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Abstract

We expand the literature on the price of anarchy (PoA) of si-
multaneous item auctions by considering settings with cor-
related values; we do this via the fundamental economic
model of interdependent values (IDV). It is well-known that
in multi-item settings with private values, correlated values
can lead to bad PoA, which can be polynomially large in the
number of agents n. In the more general model of IDV, we
show that the PoA can be polynomially large even in single-
item settings. On the positive side, we identify a natural con-
dition on information dispersion in the market, which enables
good PoA guarantees. Under this condition, we show that
for single-item settings, the PoA of standard mechanisms de-
grades gracefully. For settings with multiple items we show a
separation between two domains: If there are more buyers, we
devise a new simultaneous item auction with good PoA, un-
der limited information asymmetry. To the best of our knowl-
edge, this is the first positive PoA result for correlated values
in multi-item settings. The main technical difficulty in estab-
lishing this result is that the standard tool for establishing PoA
results — the smoothness framework — is unsuitable for IDV
settings, and so we must introduce new techniques to address
the unique challenges imposed by such settings. In the do-
main of more items, we establish impossibility results even
for surprisingly simple scenarios.

1 Introduction
In this work, we study simple and practical mechanisms for
selling heterogeneous items to unit-demand agents,1 with
the goal of maximizing social welfare. While much of the lit-
erature focuses on truthful mechanisms (for which it is in the
agents’ best interest to report their true values for the items),
such mechanisms are often complicated, computationally
and cognitively demanding, and must be run in a centralized
manner (Dobzinski 2011; Li 2017; Ausubel, Milgrom et al.
2006). In many real-life settings like e-commerce, the mech-
anisms used in practice are simple and run in a distributed

∗For the full version, see https://arxiv.org/abs/2011.00498
(Eden et al. 2020). Due to space limitation, all missing statements
and proofs are deferred to the full version.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Where an agent has a value for each item, and her value for a
bundle is the maximal value for a bundle’s item.

manner, but are non-truthful. A prime example is the auc-
tions run by e-Bay, where each item is sold separately in a
second-price auction, so that an agent interested in winning
at most one auction may be better off reporting lower than
her true values, to avoid multiple wins.

Motivated by such settings, Christodoulou et al. [2016]
pioneered the study of simultaneous item auctions, where
a single-item auction is run for each item separately. Since
such auctions are non-truthful, their performance is mea-
sured by their Bayesian Price of Anarchy (B-POA) — the ra-
tio between the optimal welfare and the welfare guarantee of
the worst equilibrium. Christodoulou et al. and many follow-
ups show that this simple format achieves near-optimal wel-
fare in combinatorial settings when the auction in use is the
first- or second-price auction [Roughgarden et al. 2017]. Im-
portantly, all prior works assume independence of different
buyers’ valuations, since otherwise the PoA might be poly-
nomial in the number of agents (Bhawalkar and Roughgar-
den 2011; Feldman et al. 2013; Roughgarden 2016).

There are many settings in which the independence as-
sumption is unrealistic. For instance, if an item being auc-
tioned has the potential of being resold in the future, this
potential factors into agents’ values for the item, creat-
ing dependence on how others value it. Such dependence
is formally captured by the interdependent values (IDV)
model (Milgrom and Weber 1982). In this model, the corre-
lation of values stems directly from one of the most funda-
mental aspects of a market — the way in which information
is dispersed among agents. In more detail, each agent has
a privately-known signal, which captures her partial knowl-
edge about the items for sale. Her value for each item is a
function of all the information on the market related to this
item; that is, of her own signal as well as the signals of all
other agents (which are unknown to her). Since the valua-
tions of different agents depend on the same signals, values
are correlated.

IDV settings have been studied extensively in the eco-
nomic literature since Milgrom and Weber (1982), and in
the computer science literature (Ito and Parkes 2006; Con-
stantin, Ito, and Parkes 2007; Robu et al. 2013; Chawla, Fu,
and Karlin 2014; Roughgarden and Talgam-Cohen 2016;
Eden et al. 2019); see Krishna (2009) for an overview and
the full version for additional related work. Realistic sce-
narios captured by this model include common value auc-
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tions (Klemperer 1998), mineral rights auctions (Wilson
1969) and resale (Myerson 1981; Roughgarden and Talgam-
Cohen 2016). We use the last as a running example through-
out the paper:

Example 1.1 (Resale model). Let si be the private signal of
agent i ∈ [n], distributed uniformly between 0 and 1. This
signal captures the appreciation of agent i for the item for
sale. Agent i’s valuation function is vi(s) = si + β

∑
j 6=i sj

for some parameter β ∈ (0, 1). That is, the agent also takes
into account the others’ assessment of the item (possibly
since she plans to resell the item eventually).

Main Question. Our main question in this paper is: What
is the B-PoA of simultaneous item auctions with IDV?

The bounds we establish partially answer an open
question of Roughgarden et al. [2017] regarding natural,
economically-meaningful forms of correlation for which the
B-PoA of simultaneous item auctions is bounded.

