that considers preference aggregation and coalition forma-
tion in such scenarios (Coombs 1964; Merrill and Grofman
1999; de Vries 1999). We mention in particular the work of
Shahaf et al. (2019), which considers an egalitarian frame-
work for voting and proposing, instantiated to several metric
spaces, modeling a broad range of social choice settings, and
anticipating their use for deliberative decision making.

Group deliberation has been analyzed by several disci-
plines, from economics to social choice and artificial in-
telligence. Deliberation via sequential interaction in small
groups has been studied as a means to implement large-scale
decision-making when alternatives form a median graph
(Goel and Lee 2016; Fain et al. 2017). Our work is not based
on interaction in small groups, and focuses on how widely
supported proposals can be identified in a decentralized way.

In social choice theory and economics, papers have devel-
oped axiomatic (List 2011), experimental (List et al. 2013),
as well as game-theoretic approaches to deliberation. The
latter have focused, for instance, on persuasion (Glazer and
Rubinstein 2001, 2004, 2006) or on the way in which de-
liberation interacts with specific voting rules in determining
group decisions (Austen-Smith and Feddersen 2005). The
interaction between deliberation and voting has also been
recently investigated by Karanikolas, Bisquert, and Kakla-
manis (2019) using tools from argumentation theory. We,
however, abstract from the concrete interaction mechanism
by which agents discuss the proposals themselves, as well

as on how deliberation might interact with specific voting
rules, and concentrate on the results of such interactions, as
they are manifested by changes in the structure of coalitions
supporting different proposals.

The fact that we abstract from strategic issues that agents
may be confronted with in deciding to join or leave coali-
tions differentiates our work also from related literature
on dynamic coalition formation (Dieckmann and Schwalbe
2002; Chalkiadakis and Boutilier 2008).

Finally, unlike influential opinion dynamics models (e.g.,
(De Groot 1974)), in our model deliberation is driven by
compromise rather than by influence or trust.

2 Formal Model
We view deliberation as a process in which agents aim
to find an alternative preferred over the status quo by as
many agents as possible. Thus, we assume a (possibly in-
finite) domain X of alternatives, or proposals, which in-
cludes the status quo, or reality, r ∈ X . We also assume
a set V = {v1, . . . , vn} of n agents. For each proposal
x ∈ X , an agent v is able to articulate whether she (strictly)
prefers x over the status quo r (denoted as x >v r); when
x >v r we say that v approves x. For each v ∈ V , let
Xv = {x ∈ X : x >v r}; the set Xv is the approval
set of v. Conversely, given a subset of agents C ⊆ V and a
proposal p ∈ X , let Cp := {v ∈ C : p >v r}; the agents in
Cp are the approvers of p in C.

Throughout this paper, we focus on the setting where
X and V are contained in a metric space (M,ρ), i.e., (1)
X,V ⊆ M , (2) for every x ∈ X and every v ∈ V we have
x >v r if and only if ρ(v, x) < ρ(v, r), and (3) the map-
ping ρ : M × M → R+ ∪ {0} satisfies (i) ρ(x, y) = 0
if and only if x = y, (ii) ρ(x, y) = ρ(y, x), and (iii)
ρ(x, y) + ρ(y, z) ≤ ρ(x, z) for all x, y, z ∈ M . E.g., if
M = R2 and the metric is the usual Euclidean metric in R2,
then the approval set of v consists of all points in X that are
located inside the circle with center v and radius ρ(v, r) (see
Figure 1), whereas the set of supporters of a proposal p in
C consists of all agents v ∈ C such that ρ(v, p) < ρ(v, r)
(geometrically, consider the line ` that passes through the
midpoint of the segment [p, r] and is orthogonal to it; then
Cp consists of all agents v ∈ C such that v and p lie on the
same side of `).

Thus, an instance of our problem can be succinctly en-
coded by a 4-tuple (X,V, r, ρ); we will refer to such tuples
as deliberation spaces.

