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Abstract

Network congestion games are a well-understood model of
multi-agent strategic interactions. Despite their ubiquitous
applications, it is not clear whether it is possible to design
information structures to ameliorate the overall experience of
the network users. We focus on Bayesian games with atomic
players, where network vagaries are modeled via a (random)
state of nature which determines the costs incurred by the
players. A third-party entity—the sender—can observe the
realized state of the network and exploit this additional infor-
mation to send a signal to each player. A natural question is
the following: is it possible for an informed sender to reduce
the overall social cost via the strategic provision of informa-
tion to players who update their beliefs rationally? The paper
focuses on the problem of computing optimal ex ante persua-
sive signaling schemes, showing that symmetry is a crucial
property for its solution. Indeed, we show that an optimal ex
ante persuasive signaling scheme can be computed in poly-
nomial time when players are symmetric and have affine cost
functions. Moreover, the problem becomes NP-hard when
players are asymmetric, even in non-Bayesian settings.

Introduction

Network congestion games, where players seek to mini-
mize their own costs selfishly, are a canonical example of
a setting where externalities may induce socially inefficient
outcomes [Roughgarden 2005]. In real-world problems, the
state of the network may be uncertain, and not known to
its users (e.g., drivers may not be aware of road works and
accidents in a road network). This setting is modeled via
Bayesian network congestion games (BNCGs). We inves-
tigate whether providing players with partial information
about the state of the network may mitigate inefficiencies.
We model this information-structure design problem
through the Bayesian persuasion framework by Kamenica
and Gentzkow [2011]. At its core, this framework involves
an informed sender trying to influence the behavior of a
set of self-interested players—the receivers—via the pro-
vision of payoff-relevant information. In the specific case
of BNCGs, the sender is informed about the realized state
of the network. The model assumes that the sender has the
ability to commit to a publicly disclosed signaling scheme,
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which is a randomized mapping from network states to ac-
tion recommendations (i.e., routes suggestions) for the play-
ers. The commitment assumption is realistic in many set-
tings [Dughmi 2017]. These include BNCGs, where signal-
ing schemes are usually implemented as software (e.g., real-
time traffic apps) whose features are publicly revealed by
the sender. One argument to that effect is that reputation
and credibility may be a key factor for the long-term utility
of the sender [Rayo and Segal 2010]. We focus on the no-
tion of ex ante persuasiveness, as introduced by Xu [2020]
and Celli, Coniglio, and Gatti [2020], where the receivers are
incentivized to follow the sender’s recommendations hav-
ing observed only the signaling scheme. This assumes cred-
ible receivers’ commitments to following recommendations,
which is reasonable in practice. In our setting, it is natural to
assume that each player decides to either follow the signal-
ing scheme (i.e., adopting the traffic app) or act based on
her prior belief about the network state. In some cases, the
receivers could also be forced to stick to their ex ante com-
mitment by contractual agreements or penalties.

Related Works Armnott, De Palma, and Lindsey [1991]
and Acemoglu et al. [2018] study the impact of informa-
tion on traffic congestion. Several recent works focus on
non-atomic games [Das, Kamenica, and Mirka 2017; Mas-
sicot and Langbort 2019; Wu, Amin, and Ozdaglar 2018;
Vasserman, Feldman, and Hassidim 2015]. The majority of
these works focus on ex interim persuasiveness, where the
receivers are incentivized to follow recommendations after
receiving them. Bhaskar et al. [2016] study the inapprox-
imability of finding optimal ex interim persuasive signaling
schemes in non-atomic games. Liu and Whinston [2019] fo-
cus on atomic games with costs uncertainties and study ex
interim persuasion by placing stringent constraints on the
network structure. To the best of our knowledge, the present
work is the first studying ex ante persuasion in general
atomic BNCGs. Other related works study the simpler prob-
lem of finding (coarse) correlated equilibria in non-Bayesian
congestion games [Christodoulou and Koutsoupias 2005;
Papadimitriou and Roughgarden 2008]. The closest to our
work is that of Jiang and Leyton-Brown [2011], who pro-
vide a polynomial-time algorithm to find an optimal coarse
correlated equilibrium (i.e., an ex ante persuasive signaling
scheme in the non-Bayesian setting) in simple congestion



games with symmetric players selecting a single resource
(a.k.a. singleton congestion games).