Challenges. Several challenges arise when approaching
the task of bounding the B-PoA in IDV. As intuition sug-
gests, the domain of problems that can be modeled by in-
terdependent values is very large, and includes the mostly-
studied setting of private values, correlated or uncorrelated.
Due to the wide scope, it is unsurprising that in full general-
ity there is no hope to achieve a good bound for the B-PoA.
Our lower bounds formalize the need for assumptions in or-
der to get a bound independent of the number of agents.

A standard assumption in the interdependent model is
single-crossing (SC). Intuitively it means that the informa-
tion possessed by an agent has more influence on her own
value than on others’ values. SC enables many positive re-
sults in settings with interdependence (Ausubel et al. 2000;
Maskin 1992; Chawla, Fu, and Karlin 2014). For example,
in a single item setting, the truthful (generalized) Vickrey
auction achieves optimal welfare only with SC. However,
SC alone is insufficient for ensuring good B-PoA results
of simple auctions, even with a single item. The follow-
ing proposition shows that any mechanism that allocates the
item to the agent with the highest value is prone to a large
degree of social inefficiency even with SC.

Proposition 1.2. There exists a single-item, n-bidder set-
ting satisfying SC such that the PoA of every auction that
allocates the item to the highest-valued bidder is Ω(n).2

The intuition behind this negative result is instructive for
identifying necessary assumptions for positive results: Con-
sider n bidders whose signals belong to subsets S1 = {1},
S2 = {1}, and Si = [0, 1] for i ≥ 3, respectively. Consider
the valuation profile v1 =

∑
i∈[n] si + ε, v2 = 2(s2 + ε),

and vi = si for i ≥ 3, where ε > 0 is arbitrarily small.
In this setting, the signals of bidders i ≥ 3 have a signifi-
cant effect on bidder 1’s value but have no effect on bidder
2’s value. In a scenario where these bidders have high sig-
nals, bidder 1’s value is significantly higher than bidder 2’s
value. However, bidders i ≥ 3 never win the item, since

2This holds even under the standard no-overbidding assumption
(see Section 2) and under additional conditions such as submodu-
larity over signals (Eden et al. 2019).

bidder 1 out-values them for every signal profile. Thus, they
may as well report low signals in equilibrium, resulting in
an outcome where bidder 2 wins the item. A similar result
to Proposition 1.2 holds for every deterministic truthful (ex-
post incentive compatible) mechanism. For further details
see the full version.

Our Results. We study simple mechanisms in which the
agents report their signals to the auction(s). All our positive
results hold with respect to Bayesian equilibrium, which is
the strongest guarantee and propagates to other equilibrium
notions. Moreover, we show that pure equilibria need not
exist even in a single-item setting, which further motivates
our choice of benchmark.3 Since we are tackling new un-
charted territory, our starting point is a single item, where
we already face new challenges that do not exist in private
values settings.

Single item. We consider natural auction formats like
first-price and second-price. As discussed above, the PoA of
such auctions inherently depends on the number of agents.
In the proofs of Propositions 1.2, a single bidder is highly
influenced by the signals of others, while all other bidders
have private values. Thus, the effect of bidder signals on dif-
ferent bidders may vary greatly. We parameterize the extent
of this variation by γ (Definition 3.2) and establish positive
results that depend on γ.

Our main positive result for single item applies to gener-
alized Vickrey auction (GVA) — a natural generalization of
the Vickrey auction to interdependent values (Maskin 1992;
Ausubel et al. 2000). We show that the B-POA of GVA
under SC is γ (see Theorem 3.3), and this is tight . When
considering a relaxed notion of SC, c-SC, we get a bound
of max{γ, c} + 1 for both GVA and second-price auctions,
which is almost tight. A non-trivial implication of this result
is that in every IDV setting where γ = c = 1, it holds that
every equilibrium is fully efficient. For example, this is the
case in our running example of resale model (Example 1.1).

Multiple items. We consider a combinatorial setting with
heterogeneous items and unit-demand valuations. We allow
for signals to be multi-dimensional, a notoriously hard set-
ting in the IDV literature (Dasgupta and Maskin 2000; Jehiel
and Moldovanu 2001). Our results for this case are more
nuanced. First of all, we show that in general, one cannot
approximate the optimal welfare for a very natural class of
mechanisms which includes the ones we reason about in
this paper. In the example showing this, the value of all bid-
ders is originated from a single bidder’s signal; that is, this
setting suffers from extreme information asymmetry. There-
fore, we provide results for settings with limited-information
asymmetry (for a formal definition of the condition, see Sec-
tion 4.2), like our running example.

Moreover, we show a separation between two domains:
the case where there are more bidders than items (n ≥ m),
and the case where there are many more items than bidders.
For the case n ≥ m, we consider a mechanism that runs
a second-price auction for each item, when considering bid-

3In contrast, for simultaneous auctions with private values, it
is known that a PNE exists even for general classes of valuations
(e.g. (Christodoulou, Kovács, and Schapira 2016)).
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der’s valuation valuated at her bid, zeroing out other bidders’
bids. We refer to this mechanism as “simultaneous privatized
second-price auction”. One subtlety that arises in our setting
is the need to enable agents to explicitly express willing-
ness to participate in auctions for individual items. Our main
positive result for multiple items is that for γ-heterogeneous
unit demand bidders, and under sufficiently limited infor-
mation asymmetry, the B-POA of simultaneous privatized
second-price auctions is O(γ2) (under c-SC, we get a bound
of O(max{γ, c}2), see Theorem 4.7 for details).