Remark 1. Note that we do not require that X = M . By
allowing X to be a proper subset of M we can capture the
case where the space of proposals is, e.g., a finite subset of
Rd for some d ≥ 1. Moreover, in our model it need not be
the case that V ⊆ X , i.e., we do not assume that for each
agent there exists a ‘perfect’ proposal. Furthermore, while
for each agent v the quantities ρ(v, x) are well-defined for
each x ∈ X , we do not expect the agents to compare dif-
ferent proposals based on distance; rather, the distance only
determines which proposals are viewed as acceptable (i.e.,
preferred to the status quo).

Agents proceed by forming coalitions around proposals.
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Thus, at each point in the deliberation, agents can be parti-
tioned into coalitions, so that each coalition C is identified
with a proposal pC and all agents in C support pC . Agents
may then move from one coalition to another as well as se-
lect a proposal from X that is not associated with any of
the existing coalitions and form a new coalition around it.
We consider a variety of permissible moves, ranging from
single-agent transitions (when an agent abandons her cur-
rent coalition and joins a new one), to complex transitions
that may involve agents from multiple coalitions and a new
proposal. In each case, we assume that agent v is unwill-
ing to join a coalition if this coalition advocates a proposal
p such that v prefers the status quo r to p. To reason about
the coalition formation process, we introduce additional no-
tation and terminology.

Definition 1 (Deliberative Coalition). A deliberative coali-
tion is a pair d = (C, p), where C ⊆ V is a set of agents,
p ∈ X is a proposal, and either (i) p = r and x 6>v r for all
v ∈ C, x ∈ X \ {r}, or (ii) p 6= r and p >v r for all v ∈ C.
We refer to p as the supported proposal of d. The set of all
deliberative coalitions is denoted by D.

When convenient, we identify a coalition d = (C, p) with
its set of agents C and write dp := Cp, |d| := |C|.
Remark 2. While we allow coalitions that support the status
quo, we require that such coalitions consist of agents who
weakly prefer the status quo to all other proposals in X . We
discuss a relaxation of this constraint in Section 7.

A partition of the agents into deliberative coalitions is
called a deliberative coalition structure.

Definition 2 (Deliberative Coalition Structure). A delibera-
tive coalition structure (coalition structure for short) is a set
D = {d1, . . . ,dm}, m ≥ 1, such that:

• di = (Ci, pi) ∈ D for each i ∈ [m];
•

⋃
i∈[m] Ci = V , Ci∩Cj = ∅ for all i, j ∈ [m] with i 6= j.

The set of all deliberative coalition structures over V and X
is denoted by D.

Note that a deliberative coalition structure may contain
several coalitions supporting the same proposal; also, for
technical reasons we allow empty deliberative coalitions,
i.e., coalitions (C, p) with C = ∅.
Example 1. Consider a set of agents V = {v1, v2, v3} and
a space of proposals X = {a, b, c, d, r}, where r is the sta-
tus quo. Suppose that Xv1 = {a, b}, Xv2 = {b, c}, and
Xv3 = {b, c, d}. Then for C = {v1, v2} we have Ca =
{v1} and Cb = {v1, v2}. Furthermore, let C1 = {v1, v2},
C2 = {v3}, and let d1 = (C1, b), d2 = (C2, c). Then
D = {d1,d2} is a deliberative coalition structure; see Fig-
ure 1 for an illustration.

Remark 3. An important feature of our model is that agents
do not need to explicitly list all proposals they approve of,
or reason about them. At any time during the deliberation,
each agent supports a single proposal in her approval set.
Thus, this model can be used even if the agents have limited
capability to reason about the available proposals.

v1

v2 v3

ra

b

c

d

Figure 1: A deliberation space with X = {a, b, c, d, r}. The
circle with center vi, i ∈ [3], contains all proposals approved
by vi.

2.1 Deliberative Transition Systems
As suggested above, we model deliberation as a process
whereby deliberative coalition structures change as their
constituent coalitions evolve. We provide general definitions
for deliberative processes, modeled as transition systems
(Definitions 3–6). Subsequently, we explore several specific
kinds of transitions. Generally, a transition system is charac-
terized by a set of states S, a subset S0 ⊆ S of initial states,
and a set of transitions T , where each transition t ∈ T is
represented by a pair of states (s, s′) ∈ S × S; we write
t = (s, s′) and s t−→ s′ interchangeably. We use s T−→ s′ to
denote that s t−→ s′ for some t ∈ T . A run of a transition
system is a (finite or infinite) sequence s0

T−→ s1
T−→ s2 · · · ;

such a run is initialized if s0 ∈ S0. The last state of a finite
run is called its terminal state.
Definition 3 (Deliberative Transition System). A delibera-
tive transition system over a set of proposals X and a set of
agents V is a transition system that has D as its set of states,
a subset of states D0 ⊆ D as its set of initial states, and a set
of transitions S .