Original Contributions We investigate whether it is pos-
sible to efficiently compute optimal (i.e., minimizing the so-
cial cost) ex ante persuasive signaling schemes in BNCGs.
First, we show that an optimal ex ante persuasive signaling
scheme can be computed in polynomial time in symmetric
BNCGs (i.e., where all the players share the same source
and destination pair) with edge costs defined as affine func-
tions of the edge congestion. To prove this result, we ex-
ploit the ellipsoid algorithm by designing a sophisticated
polynomial-time separation oracle based on a suitably de-
fined min-cost flow problem. Then, we show that symmetry
is a crucial property for efficient signaling by proving that it
is NP-hard to compute an optimal ex ante persuasive signal-
ing scheme in asymmetric BNCGs. Our reduction proves an
even stronger hardness result, as it works for non-Bayesian
singleton congestion games with affine costs, which is ar-
guably the simplest class of asymmetric congestion games.
Furthermore, in such setting, a solution to our problem is an
optimal coarse correlated equilibrium and, thus, computing
optimal coarse correlated equilibria is NP-hard.

Signaling in Network Congestion Games

We study atomic network congestion games where edge
costs depend on a stochastic state of nature. In this section,
we introduce the main elements of our model.

Network Congestion Game (NCG) A network conges-
tion game [Fabrikant, Papadimitriou, and Talwar 2004] is
defined as a tuple (N, G, {cc}ecr, {(sp, tp) }pen), Where:

e N :={1,...,n} denotes the set of players;

e GG := (V, E) is the directed graph underlying the game,
with V being its set of nodes and each e = (v,v’) € E

representing a directed edge from v to v’;

{¢e}ecE are the edge costs, with each ¢, : N — R defin-
ing the cost of edge e € E as a function of the number of
players traveling through e;

{(sp,tp)}pen, with s,,t, € V, denote the source-
destination pairs for all the players.

In an NCG, the set A, of actions available to a player p € IV
is implicitly defined by the graph G, the source s, and the
destination ¢,,. Formally, A, is the set of all directed paths
from s, to ¢, in the graph G. In this work, we use a, € A4,
to denote a player p’s path and we write e € a, whenever
the path contains the edge e € E. An action profile a € A,
where A := X ,cnA,, is a tuple of s,-¢, directed paths
a, € A,, one per player p € N. Sometimes, we denote an
action profile a € A as a = (a,,a—,), where a), € A, is the
action played by player p € N and a_,, collectively denotes
the actions of the other players. For the ease of notation,
given an action profile a € A, we let f¢ be the congestion
of edge e € F in a, i.e., the number of players selecting a
path passing thorough e in a; formally, f¢ := [{p € N | e €
ap}|. Thus, c.(f¢) denotes the cost of edge e in a. Finally,
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the cost incurred by player p € N in an action profile a € A
is denoted by ¢, (a) := ZGE% ce(f2).

Bayesian Network Congestion Game (BNCG) We de-
fine a Bayesian network congestion game as a tuple
(N,G,0, 1, {ceotecr 0co,{(sp,tp) }pen), wWhere, differ-
ently from the basic setting, the edge cost functions c. ¢ :
N — R, also depend on a state of nature 6 drawn from
a finite set of states ©. Moreover, p encodes the prior be-
liefs that the players have over the states of nature, i.e.,
1 € int(Ag) is a fully-supported probability distribution
over the set ©, with pg denoting the prior probability that
the state of nature is § € ©. All the other components are de-
fined as in non-Bayesian NCGs. Notice that, in BNCGs, the
cost experienced by player p € N in an action profile a € A
also depends on the state of nature 6 € ©, and, thus, it is de-
fined as cpg(a) =3 ¢, ceo(fS). ABNCG is symmetric

if all the players share the same (s,, t,) pair, i.e., whenever
they all have the same set of actions (paths). For the ease of
notation, in such settings we let s,t € V be the common
source and destination. Moreover, we focus on BNCGs with
affine costs, i.e., for all e € F and § € ©, there exist con-
stants a g, Be,0 € R4 such that the edge cost function can

be expressed as c. o(f%) = e g f& + Bep. !