Our proof diverges from the smoothness framework, as
the typical proof requires reasoning about a deviation of bid-
ders who know their value for an item, which is not the case
with interdependence. Our proof decomposes the welfare
into two terms and bounds the performance of our auction
for each one separately (for more details, see Section 4).

For the case m � n, we provide a strong negative re-
sult. We consider the simplest setting one can imagine: there
are n2 items, and bidders have common values for each
item, which is the sum of signals of bidders for the item
(vi`(s) = 1 +

∑
j sj` for every item `). All signals for any

bidder/item are sampled i.i.d. This example demonstrates
the difficulty of coordination in our setting. For every item,
the bidders’ values are equal, and thus the bidder’s difficulty
is in identifying the valuable items. The fact that the infor-
mation is distributed among bidders poses a major difficulty.
A priori, all items are the same, but the signals’ distribution
is set up in a way that gives rise to a ball-and-bins type phe-
nomenon, where the expected value of each item is a con-
stant, but the maximal value of n items is Θ(lnn/ ln lnn).
It follows that OPT = Θ(n lnn/ ln lnn).

We then use the standard no-overbidding assumption
(which is crucial for our positive results in the n ≤ m
regime) to bound the number of items a bidder bids on,
which in turn upper bounds the expected welfare of the bid-
der. As a result, we show that for the settings discussed, for
every simultaneous item auction and every equilibrium σ,
OPT/EQ(σ) = Ω̃(log n)4 (see the full version for the full
details). Note that this implies that the Price of Stability is
Ω̃(log n), which is a stronger negative result.

2 Preliminaries
Notation. Let x,y be vectors, i an index and A a subset of
indices. Then xA is the vector obtained by taking indices A
of x. Let x−A = xA (in particular x−i is vector x with the
ith entry removed). By x ≤ y we mean xi ≤ yi for all i.
Vectors 1 and 0 are the all-ones and all-zeros vectors.

Basic problem setting. The following is a standard inter-
dependence setting for selling a single item (Milgrom and
Weber 1982): There are n bidders (agents), each bidder i
with a privately-known signal si from signal space Si (a
continuous interval in R≥0). Let s = (s1, . . . , sn) ∈ S ⊆
S1 × · · · × Sn denote the signal profile of all bidders. Every
bidder i also has a publicly-known valuation vi : S → R≥0,
which is a function of the signal profile s. This depen-
dence of the values on other bidders’ signals is the defin-

4Ω̃ hides o(log n) terms.

ing property of interdependence. Function vi is weakly in-
creasing in each coordinate and strictly increasing in si. Let
v = (v1, . . . , vn) denote the valuation profile of all bidders.

We also consider combinatorial settings in which there are
m items for sale: For multiple items, si is multi-dimensional
and there is a signal si` for every item `. Value vi` of the
`th item is a function of s` = (s1`, . . . , sn`). We focus on
unit-demand valuations, for which the value for a subset of
items T ⊆ [m] is vi(T ; s) = max`∈T {vi`(s`)}.

As part of the classic interdependence model, valuation
profiles are assumed to be single-crossing (SC) (e.g. Mil-
grom and Weber 1982; Maskin 1992; Ausubel et al. 2000).
Definition 2.1 (SC). Valuation profile v is SC if for every
bidder pair i, i′, every signal profile s and every δ ≥ 0,
vi(si + δ, s−i)− vi(s) ≥ vi′(si + δ, s−i)− vi′(s).

Intuitively SC means that a bidder’s own value is influ-
enced the most from a change in her signal. Eden et al.
(2018) introduced a natural relaxation called c-SC for c ≥
1, which requires c (vi(si + δ, s−i)− vi(s)) ≥ vi′(si +
δ, s−i)− vi′(s). Our results generalize to this relaxation.

Who knows what. We address both full-information
and Bayesian settings. In either model the signal spaces
S1, . . . , Sn and the valuation functions v1, . . . , vn are as-
sumed to be public knowledge. In full information settings,
all bidders know all signals (but the mechanism does not).
In Bayesian settings (our main focus), bidder i has private
knowledge of si, which is drawn from a publicly-known dis-
tribution Fi with density fi. We denote by F the publicly-
known joint distribution of signal profile s.

Correlation. Even if the signals are sampled indepen-
dently, the values are correlated since they depend on the
same signals. This generalizes various types of correlation
found in other papers (Bateni et al. 2015; Chawla, Malec,
and Sivan 2015; Immorlica, Singla, and Waggoner 2020).
When dealing with a single item we further allow the sig-
nals themselves to be correlated, i.e., F is not necessarily a
product distribution. We denote by F|si the distribution of
s−i given signal si.