Deliberative transition systems can be used to analyze the
dynamics of the deliberation process; we focus on maximal
runs over a deliberative transition system, as we are inter-
ested in the results of such a process.
Definition 4 (Deliberation). A deliberation is a maximal run
of a deliberative transition system, that is, a run that does not
occur as a prefix of any other run (i.e., cannot be extended).

A successful deliberation is one that identifies some of
the most popular proposals in X \ {r}. In particular, if there
is a majority-supported proposal, a successful deliberation
process allows the agent population to identify some such
proposal; this can then result in a majority-supported change
to the status quo.
Definition 5 (Most-Supported Alternatives). For a set of
agents V and a set of proposalsX , the set of most-supported
alternatives is M∗ = argmaxx∈X\{r}|V x| and the maxi-
mum support is m∗ = maxx∈X\{r}|V x|.

Note that, as long as all approval sets are non-empty,
M∗ 6= ∅ and |V x| = m∗ for every x ∈ M∗. We are now
ready to define success in deliberation.
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Definition 6. A coalition d = (C, p) is successful if p ∈
M∗ and |C| = m∗. A coalition structure is successful if it
contains a successful coalition, and unsuccessful otherwise.
A deliberation is successful if it is finite and its terminal
coalition structure is successful.

Intuitively, a coalition is successful if it consists of all ap-
provers of a most-supported proposal. Successful delibera-
tions are maximal finite runs that lead to a successful coali-
tion structure, i.e., to a coalition structure that contains some
successful coalition.

Example 2. Consider a toy example of a deliberative tran-
sition system that consists of (1) a single initial coalition
structure D0 = {d1,d2,d3}, with d1 = (C1, a) where
C1 = {v1, v2}, d2 = (C2, b) where C2 = {v3, v4},
and d3 = (C3, c) where C3 = {v5, v6}; and (2) the
set of transitions S only containing a transition t from
D0 to D1 = {d4,d5}, with d4 = (C4, e) where C4 =
{v1, v2, v3, v4, v5}, d5 = (C5, f) where C5 = {v6}. Then,
assuming that there is no proposal approved by all agents,
we have that D0

t−→ D1 is a successful deliberation.

Intuitively, the abstract transition system described above
models the dynamics of deliberation that might occur. As we
want to model specific possibilities available to agents par-
ticipating in such deliberation processes, below we consider
specific types of transitions; each can be thought of as a de-
liberation operator that might be available to the agents. For
each transition type, we aim to determine if a deliberation
that only uses such transitions is guaranteed to terminate,
and, if so, whether the final coalition structure is guaranteed
to be successful. We show that the answer to this question
depends on the underlying metric space: simple transition
rules guarantee success in simple metric spaces, but may fail
in richer spaces.

3 Single-Agent Transitions
The simplest kind of transition we consider is a deviation by
a single agent. As we assume that agents aim to form a suc-
cessful coalition and are not necessarily able to distinguish
among approved proposals, it is natural to focus on transi-
tions where an agent moves from a smaller group to a larger
group; of course, this move is only possible if the agent ap-
proves the proposal supported by the larger group.

Definition 7 (Single-Agent Transition). A pair of coalition
structures (D,D′) forms a single-agent transition if there
exist coalitions d1,d2 ∈ D and d′1,d

′
2 ∈ D′ such that

|d2| ≥ |d1|, D \ {d1,d2} = D′ \ {d′1,d′2}, and there
exists an agent v ∈ d1 such that d′1 = d1 \ {v}, and
d′2 = d2 ∪ {v}.3 We refer to v as the deviating agent.

Since D′ is a deliberative coalition structure, agent v must
approve the proposal supported by d2. As a consequence,
no agent can deviate from a coalition that supports r to a
coalition that supports some p ∈ X \ {r} or vice versa.