Signaling in BNCGs Suppose that a BNCG is employed
to model a road network subject to vagaries. It is reasonable
to assume that third-party entities (e.g., the road manage-
ment company) may have access to the realized state of na-
ture. We call one such entity the sender. We focus on the
following natural question: is it possible for an informed
sender to mitigate the overall costs through the strategic
provision of information to players who update their beliefs
rationally? The sender can publicly commit to a signaling
scheme which maps the realized state of nature to a sig-
nal for each player. The sender can exploit general private
signaling schemes, sending different signals to each player
through private communication channels. In this setting, a
simple revelation-principle-style argument shows that it is
enough to employ players’ actions as signals [Arieli and
Babichenko 2016; Kamenica and Gentzkow 2011]. There-
fore, a private signaling scheme is a function ¢ : © — A4
which maps any state of nature to a probability distribution
over action profiles (signals). For the ease of notation, the
probability of recommending an action profile a € A given
the state of nature & € © is denoted by ¢g .. Then, it has
to hold } ., ¢0.. = 1, for each § € ©. After observing
the state of nature § € ©, the sender draws an action pro-
file a € A according to ¢y , and recommends action a,, to
each player p € N. A signaling scheme is persuasive if fol-
lowing recommendations is an equilibrium of the underlying
Bayesian game [Bergemann and Morris 2016a,b]. We focus

"We focus on affine costs since: (i) the assumption is reasonable
in many applications [Vasserman, Feldman, and Hassidim 2015],
and (ii) the problem is trivially NP-hard when generic costs are
allowed (see Section ).



on the notion of ex ante persuasiveness as defined by Xu
[2020] and Celli, Coniglio, and Gatti [2020].

Definition 1. A signaling scheme ¢ : © — A4 is ex ante
persuasive if, for each p € N and a, € A,, it holds:

Z 27 Z b,a’ (Cp,e(apv a—p) - Cp,G(a/)) > 0.

0€® a'=(a},a_p)EA

Then, a coarse correlated equilibrium (CCE) [Moulin and
Vial 1978] may be seen as an ex ante persuasive signaling
scheme in non-Bayesian NCGs in which there are no states
of nature, i.e., when |©| 1. Finally, a sender’s optimal
ex ante persuasive signaling scheme ¢* is such that it mini-
mizes the expected social cost of the solution, i.e.:

Z Lo Z $0,a Z cpo(a).

0co a€A pEN

@ € argmin
¢

The following example illustrates the interaction flow be-
tween the sender and the players (receivers).

ap =30 Bp=0

Signals
(BBB) (AAB) (ABA) (BAA)
Bo|| 1 0 0 0
ag,oo=1 Be,e,=0 ] 0 1/3 1/3 1/3
g0, =0  fs,0, =100 - / / /

Figure 1: Left: BNCG for Example 1. Right: An ex ante per-
suasive signaling scheme for the case with n = 3. The table

displays only those @ € A such that ¢y , > 0 for some state
of nature § € © = {6, 0, }.