Submodularity. Submodularity of the valuation functions
is assumed in Section 4; it means that as a bidder’s own sig-
nal increases, an increase in the others’ signals has dimin-
ishing marginal influence on her value:5

Definition 2.2 ((Chawla, Fu, and Karlin 2014)). A valuation
vi is submodular if for every signal si, every two profiles of
the other bidders s−i ≤ s′−i and every δ ≥ 0,
vi(si + δ, s−i)− vi(si, s−i) ≥ vi(si + δ, s′−i)− vi(si, s′−i).

For multiple items, the same definition applies to vi`
(rather than vi) with si, s−i replaced by si`, (s`)−i.

2.1 Mechanisms
Objective. Our goal is to maximize welfare, that is, for a
single item to allocate it to the bidder with the highest value
vi(s), and for multiple items and unit-demand bidders to
find a matching of items to bidders with the maximum to-
tal value. We denote the optimal welfare for a given setting

5(Eden et al. 2019) define a stronger version of valuation sub-
modularity called submodularity over signals (SoS).
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with signal profile s by OPT(s), and the expected optimal
welfare by OPT = Es∼F [OPT(s)].

Simple mechanisms. A mechanism consists of a pair
(x, p) of (deterministic) allocation rule x and payment rule
p. The mechanism solicits a signal report (bid) bi from
each bidder i. Let b = (b1, . . . , bn) denote the bid pro-
file. The mechanism outputs for every bidder i an indica-
tor xi(b) ∈ {0, 1} of whether she wins the item, and her
payment pi(b). The allocation rule x guarantees feasibility,
i.e.,

∑
i xi(b) ≤ 1 for every b. Bidder i’s expected utility

given bid profile b and true signal profile s is ui(b, s) =
xi(b)vi(s)− pi(b).

No-overbidding (NOB). As standard in the literature on
PoA (e.g. Bhawalkar and Roughgarden 2011) we often as-
sume NOB, defined as follows:

Definition 2.3 (Single-item NOB for interdependence). Bid
profile b satisfies NOB if bi ≤ si for every bidder i. Strategy
profile σ satisfies NOB if for all b ∼ σ(s), b satisfies NOB.

NOB assumptions reflect bidders’ reluctance to expose
themselves to negative utility from overbidding and help
explain the prevalence of certain auction formats like the
second-price auction in practice. It is well-known that with-
out NOB the second-price auction has unbounded PoA.6

Standard mechanisms. In mechanisms for IDV, the
highest-valued bidder is computed according to solicited
bids b and the public-knowledge valuation profile v.

Definition 2.4 (Critical bid). Given a partial bid profile b−i,
bidder i’s critical bid b∗i is the lowest report for which she
wins the item, i.e., b∗i = min{bi | xi(b) = 1}.
Definition 2.5. The generalized Vickrey auction (GVA) so-
licits signal bids, allocates the item to the highest-valued
bidder i, and charges her critical bid value vi(b∗i ,b−i).

There are also natural generalization of the first- and
second-price auctions to interdependence (throughout we re-
fer to these and not the independent private values versions).
The following is the generalization of second-price; the gen-
eralization of first-price is defined in the full version.

Definition 2.6 (Second-price (2PA) with interdependence).
The second-price auction solicits signal bids, allocates the
item to the highest-valued bidder, and charges the second-
highest value as payment.

2.2 Price of Anarchy Background
Let σi(·) be bidder i’s bidding strategy as a function of her
true signal. A bidding strategy can be pure (mapping to a
single reported signal) or mixed (mapping to a distribution
over reported signals).

Fix a mechanism. Given a strategy profile σ =
(σ1, . . . , σn), let σ(s) be a mapping of signals s to bids, and
σ−i(s−i) be the mapping excluding agent i’s bid. We focus
on the following equilibrium concepts:

6Consider two bidders with (independent private) values ε, 1
where ε � 1. Bidding 1, 0 is an equilibrium of the second-price
auction and its welfare is ε, but the optimal welfare is 1. In this
equilibrium, the first bidder is bidding much higher than her value.

1. Ex-post equilibrium (EPE): A bidding strategy profile σ
constitutes an EPE if σ is deterministic,7 and for ev-
ery bidder i with signal si, and every signal profile s−i,
ui(σ(s); s) ≥ ui((bi, σ(s−i)); s) for every bi.

2. Bayes-Nash equilibrium (BNE): A (possibly randomized)
bidding strategy profile σ constitutes a BNE of a Bayesian
setting with signal distribution F if for every bidder i and
signal si, and every bi,
Es−i∼F|si [ui(σ(s); s)] ≥ Es−i∼F|si [ui((bi, σ(s−i)); s)]

Price of Anarchy (PoA). The expected welfare achieved
by a single-item mechanism (x, p) for signal profile s and
bid profile b is

∑
i xi(b)vi(s). Where the mechanism (in

particular, the allocation rule) is evident from the context,
we denote this by SW(b, s). For a equilibrium strategy σ,
let EQ(σ, s) = E[SW(σ(s), s)] be the expected welfare of
σ at s, and EQ(σ) = Es∼F [EQ(σ, s)]. The ex-post PoA and
Bayesian PoA of an auction, respectively, are:
EP-POA = sup

s,v,σ:
σ is EPE

OPT(s)
EQ(σ,s) ; B-POA = sup

F,v,σ:
σ is BNE

OPT
EQ(σ) .