Next, we show that a sequence of single-agent transitions
necessarily terminates after polynomially many steps.

3Note that d′
1 may be empty; we allow such ‘trivial’ coalitions

as it simplifies our definitions.

Proposition 1. A deliberation that consists of single-agent
transitions can have at most n2 transitions.

Proof. Given a coalition structure D = {d1, . . . ,dm}
such that di = (Ci, pi) for each i ∈ [m], let λ(D) =∑

i∈[m] |Ci|2; we will refer to λ(D) as the potential of D.
Consider a single-agent transition where an agent moves
from a coalition of size x to a coalition of size y; note
that 1 ≤ x ≤ y. This move changes the potential by
(y + 1)2 + (x − 1)2 − y2 − x2 = 2 + 2(y − x) ≥ 2.
Now, we claim that for every deliberative coalition struc-
ture D over n agents we have λ(D) ≤ n2. Indeed, for
the coalition structure D0 where all agents are in one coali-
tion we have λ(D0) = n2. On the other hand, if a coali-
tion structure contains two non-empty coalitions d1, d2 with
|d1| ≤ |d2|, then the calculation above shows that we can
increase the potential by moving one agent from d1 to d2.
Thus, λ(D0) ≥ λ(D) for each D ∈ D. As every single-
agent transition increases the potential by at least 2, and the
potential takes values in {1, . . . , n2}, the claim follows.

However, a deliberation consisting of single-agent tran-
sitions is not necessarily successful, even for very simple
metric spaces. The next example shows that such a delibera-
tion may fail to identify a majority-supported proposal even
if the associated metric space is the 1D Euclidean space.
Example 3. Suppose that X,V ⊆ R, and X = {r, a, b, c}
with r = 0, a = 1, b = 5, c = −1. There are three agents
v1, v2, v3 located at a, four agents v4, v5, v6, v7 located at b,
and three agents v8, v9, v10 located at c. Observe that a ma-
jority of the agents prefer a to r. Consider the deliberative
coalition structure {d1,d2,d3} with d1 = (C1, a), d2 =
(C2, b), d3 = (C3, c), and such that C1 = {v1, v2, v3},
C2 = {v4, v5, v6, v7}, and C3 = {v8, v9, v10}. There are no
single-agent deviations from this coalition structure: in par-
ticular, the agents in d2 do not want to deviate to d1 because
|d1| < |d2| and the agents in d1 do not want to deviate to
d2, because they do not approve b.

Note that this argument still applies to any proposal space
X ′ with X ⊆ X ′; e.g., we can take X ′ = R.

Thus, to ensure success, we need to consider more pow-
erful transitions.

4 Follow Transitions
A straightforward generalization of single-agent transitions
are transitions where an entire coalition simply joins another
coalition in supporting its current proposal.
Definition 8 (Follow Transition). A pair of coalition struc-
tures (D,D′) forms a follow transition if there exist non-
empty coalitions d1,d2 ∈ D and d′2 ∈ D′ such that
d1 = (C1, p1), d2 = (C2, p2), D \ {d1,d2} = D′ \ {d′2},
and d′2 = (C1 ∪ C2, p2).

Note that each follow transition reduces the number of
coalitions by one, so a deliberation that consists only of fol-
low transitions converges in at most n steps. Also, |d′2|2 =
(|d1| + |d2|)2 > |d1|2 + |d2|2, i.e., follow transitions in-
crease the potential function defined in the proof of Propo-
sition 1. This implies the following bound.
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Proposition 2. A deliberation that consists of single-agent
transitions and follow transitions can have at most n2 tran-
sitions.

However, in contrast to single-agent transitions, follow
transitions are sufficient for successful deliberation in one
dimension.
Theorem 1. Consider a deliberation space (X,V, r, ρ),
where X,V ⊆ R and ρ(x, y) = |x − y|. Then any delib-
eration that consists of follow transitions only, or of a com-
bination of follow transitions and single-agent transitions, is
successful.