Example 1. Figure I (Left) describes a simple BNCG mod-
eling the road network between the JFK International Air-
port (node s), and Manhattan (node t). It is late at night and
three lone researchers have to reach the AAAI venue. They
are following navigation instructions from the same applica-
tion, whose provider (the sender) has access to the current
state of the roads (called A and B, respectively). Roads costs
(i.e., travel times) are depicted in Figure I (Left). In normal
conditions (state 0y), road B is extremely fast (ag = 1 and
0Og = 0). However, it requires frequent road works for main-
tenance (state 01 ), which increase the travel time. Moreover,
it holds pg, = pg, = 1/2. The interaction between the
sender and the three players goes as follows: (i) the sender
commits to a signaling scheme ¢; (ii) the players observe
¢ and decide whether to adhere to the navigation system
or not; (iii) the sender observes the realized state of nature
and exploits this knowledge to compute recommendations.
Figure 1 (Right) describes an ex ante persuasive signaling
scheme. In this case, when the state of nature is 01, one of
the players is randomly selected to take road B, even if it is
undergoing maintenance. In expectation, following sender’s
recommendations is strictly better than congesting road A.

A simple variation of Example 1 is enough to show that
the introduction of signaling allows the sender to reach so-
lutions with arbitrarily better expected social cost than what
can be achieved via the optimal Bayes-Nash equilibrium in
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absence of signaling. Specifically, consider the BNCG in
Figure 1 (Left) with the following modifications: n = 1,
B coefficients always equal to zero, ap g, = 00, ap 9, = 0,
apg, = 0, and agg, = oo. Without signaling, the opti-
mal choice yields an expected social cost of co. However, a
perfectly informative signal (i.e., one revealing the realized
state of nature) allows the player to avoid any cost.

The Power of Symmetry

We design a polynomial-time algorithm to compute an op-
timal ex ante persuasive signaling scheme in symmetric
BNCGs with affine cost functions. Our algorithm exploits
the ellipsoid method. We first formulate the problem as an
LP (Problem (1)) with polynomially many constraints and
exponentially many variables. Then, we show how to find an
optimal solution to the LP in polynomial time by applying
the ellipsoid algorithm to its dual (Problem (2)), which fea-
tures polynomially many variables and exponentially many
constraints. This calls for a polynomial-time separation ora-
cle for Problem (2), which is not readily available since the
problem has an exponential number of constraints. We prove
that, in our setting, a polynomial-time separation oracle can
be implemented by solving a suitably defined min-cost flow
problem. The proof of this result crucially relies on the sym-
metric nature of the problem and the assumption that the
costs are affine functions of the edge congestion.

The following lemma shows how to formulate the prob-
lem as an LP. ? For the ease of presentation, we use I {edap)
to denote the indicator function for the event e ¢ a,, i.e., it
holds If.¢q,) = 1if e ¢ ap, while I{ ¢, 3 = 0 otherwise.

Lemma 1. Given a symmetric BNCG, an optimal ex ante
persuasive signaling scheme ¢ can be found with the LP:

o Z He Z ?9,a Z cpola) st (1a)
6cO acA peEN
Z Ho Z Cp,0(@)Pg.a < Tps Vp € N (1b)
[4<C] acA
Tpw < Z He Z e, (& + Iiega,}) Po.a + Tpor
0cO a€cA
Vp € N,Ve = (v,v") € E (lc)

Tpt =0 Vpe N (1d)
Y toa=1 V0 €O (le)
acA

Proof. Clearly, Objective (1a) is equivalent to minimizing
the social cost, while Constraints (le) imply that ¢ is well
formed. Constraints (1b) enforce ex ante persuasiveness for
every player p € N: the expression on the left-hand side
represents player p’s expected cost, while x,, 5 is the cost of
her best deviation (i.e., a cost-minimizing path given p and
¢). This is ensured by Constraints (1c) and (1d). In particu-
lar, for every player p € N and node v € V'\ {¢}, the former
guarantee that x,, ,, is the minimum cost of a path from v to

2LPs analogous to Problem (1) and Problem (2) can also be de-
rived for the asymmetric setting. However, the separation problem
for the dual is solvable in poly-time only in the symmetric case.



t. This is shown by noticing that (given that z,, , = 0) such
cost can be inductively defined as follows:

{Z He Z Ce.o (f + Iega,}) do.0 + Tpor
[4<C] a€A

where f¢ + I{.¢q,) accounts for the fact that the congestion
of edge e must be incremented by one if player p does not

select a path containing e in the action profile a.