Pure Nash equilibrium (PNE) and Nash PoA (N-PoA) are
defined in the full version.

In the above, the supremum is taken over all Bayesian
settings. It is also possible to restrict the class of settings, for
example, to those with valuation profiles that satisfy the SC
property, or bidding strategies that satisfy a NOB property.
Such restriction will, in general, improve the PoA, and we
leverage this method to achieve our results.

Fixing the mechanism and agents’ signals, it is easy to
observe that every EPE is a PNE, and every PNE is a
BNE for every signal distribution. This directly implies that
EP-POA ≤ NE-POA ≤ B-POA. Thus, lower bounds for
EP-POA and upper bounds for B-POA propagate to the
other notions. For further discussion, see the full version.

3 Single Item: A Positive Result
In this section, we focus on single-item settings. Our main
result is a (parameterized) property which, along with SC,
leads to good PoA bounds.

Recall the setting described above, where the signal of,
say, agent 3 affects only the value of herself and agent 1,
and no other agent. In the opposite extreme, a change in an
agent’s signal affects the values of all other agents equally.
That is: ∀i, ∀j, j′ 6= i :
vj(si + δ, s−i)− vj(s) = vj′(si + δ, s−i)− vj′(s).

We call this condition homogeneous influence. One can
verify that homogeneous influence holds in our running ex-
ample – the resale model, as well as in other prominent
settings like Klemperer’s Wallet-game (Klemperer 1998),
Common-values (Wilson 1969), private values, and pri-
vate/common value interpolation (Bergemann and Morris
2013).

We find that homogeneous influence, together with SC,
ensures full efficiency.

7Ex-post equilibria are not necessarily deterministic, but as we
use these equilibria in the context of lower bounds, the restriction
to deterministic only strengthens our results.
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Proposition 3.1. In single item settings with SC and ho-
mogeneous influence, every equilibrium of the GVA is fully
efficient.

The following question arises: how robust is this result?
In other words, how would the PoA deteriorates as we move
away from homogeneous influence? To this end, we intro-
duce the following parameterized property, which measures
how far a valuation profile is from homogeneous influence.
Definition 3.2 (γ-heterogeneity in signal-value impact). A
valuation profile is γ-heterogeneous in signal-value impact,
or in short γ-heterogeneous, if for every agent i, two other
agents j, j′, signal profile s and δ > 0,
γ(vj(si + δ, s−i)− vj(s)) ≥ vj′(si + δ, s−i)− vj′(s).

By definition, γ is always at least 1; the special case of
γ = 1 is homogeneous influence.

Our main result in this section is a tight bound for the
B-POA for γ-heterogeneous, SC valuations. Our result ex-
tends beyond SC, to c-SC profiles (Eden et al. 2019), where
the PoA degrades gracefully with the parameter c (SC is c-
SC for c = 1).
Theorem 3.3 (Main positive result for single-item). Con-
sider a single-item setting with γ-heterogeneous, c-SC, con-
tinuous valuations. The B-POA of GVA under NOB is
bounded by 1 + max{γ, c}. For SC valuations the B-POA
is tightly γ. These results hold even for correlated signals.

Theorem 3.3 is essentially tight, as illustrated in the full
version. We remark that the upper bound of 1 + max{γ, c}
and the lower bound apply also with respect to 2PA with
interdependence. Before proving Theorem 3.3 we introduce
the following useful technical Lemma:
Lemma 3.4. Let v be a valuation profile satisfying γ-
heterogeneity and c-SC. For every two agents i, j, sig-
nal profile s and coordinate-wise non-negative vector δ =
(δ1, . . . , δi−1, 0, δi+1, . . . , δn), if vj(s) ≥ vi(s)/d for d ≥
max{γ, c} then vj(s + δ) ≥ vi(s + δ)/d.

Proof of Theorem 3.3. Let s be a signal profile and b be
a bid profile such that b ≤ s. Let i ∈ argmaxj vj(s),
and w(b) be the winner under b. We prove that
ui((si,b−i); s) ≥ vi(s)−max{γ, c}vw(b)(s). (1)
We distinguish between the following two cases:
Case 1: Bidder i does not win the item under bidding pro-
file (si,b−i). Thus, her utility is 0. Moreover, there exists
a bidder j 6= i such that vj(si,b−i) ≥ vi(si,b−i). Since
bidder w(b) wins at b, vw(b)(b) ≥ vj(b). By Lemma 3.4
(using d = max{γ, c}), max{γ, c}vw(b)(si,b−i) ≥
vj(si,b−i) ≥ vi(si,b−i). Applying Lemma 3.4 again, we
get max{γ, c}vw(b)(s) ≥ vi(s). Therefore,
ui((si,b−i); s) = 0 ≥ vi(s)−max{γ, c}vw(b)(s).
Case 2: Bidder i wins the item under bidding profile
(si,b−i). Let b∗i ≤ si be i’s critical bid given b−i.
ui((si,b−i); s) = vi(s) − vi(b