Proof. Assume for convenience that r = 0. Consider a de-
liberation that consists of single-agent transitions and follow
transitions. By Proposition 2 we know that it is finite; let D
be its terminal state, let p be some proposal in M∗, and as-
sume without loss of generality that p > 0.

Suppose that D contains two deliberative coalitions
(C1, p1) and (C2, p2) with p1, p2 ∈ R+; assume without
loss of generality that p1 ≤ p2. Note that C1, C2 ⊆ R+: all
agents in R− ∪ {0} prefer r to p1, p2. Furthermore, every
agent in C2 approves p1: indeed, if v ∈ C2 does not approve
p1 then |v−r| ≤ |v−p1|, i.e., 0 < v ≤ p1−v ≤ p2−v and
hence v does not approve p2, a contradiction. Hence there
is a follow transition in which C2 joins C1, a contradiction
with D being a terminal coalition structure. Thus, D con-
tains at most one coalition, say, (C+, q+), that supports a
proposal in R+; by the same argument, it also contains at
most one coalition, say, (C−, q−), that supports a proposal
in R− and at most one coalition, say, (C0, r), that supports r.
Since agents in R− prefer r to p, we have C− ∩ V p = ∅;
also, by definition all agents in C0 weakly prefer r to p.
Hence V p ⊆ C+ and therefore |C+| = m∗.

If we modify the definition of follow transitions to require
|d2| ≥ |d1| (i.e., if we require that the joint proposal of
the new coalition is the proposal originally supported by the
larger of the two coalitions — a seemingly sensible condi-
tion), then the proof of Theorem 1 no longer goes through.
In fact, Example 3 illustrates that in this case the transition
system may be unable to reach a successful state.

Unfortunately, Theorem 1 does not extend beyond one di-
mension. The following example shows that in the Euclidean
plane a deliberation that only uses single-agent transitions
and follow transitions is not necessarily successful.
Example 4. Consider a space of proposals {a, b, p, r} em-
bedded into R2, where r is located at (0, 0), p is lo-
cated at (0, 3), a is located at (−3, 3), and b is located
at (3, 3). There are four agents v1, v2, v3, v4 located at
(−3, 3), (−3, 4), (3, 3), and (3, 4), respectively. Note that
all agents prefer p to r. Consider a deliberative coalition
structure D = {d1,d2}, where d1 = ({v1, v2}, a), d2 =
({v3, v4}, b). Then no agent in d1 approves b, and no agent
in d2 approves a, so there are no follow transitions and no
single-agent transitions from D.

5 Merge Transitions
So far, we focused on transitions that did not introduce new
proposals. Example 4, however, shows that new proposals

may be necessary to reach success: indeed, none of the
proposals supported by existing coalitions in that example
had majority support. Thus, next we explore transitions that
identify new proposals.

As a first step, it is natural to relax the constraint in the
definition of the follow transitions that requires the new
coalition to adopt the proposal of one of the two component
coalitions, and, instead, allow the agents to identify a new
proposal that is universally acceptable.

We do not specify how the compromise proposal p is iden-
tified. In practice, we expect that the new proposal would be
put forward by one of the agents in d1,d2 or by an external
mediator whose goal is to help the agents reach a consensus.

Definition 9 (Merge Transition). A pair of coalition struc-
tures (D,D′) forms a merge transition if there exist non-
empty coalitions d1,d2 ∈ D and d′2 ∈ D′ such that
d1 = (C1, p1), d2 = (C2, p2), D \ {d1,d2} = D′ \ {d′2},
and d′2 = (C1 ∪ C2, p) for some proposal p.

One can verify that in Example 4 the agents have a merge
transition to the deliberative coalition ({v1, v2, v3, v4}, p);
indeed, merge transitions are strictly more powerful than
follow transitions. Moreover, our potential function argu-
ment shows that a deliberation that consists of single-agent
transitions and merge transitions can have at most n2 steps.
However, the next example shows that, either on their own
or combined with single-agent transitions, merge transitions
are not sufficient for successful deliberation.

Example 5. Consider a modification of Example 4, where
we add an agent v5 at (−4, 0) to d1 and an agent v6 at (4, 0)
to d2; let D′ be the resulting coalition structure. Note that
v5 approves a, but does not approve p, thereby preventing a
merge transition between d1 and d2 at p.