Lemma 2. The dual of Problem (1) reads as follows:

min
v'ev:
e=(v,w')EE

max Z Yo S.L (2a)
Y 0coO
He Z Cpﬂ(a’)yp _Z Z Ce,0 (fg + I{egap}) Yp,e
peEN pEN eeFE
+yo < po Y, cpola) ¥ € ©,Ya e A (2b)
pEN
Z Ype — Z Ype = 0

v'€V:ie=(v,v')EE v €V:ie=(v',w)EE

Vp e N,Yv e V\ {s,t} 2c)

S -y =0 Vpe N (2d)
veEV:ie=(s,v)EE
Yot — D Ype=0 YpeN (2)
veEV:ie=(v,t)EE
Yp <0 Vpe N (2f)
Ype =0 Vp € N,Ve € E. (2g)

Proof. Tt directly follows from LP duality, by letting y,, (for
p € N),yp, (forpe Nande € E),y, (forp € N),and yg
(for 6 € ©) be the dual variables associated to, respectively,
Constraints (1b), (1¢), (1d), and (1e). ]

Since |A| is exponential in the size of the game, Prob-
lem (1) features exponentially many variables, while its
number of constraints is polynomial. Conversely, Prob-
lem (2) has polynomially many variables and exponentially
many constraints, which enables the use of the ellipsoid al-
gorithm to find an optimal solution to Problem (2) in poly-
nomial time.This requires a polynomial-time separation or-
acle for Problem (2), i.e., a procedure that, given a vector y
of dual variables, it either establishes that y is feasible for
Problem (2) or, if not, it outputs a hyperplane separating y
from the feasible region. In the following, we focus on a par-
ticular type of separation oracles: those generating violated
constraints of Problem (2).

Given that Problem (2) has an exponential number of con-
straints, a polynomial-time separation oracle is not readily
available. It turns out that, in our setting, we can design one
by leveraging the symmetry of the players and the fact that
the cost functions are affine, as described in the following.

First, we prove that Problem (2) always admits an optimal
player-symmetric solution, i.e., a vector y such that, for each
pair of players p,q € N, it holds that ¥, = yq, Yp.e = Yqg,e
foralle € F,and y, ; = 4. This result allows us to restrict
the attention to player-symmetric vectors y.
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Lemma 3. Problem (2) always admits an optimal player-
symmetric solution.

Proof. Given any optimal solution y to Problem (2), we can
always recover, in polynomial time, a player-symmetric op-
timal solution g. Specifically, for every p € N, let gy,

EPEN Yp  ~ EpeN Yp,e
n ’ n
ZpEN Yp,t

forall e € F, and gp: =

p,e

~—, while 7y = yy for every § € ©O. Let us remark
that y is player-symmetric since: (i) for every e € E, it
holds 9, . = ¥4, for each pair of players p,q € N; and
(ii) Yp = Y4 and yp, ; = yq,¢ for each p,q € N. First, notice
that y and y provide the same objective value, as yg = yp
for all 6 € ©. Thus, we only need to prove that § satisfies
all the constraints of Problem (2). For a € A and i € [n],
let us denote with 7;(a) an action profile ' € A such that
@), = Q((p+i) mod n) i-€., @ permutation of a in which each
player p € N takes on the role of player (p + i) mod n.
Moreover, let m(a) := [J;¢[,) mi(a). Constraints (2b) are sat-
isfied by ¢, since, for every § € © and a € A, it holds:

Z cpxe(a)gp _Z Z Ce,6 (fg + I{e¢ap}) gp,e + Yo

He
peEN pEN e€E
1
B e
a’en(a) pEN
- Z Z Ce,0 (fg + I{e%a;}) Ype | + Yo
peEN ecE
1
<= D m Yy celd)=po ) cpela).
a’en(a) pEN peEN

Similar arguments show that y satisfies all the other con-
straints, concluding the proof. O

Notice that any polynomial-time separation oracle for
Problem (2) can explicitly check whether each member
of the polynomially many Constraints (2c), (2d), and (2e)
is satisfied for the given y. Thus, we focus on the sepa-
ration problem restricted to the exponentially many Con-
straints (2b), which, using Lemma 3, can be formulated as
stated in the following lemma.