∗
i ,b−i). If w(b) = i,

ui((si,b−i); s) ≥ 0 ≥ vi(s) − max{γ, c}vw(b)(s). Oth-
erwise, w(b) 6= i. Let b′i ≥ bi be the lowest signal such
that vi(b′i,b−i) ∈ argmaxk vk(b′i,b−i). There exists such
b′i ≤ si since i does not win under bidding profile b but
wins under bidding profile (si,b−i). By the same argument

and the continuity of the valuations, there exists j 6= i such
that vj(b′i,b−i) ∈ argmaxk vk(b′i,b−i). By Corollary 3.4,
max{γ, c}vw(b)(b

′
i,b−i) ≥ vj(b

′
i,b−i) = vi(b

′
i,b−i) ≥

vi(b
∗
i ,b−i). Therefore,

ui((si,b−i); s) ≥ vi(s) − max{γ, c}vw(b)(b
′
i,b−i) ≥

vi(s) − max{γ, c}vw(b)(s), where the last inequality fol-
lows by b ≤ s and the monotonicity of the valuations. This
concludes the proof of (1).

We can now establish the bound on the B-POA: Let
σ = (σ1, . . . , σn) be a BNE satisfying NOB; Let Ii(s) be the
indicator variable of the event i = argmaxj vj(s) (breaking
ties arbitrarily). We get:

EQ(σ) ≥ E
s

[∑
i

ui(σ(s); s)
]

(2)

≥
∑
i

E
s
[ui((si, σ−i(s−i)); s)] (3)

≥
∑
i

E
s
[Ii(s) · (vi(s)−max{γ, c}vw(σ(s))(s))] (4)

= E
s
[max

i
vi(s)]−max{γ, c}E

s
[vw(σ(s))(s)]

= OPT − max{γ, c}EQ(σ), (5)

where (2) holds since the sum of utilities is dominated
by the welfare. (3) holds by the equilibrium hypothesis (and
linearity of expectation). (4) holds by (1). With exact SC, the
bound further improves to γ.

4 Multiple Items: A Positive Result
In this section, we study settings with multiple items and
unit-demand agents. After some multi-item preliminaries,
we identify a condition limiting knowledge asymmetry
among agents, which can be used to accommodate positive
PoA results. We then use it to prove a PoA guarantee for a
simple simultaneous auction in the n ≥ m regime (Theo-
rem 4.7). (For the n� m regime see the full version.)

4.1 Multiple Items Preliminaries
Participation. Similarly to (Syrgkanis and Tardos 2013),
we assume agents can communicate to the item auctions
whether or not they wish to participate and compete for the
item being sold (in addition to their signal report). The over-
all report of agent i is (bi, ai), where bi is the agent’s vector
of reports (bids) of her m signals, and ai is a participation
vector with ai` = 1 if the agent participates in the auction
for item ` and ai` = 0 otherwise. The agent’s (mixed) strat-
egy σi(si) given her vector of signals is then a distribution
over possible reports (bi, ai). In the full version we show
that a bad PoA may occur when agents have to participate in
each of the auctions.

Notation and assumptions. Let b (respectively, a) be a
profile of n signal reports bi (respectively, ai), and denote by
σ(s) a strategy profile given signal profile s, that is, a distri-
bution over (b,a) pairs. We use Xi(b,a) to denote the item
subset allocated in total by the separate auctions to agent i,
given the bid and participation profiles b,a.

For simplicity, in this section, we state our results for valu-
ation profiles satisfying SC and γ-heterogeneity. The proofs
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are deferred to the full version where we prove stronger re-
sults for the relaxed notion of c-SC. Standard NOB assump-
tions for multiple items essentially restrict the sum of every
agent’s bids for items in a subset X to at most the agent’s
value for X . We now formalize this notion under IDV:
Definition 4.1 (Multi-item NOB for IDV). With multiple
items, a strategy profile σ = (σ1, . . . , σn) satisfies NOB if
for every agent i with signal si it holds that

E
s−i∼F−i,
(b,a)∼σ(s)

[ ∑
`∈Xi(b,a)

vi`(bi`, s−i`)
]
≤ E

s−i∼F−i,
(b,a)∼σ(s)

[vi(Xi(b,a); s)]

Note that this coincides with the standard NOB assump-
tion if valuations are private.

4.2 Limited Knowledge Asymmetry
We formulate a condition that enables our positive PoA re-
sult. We use the following definition:
Definition 4.2 (Truncated values and welfare). For every
agent i and item `, the truncated value ṽi` given signal pro-
file s is ṽi`(s) = ṽi`(s`) = minj 6=i vi`(s−j`, 0j`).
The truncated optimal matching m̃(s) is a matching in
argmaxmatching µ{

∑
(i,`)∈µ ṽi`(s)}, and the expected trun-

cated welfare is ÕPT = Es∼F
[∑

(i,`)∈m̃(s) ṽi`(s)
]
.

In words, truncated value ṽi`(s) is agent i’s value for item
` after the most significant signal except for i’s own has been
zeroed out; m̃(s) is an allocation that maximizes the social
welfare with respect to the truncated values, given s; and
ÕPT is the optimal social welfare in expectation over s with
respect to truncated values. Observe that by the monotonic-
ity of values in signals, ÕPT ≤ OPT.