6 Compromise Transitions
Example 5 illustrates that, to reach a successful outcome,
coalitions may need to leave some of their members behind
when joining forces. Next we formalize this idea.

Definition 10 (Compromise Transition). A pair of coalition
structures (D,D′) forms a compromise transition if there
exist coalitions d1,d2 ∈ D, d′1,d

′
2,d
′ ∈ D′ and a proposal

p such that D\{d1,d2} = D′\{d′1,d′2,d′}, d1 = (C1, p1),
d2 = (C2, p2), d′ = (Cp

1 ∪ C
p
2 , p), d

′
1 = (C1 \ Cp

1 , p1),
d2 = (C2 \ Cp

2 , p2), and |Cp
1 ∪ C

p
2 | > |C1|, |C2|.

Intuitively, under a compromise transition agents in d1

and d2 identify a suitable proposal p, and then those of them
who approve p move to form a coalition that supports p,
leaving the rest of their old friends behind; a necessary con-
dition for the transition is that the new coalition should be
larger than both d1 and d2.

Example 6. Consider again the deliberative coalition struc-
ture D′ in Example 5. There is a compromise transition
from D′ to the coalition structure (d′1,d

′
2,d
′), where d′1 =

({v5}, a), d′2 = ({v6}, b), and d′ = ({v1, v2, v3, v4}, p). As
|d′| = 4, the resulting coalition structure is successful.

Importantly, we assume that all agents in d1 and d2 who
support p join the compromise coalition; indeed, this is what
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we expect to happen if the agents myopically optimize the
size of their coalition.

An important feature of compromise transitions is that
they ensure termination.
Proposition 3. A deliberation that consists of compromise
transitions is necessarily finite.

Proof. Given a coalition structure D = {d1, . . . ,dm} such
that di = (Ci, pi) for each i ∈ [m], |C1| ≥ · · · ≥ |Cm|,
and there exists an ` ∈ [m] such that |Ci| > 0 for i ∈ [`],
|Ci| = 0 for i = `+ 1, . . . ,m, let γ(D) = (|C1|, . . . , |C`|).
Note that γ(D) is a non-increasing sequence of positive
integers. Given two non-increasing sequences (a1, . . . , as),
(b1, . . . , bt) of positive integers we write (a1, . . . , as) <lex

(b1, . . . , bt) if either (a) there exists a j ≤ min{s, t} such
that ai = bi for all i < j and aj < bj , or (b) s < t,
and ai = bi for all i ∈ [s]. Now, observe that if (D,D′)
is a compromise transition, then for the respective coali-
tions d1,d2,d

′ we have |d′| > max{|d1|, |d2|}, and hence
γ(D) <lex γ(D

′). Since for every coalition structure D over
n agents we have γ(D) ≤lex (n), the claim follows.

In contrast to the case of single-agent transitions and fol-
low/merge transitions, we are unable to show that a delibera-
tion consisting of compromise transitions always terminates
after polynomially many steps; it remains an open problem
whether this is indeed the case. We note that a compromise
transition does not necessarily increase the potential func-
tion defined in the proof of Proposition 1; e.g., the transition
described in Example 6 does not change the potential.

We say that a deliberation space (X,V, r, ρ) is a Eu-
clidean deliberation space if X = Rd, V ⊆ Rd for some
d ≥ 1, and ρ is the standard Euclidean metric on Rd. The
main result of this section is that, in every Euclidean delib-
eration space, every maximal run of compromise transitions
is successful. To prove it, we need two auxiliary lemmas. In
what follows, for a coalition structure D, |D| denotes the
number of non-empty coalitions in D that do not support r.
Lemma 1. In every deliberation space, a deliberation that
consists of compromise transitions and has a coalition struc-
ture D with |D| = 2 as its terminal state is successful.

Proof. Consider a coalition D with |D| = 2 that is not suc-
cessful. Let d1, d2 be the two coalitions in D that do not
support r; we have |d1| < m∗, |d2| < m∗. For each p ∈M∗
we have V p = dp

1 ∪ dp
2 and hence |dp

1 ∪ dp
2| = m∗ >

|d1|, |d2|. Thus, there exists a compromise transition from
D in which agents in dp

1∪d
p
2 form a coalition around p.