Lemma 4. Given a player-symmetric y, solving the separa-
tion problem for Constraints (2b) amounts to finding 0 € ©
and a € A that are optimal for the following problem:

o Xim  po (1=9) ) cpola)-
peEN
- Z Z Ce,0 (f: + I{eQap}) Ye | — Yo, 3
pEN ecE

where we let j =y and Y. = Y1, forall e € E.

Next, we show how Problem (3) can be equivalently for-
mulated avoiding the minimization over the exponentially-
sized set A. Intuitively, we rely on the fact that, for a fixed



0 € O, we can exploit the symmetry of the players to equiv-
alently represent action profiles ¢ € A as integer vectors ¢
of edge congestions ¢, € [n], forall e € E.

Lemma 5. Problem (3) can be formulated as mingeco x(0),
where x(0) is the optimal value of the following problem:

min (]— - g) Z ae.ﬂqs + /Be,GQB_
quLrEl ecE
- Z Ye (nae,QQe + (n - Qe)aeﬁ + nﬂe,é) s.t. (4a)
ecE
> ge=n (4b)
vEV:e=(s,v)EE
Z Ge =1 (4¢)

veVie=(v,t)EE

Z ge = Z ge Vv eV \{st}. (4d)
v'ev: v EeV:
e=(v'w)EE e=(v,v')EE

Proof. First, given a state § € O, Problem (3) reduces
to computing x(0) = mingca(1l — ) ZPEN cpola) —
Y peN ecr Ced (f¢ 4 Ifega,) Ye» where the function to
be minimized only depends on the number of players se-
lecting each edge e € FE in a, rather than the identity
of the players who are choosing e (since they are sym-
metric). Letting ¢. € [n] be the congestion level of edge
e € E and using c.g = e,9qe + Beo (affine costs), it

holds ZPGN cpo(a) = ccp Qe.092 + Be.oqe, and, for ev-

erye € E, Zpe]\r Ce,0 (ff + I{ega,,}) = N0 pqe + (n—
e )Ce,0 + nfe 0. This gives Objective (4a). Moreover, Con-
straints (4b), (4c), and (4d) ensure that g is well defined. [

Let us remark that computing an optimal integer solution
to Problem (4) is necessary in order to (possibly) find a vi-
olated constraint for a given y; otherwise, we would not be
able to easily recover an action profile a € A from gq.

Now, we show that an optimal integer solution to Prob-
lem (4) can be found in polynomial time by reducing it to
an instance of integer min-cost flow problem. Intuitively, it
is sufficient to consider a modified version of the original
graph G in which each edge e € F is replaced with n par-
allel edges with unit capacity and increasing unit costs. This
is possible given that the Objective (4a) is a convex function
of g, which is guaranteed by the fact that costs are affine.

Lemma 6. An optimal integer solution to Problem (4) can
be found in polynomial time by solving a suitably defined
instance of integer min-cost flow problem.

Proof. First, notice that Objective (4a) is a sum edge costs,
in which the cost of each edge e € F is a convex func-
tion of the edge congestion g., as the only quadratic term
is (1 — ¥)acpq?, where the multiplying coefficient is al-
ways positive, given § < 0 and a9 > 0. This al-
lows us to formulate Problem (4) as an instance of inte-
ger min-cost flow problem. We build a new graph where
each e € F is replaced with n parallel edges, say e; for
i € [n]. Fore € E and i € [n], let us define g(e,i) :=
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(1_17) (0467(97;2 + Bei) —Ye (nae,ei + (n - Z')ae,t‘) + nﬁe,@)-
Each (new) edge e; has unit capacity and a per-unit cost
equal to 0(e;) := g(e,i)—g(e,i—1). Clearly, finding an inte-
ger min-cost flow is equivalent to minimizing Objective (4a).
Notice that, since the original edge costs are convex, it holds
d(e;) > d(e;) for all j < ¢ € [n]. Thus, an edge e; is used
(i.e., it carries a unit of flow) only if all the edges e;, for
Jj < i € [n], are already used. This allows us to recover an
integer vector ¢ from a solution to the min-cost flow prob-
lem. Finally, let us recall that we can find an optimal solution
to the integer min-cost flow problem in polynomial time by
solving its LP relaxation. O