Given an interdependent setting, the limited knowledge
asymmetry condition is the following: there exists a constant
d such that d · ÕPT ≥ OPT. (6)

Intuitively, if a truncated value ṽi`(s) is far from the true
value vi`(s), this means that agent i’s value for item ` is
largely determined by the information that is held by a single
agent who is not i herself. This means there is information
asymmetry among i and the informed agent. The condition
in (6) rules out settings in which nearly all the welfare stems
from such information asymmetry. In such extreme settings,
all information shaping the values can be traced to a single
agent – as in the classic and well-studied “drainage tract”
model of Wilson (Wilson 1969; Milgrom 2004). We now
give two opposite examples: a natural setting in which the
condition in (6) holds (Example 4.3), and an extreme setting
in which one agent has all the information (Example 4.5).
For the second example we show a lower bound of Ω(m) on
the PoA of a natural family of mechanisms.
Example 4.3 (Weighted-sum valuations revisited). Recall
the Resale model, introduced in Example 1.1. We extend
this example to multiple items: Assume for simplicity that
n = m. For every unit-demand agent i and item `, let
vi`(s) = si` + β

∑
j 6=i sj` for β ≤ 1 (where the restric-

tion on β maintains the SC property). We assume all signals
are drawn i.i.d. from a monotone hazard rate (MHR) distri-
bution (such as a uniform, normal, or exponential).

Proposition 4.4. In Example 4.3, for a sufficiently large n,
(1 + e)ÕPT ≥ OPT.

The proof of Proposition 4.4 follows from the symmetric
nature of both the valuations themselves and the informa-
tiveness of the signals.

Example 4.5 (Agent 1 holds almost all information). Con-
sider n unit-demand agents with single-dimensional signals
s1, . . . , sn, and signal spaces S1 = [0, 1] for agent 1 and
Si = {0} for every agent i 6= 1. The agents have the fol-
lowing values for every item ` ∈ [m]: Agent 1’s value is
v1` = s1, and for every agent i 6= 1, vi` = (1 − ε)s1. Note
these valuations are SC and γ-homogeneous.

In Example 4.5, the truncated values are ṽ1` = s1 and
ṽi` = 0 for i 6= 1. We get that ÕPT = s1 while OPT >
m(1− ε)s1, so there is no constant d for which (6) holds.

Proposition 4.6. For each bidder let hi`(s) be a monotone
function such that ∀s, hi`(s) ≤ vi`(s), and hi`(si`,0−i`) =
vi`(si`,0−i`). Every mechanism that allocates each item
separately to the highest-valued agent according to hi`(s),
and charges an agent zero payment if no-one else partici-
pates, has EP-POA of Ω(m) even under NOB. In particular,
by hi`(s) = vi`(s) we get that this holds for simultaneous
2PA or GVA auctions.

The proof of Proposition 4.6 uses Example 4.5. As shown
in the next section, the above proposition holds for the mech-
anism we develop and use to get good PoA guarantees. We
leave open the question of whether there exists a simple
mechanism with good PoA for settings such as Example 4.5
that do not satisfy (6).

4.3 Positive Result: n ≥ m Regime
We present a simple simultaneous item-bidding mecha-
nism and show that every BNE of it achieves an O(γ2)-
approximation to ÕPT. For valuations satisfying Equa-
tion (6), it implies an O(dγ2)-approximation to OPT.

Intuition. Before introducing the mechanism, we pro-
vide some intuition that helps shed light on the choice of our
mechanism and its analysis. Specifically, we emphasize how
our analysis is different from the smoothness framework,
which has become the standard technique for establishing
PoA results for simple auctions.

A key step in the smoothness paradigm is to find an ap-
propriate hypothetical deviation for each player such that for
any bids of the other bidders, the utility achieved by the de-
viation is lower bounded by some fraction of the player’s
contribution to the optimal welfare, less some error term.
For the case of independent private values and unit-demand
bidders8, Christodoulou et al. (2016) show that the hypothet-
ical deviation of going all-in for item ` gives the following
guarantee:9 ui((vi`,0i−`),b−i) ≥ vi` −maxj 6=i bj` (7).

Inequality (7) suffices to give PoA bounds in full informa-
tion settings. Moreover, this bound also applies to settings
with incomplete information via an extension theorem.

8For simultaneous second price auctions.
9Bidding her true value vi` for item ` and 0 for all other items.
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Even though the agent does not know the realization of
other agents’ valuations, she can sample from the value dis-
tribution of others, and go “all-in” for the item ` she receives
in the optimal allocation in the sampled market, thus effec-
tively simulating the contribution of this agent to the optimal
assignment (the first term in the right-hand side of (7)). This
is termed the ‘doppelgänger’ technique. The error term is
then bounded by tying it to an allocation for sampled equi-
librium bids and using a NOB assumption.