Lemma 2. In every Euclidean deliberation space, a delib-
eration that consists of compromise transitions and has a
coalition structure D with |D| ≥ 3 as its terminal state is
successful.

Proof. For the case d = 1 our claim follows from the proof
of Theorem 1. We will now provide a proof for d = 2; it
generalizes straightforwardly to d > 2.

Fix a coalition structure D that contains at least three
coalitions, all of which are not successful and none of which
supports r; we will show that D is not terminal. Let da =

a

r `

`′

`′1

`′2

Va

Vb Vc

p

Figure 2: Proof of Lemma 2.

(Ca, a) be a maximum-size coalition in D that does not sup-
port r. Let ` be the line that passes through the middle of
the a–r segment and is orthogonal to it; this line separates
R2 into two open half-planes so that r lies in one of these
half-planes while all points in da lie in the other half-plane
(see Figure 2). Let `′ be the line that passes through r and
is parallel to `. For a positive α, let `′1 be the line obtained
by rotating `′ about r clockwise by α, and let `′2 be the line
obtained by rotating `′ counterclockwise by α. The line `′1
(resp. `′2) partitions R2 into open half-planes H1 and H ′1
(resp.H2 andH ′2). We can choose α to be small enough that
da ⊂ H1,d

a ⊂ H2 and so that no agent lies on `′1 or on `′2.
Now, if there exists a coalition db = (Cb, b) ∈ D, db 6= da,
b 6= r, such that v ∈ H1 or v ∈ H2 for some v ∈ Cb, then
r is not in the convex hull of Ca and v, and hence there is
a line that separates Ca ∪ {v} from r; by projecting r onto
this line, we obtain a proposal r′ that is approved by v and
all agents in Ca. Thus, there is a compromise transition in
which a non-empty subset of agents in Cr′

b joins Ca to form
a deliberative coalition around r′.

Otherwise, dx ⊆ H ′1∩H ′2 for all dx ∈ S\{da}. Consider
two distinct coalitions db,dc ∈ D with b, c 6= r. As H ′1 ∩
H ′2 is bounded by two rays that start from r, and the angle
between these rays is 2π − 2α < 2π, there is a line `∗ that
divides R2 into two open half-planes so that r is in one half-
plane and db∪dc are in the other half-plane; thus, all agents
in db ∪ dc approve the proposal p obtained by projecting r
onto `∗, and hence there is a merge transition.

Combining Lemmas 1 and 2, we obtain the main result of
this section.

Theorem 2. In every Euclidean deliberation space, every
maximal run of compromise transitions is successful.

Proof. Consider a maximal run of compromise transitions,
and let D be its terminal state. Suppose for the sake of con-
tradiction that D is not successful. Note that this implies
that |D| > 1. If |D| = 2 there is a transition from D by
Lemma 1 and if |D| ≥ 3, then there is a transition from D
by Lemma 2.

For the proof of Lemma 2 to go through, the underlying
metric space should be sufficiently rich: to obtain the pro-
posal approved by the new coalition, we project the status
quo r on a certain line. The argument goes through if we
replace Rd with Qd; however, it does not extend to the case
where X is an arbitrary finite subset of Rd. Intuitively, for
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Figure 3: The deliberative space in Example 7.

deliberation to converge, at least some agents should be able
to spell out nuanced compromise proposals.

Observe that the compromise transitions in Lemma 2 have
a special form: when two coalitions join forces, at least one
of them is fully behind the new proposal. This motivates the
following definition.

Definition 11 (Subsume Transition). A pair of coalition
structures (D,D′) forms a subsume transition if there ex-
ist coalitions d1,d2 ∈ D, d′1,d

′ ∈ D′ and a proposal p
such that D \ {d1,d2} = D′ \ {d′1,d′}, d1 = (C1, p1),
d2 = (C2, p2), C

p
2 = C2, Cp

1 6= ∅, d′ = (Cp
1 ∪ C2, p),

d′1 = (C1 \ Cp
1 , p1), and |Cp

1 ∪ C2| > |C1|.
By construction, every subsume transition is a compro-

mise transition, and Lemma 2 holds for subsume transitions.
While subsume transitions by themselves are not suffi-

cient for successful deliberation in Rd (as the transition
in Lemma 1 is not necessarily a subsume transition), they
are nearly sufficient: the proof of Theorem 2 shows that
we need at most one general compromise transition. Not-
ing that every subsume transition increases the potential by
2(|C2|−|C1|+|Cp

1 |) ≥ 2, we obtain the following corollary.