Unfortunately, there are some major obstacles to general-
izing this type of analysis to IDV. Whereas one can derive
a smoothness-type inequality, its right-hand side expression
would take the form of γṽi`(s)−maxj 6=i vj`(bj`, s−j`). Us-
ing this inequality, one can derive PoA results for full infor-
mation games10, but these bounds would not generalize to
incomplete information settings for the following reasons:

a) The doppelgänger technique cannot be directly applied.
Agent i is only aware of si and is uninformed of s−i,
which affects her valuations. Therefore, sampling signals
of other bidders t−i, and going all-in accordingly, will
simulate a different value distribution than the desired
one, as the bid takes into account only si and not s−i.

b) The error term in Christodoulou et al. (2016) crucially
depends only on the bids of other bidders, but in IDV the
error term depends also on the agents’ real signals, which
prevents from their analysis to go through.

c) The benchmark in our setting should be the truncated op-
timal allocation and not the true optimal allocation.

The following observation drives our analysis: the dop-
pelgänger technique can be successfully applied when con-
sidering what we refer to as privatized valuations; namely,
the valuation of agent i under i’s private signal, while ze-
roing out the contribution of others’ signals. We can then
use the γ-heterogeneous condition to claim that the effect
of other bidders’ signals on the valuation of two different
agents is roughly the same.

The discussion above motivates the design of the mecha-
nism we propose, which is a simultaneous second-price item
auction with respect to the privatized valuations (see Fig. 1).
For the sake of analysis, we split the benchmark into two
terms. The first term (SELF) accounts for the privatized val-
uations, and the second term (OTHER) accounts for the con-
tribution of the signals of other bidders to the benchmark
(see Equation (8)). We proceed by providing smoothness-
type inequalities for each of these terms separately. Specif-
ically, for each term, we identify an appropriate hypotheti-
cal deviation, such that the expected welfare in equilibrium
“covers” it. We formalize the intuition given above.

Privatized values. Given a (reported) signal profile b`
for item `, agent j’s privatized value v̂j` for ` is her value
when other agents’ signals are set to zero: v̂j`(b`) =
vj`(bj`,0−j`). We use v̂j`(b`) and vj`(bj`,0−j`) inter-
changeably. Observe that the privatized value is upper-
bounded by the truncated value v̂j`(b`) ≤ ṽj`(b`).

10We do not include this derivation in the manuscript since it
does not help us in proving a bound on the B-PoA.

Theorem statement. We focus on the simple mechanism
described in Fig. 1, which consists of simultaneous priva-
tized second-price auctions. This mechanism allocates every
item separately by running a second-price auction over the
privatized values of agents participating for this item. Our
main theorem in this section is the following:

Simultaneous privatized second-price auctions
Input: Bid and participation profiles b and a.
Output: An allocation and payments.
For every item ` (simultaneously):
1. For every agent j, compute the privatized value
v̂j`(b`) = vj`(bj`,0−j`)

2. Allocate item ` to agent i ∈ argmax{v̂j`(b`)|aj` = 1}
3. Charge agent i a payment
pi`(b`,a`) = max{0,max

j 6=i
{v̂j`(b`)|aj` = 1}}

Figure 1: Simultaneous privatized second-price auctions.

Theorem 4.7. Consider a setting with m items, n ≥ m
unit-demand agents, and γ-heterogeneous, SC valuations. If
d · ÕPT ≥ OPT for some constant d, then the B-POA of
simultaneous privatized second-price auctions (See Fig. 1)
under no-overbidding is O(dγ2).

The condition that d · ÕPT ≥ OPT in Theorem 4.7 is nec-
essary, as by hi`(s) = vi`(si`,0−i`), Proposition 4.6 holds
for the simultaneous privatized second-price auction as well.
The remainder of the section is dedicated to proving The-
orem 4.7. We use the following notation: Let ui((b,a); s)
denote agent i’s utility under bidding profile (b,a) and sig-
nal profile s. Let pi`(b`,a`) be as defined in Fig. 1. We first
decompose the welfare as stated above. Recall from Defini-
tion 4.2 that m̃(s) is the matching that maximizes the social
welfare with respect to the truncated values at signal profile
s. We decompose ÕPT as follows:

ÕPT = E
s

[ ∑
(i,`)∈m̃(s)

vi`(si`,0−i`)
]

︸ ︷︷ ︸
SELF

+ E
s

[ ∑
(i,`)∈m̃(s)

ṽi`(s) − vi`(si`,0−i`)
]

︸ ︷︷ ︸
OTHER

. (8)

In order to prove Theorem 4.7, we prove that the equilib-
rium ‘covers’ the two terms in the decomposition above.
Lemma 4.8. For every BNE σ, 2EQ(σ) ≥ SELF.
Lemma 4.9. For every BNE σ, O(γ2) · EQ(σ) ≥ OTHER.

These lemmas are proven using two deviations which
make use of smoothness-type inequalities. For Lemma 4.8,
we use a deviation based on the doppelgänger technique de-
scribed above. For Lemma 4.9, we show that an arbitrary
deviation can be used to bound the OTHER term.

Proof of Theorem 4.7. Combining Lemmas 4.8 and 4.9
with Equations (8) and (6), for every BNE σ, we have(
2 +O(γ2)

)
EQ(σ) ≥ SELF + OTHER = ÕPT ≥ OPT/d,

concluding the proof.
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