Corollary 1. For every Euclidean deliberation space there
exists a successful deliberation that consists of compromise
transitions and has length at most n2 + 1.

Proof. Suppose that agents perform subsume transitions un-
til no such transitions are available; as every subsume tran-
sition increases the potential, this process ends after at most
n2 steps. By Lemma 2, if the resulting coalition structure D
is not successful, then |D| = 2, in which case, by Lemma 1,
there is a compromise transition from D to a successful
coalition structure.

Given our positive results for Euclidean deliberation
spaces, it is natural to ask whether compromise transitions
are sufficient for convergence in other metric spaces. The
following example, however, illustrates that this is not the
case even if X is a finite subset of Rd.

Example 7. Figure 3 depicts a deliberation space that is
embedded in R3, so that ρ is the usual Euclidean metric in

R3, and X = {r, a, b, c, d, p, e}, V = {v1, . . . , v9} with
r = (0, 0, 0),

a = (2, 0, 0), b = (0, 2, 0), c = (−2, 0, 0), d = (0,−2, 0),
p = (0, 0, 2), e = (0, 0, 3.5),

v1 = (3, 0, 0), v2 = (0, 3, 0), v3 = (−3, 0, 0), v4 = (0,−3, 0),
v5 = (2, 0, 2), v6 = (0, 2, 2), v7 = (−2, 0, 2), v8 = (0,−2, 2),
v9 = (0, 0, 3).

Then D = {d1,d2,d3,d4,d5}, where d1 = ({v1, v5}, a),
d2 = ({v2, v6}, b), d3 = ({v3, v7}, c), d4 = ({v4, v8}, d),
d5 = ({v9}, e) is a deliberative coalition structure, and
there are no compromise transitions from D. However, D
is not successful, as agents v5, . . . , v9 all support p.
Thus, for general metric spaces one needs an even richer
class of transitions to identify credible alternatives to the sta-
tus quo.

7 Conclusions and Future Work
We proposed a formal model of deliberation for agent pop-
ulations forming coalitions around proposals in order to
change the status quo. We identified several natural types of
deliberation transitions, together with metric spaces where
deliberations that consist of such transitions are always suc-
cessful. We intend our model as a foundation for a system
allowing an online community to self govern.

Future work includes considering other transition types
and identifying further deliberative spaces that guarantee
success. One can also ask whether our positive results are
preserved if we impose additional conditions on the struc-
ture of the deliberative process, e.g., require new proposals
to be close to the original proposals. We may also revisit our
approach to modeling coalitions that support the status quo:
we now assume that each agent v with Xv 6= ∅ is capable of
identifying some proposal in Xv , and this assumption may
be too strong for many deliberation scenarios. It is perhaps
more realistic to assume that some agents start out by sup-
porting the status quo, and then learn about a new proposal p
that they prefer to the status quo by observing a coalition that
supports p, and then move to join this coalition. Investigat-
ing a model that permits such transitions is another direction
for future work.

Further afield, it would be interesting to consider a
stochastic variant of our model, in which each transition
from a state is assigned a certain probability. A Markovian
analysis of such systems might shed further light on addi-
tional properties of deliberation. Also, in our current model
agents are not strategic: they truthfully reveal whether they
support a given proposal. Yet, revealed support for proposals
may well be object of manipulation. Such a game-theoretic
extension is a natural direction for future research. Another
ambitious direction for future work is to design a practical
tool for deliberation and self-government of an online com-
munity, building on top of our model and analysis. Such a
tool could take the form of an AI bot over existing on-line
deliberation platforms such as the LiquidFeedback and Po-
lis platforms mentioned earlier. The bot would suggest pro-
posals to agents in order to support compromise, hopefully
fostering successful deliberations.
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