The last lemma allows us to prove our main result:

Theorem 1. Given a symmetric BNCG, an optimal ex-ante
persuasive signaling scheme can be computed in poly-time.

Proof. The algorithm applies the ellipsoid algorithm to
Problem (2). At each iteration, we require that the vec-
tor of dual variables y given to the separation oracle be
player-symmetric, which can be easily obtained by apply-
ing the symmetrization technique introduced in the proof of
Lemma 3. The separation oracle needs to solve an instance
of integer min-cost flow problem for every 6 € © (see Lem-
mas 5 and 6). Notice that an integer solution is required in
order to be able to identify a violated constraint. Finally, the
polynomially many violated constraints generated by the el-
lipsoid algorithm can be used to compute an optimal ¢. [

The Curse of Asymmetry

In this section, we provide our hardness result on asymmet-
ric BNCGs. Our proof is split into two intermediate steps:
(i) we prove a hardness result for a simple class of asym-
metric non-Bayesian congestion games in which each player
selects only one resource (Lemma 7); and (ii) we show that
such games can be represented as NCGs with only a poly-
nomial blow-up in the representation size (Lemma 8). Our
main result reads as follows:

Theorem 2. The problem of computing an optimal ex ante
persuasive signaling scheme in BNCGs with asymmetric
players is NP-hard, even with affine costs. 3

The proof of Theorem 2 is based on a reduction that
maps an instance of 3SAT (a well-known NP-hard prob-
lem, see [Garey and Johnson 1979]) to a game in the
class of singleton congestion games (SCGs) [leong et al.
2005], where each player can select only one resource at
a time. A (non-Bayesian) SCG is described by a tuple
(N,R,{A,}pen,{cr}rer), where R is a finite set of re-
sources, each player p € N selects a single resource from
the set A, C R of available resources, and resource r € R
has a cost ¢, : N — R, . Another way of interpreting
SCGs is as games played on parallel-link graphs, where each
player can select only a subset of the edges.

3Without affine costs, computing an optimal ex ante persuasive
signaling scheme is trivially NP-hard even in symmetric BNCGs.
This directly follows from [Meyers and Schulz 2012], which shows
that even finding an optimal action profile (that is also an optimal
Nash equilibrium) is NP-hard in symmetric (non-Bayesian) NCGs.



First, let us provide the following definition and notation.

Definition 2 (3SAT). Given a finite set C' of three-literal
clauses defined over a finite set V of variables, is there a
truth assignment to the variables satisfying all the clauses?

We denote with [ € ¢ a literal (i.e., a variable or its nega-
tion) appearing in a clause ¢ € C. Moreover, we let m and
s be, respectively, the number of clauses and variables, i.e.,
m = |C| and s := |V|. W.lLo.g., we assume that m > s.

Lemma 7 introduces our main reduction, proving that
finding a social-cost-minimizing CCE is NP-hard in SCGs
with asymmetric players, i.e., whenever the resource sets A,,
are different among each other. * Notice that the games used
in the reduction are not Bayesian; this shows that the hard-
ness fundamentally resides in the asymmetry of the players.

Lemma 7. The problem of computing a social-cost-
minimizing CCE in SCGs with asymmetric players is NP-
hard, even with affine costs.

Proof. Our 3SAT reduction shows that the existence of
a polynomial-time algorithm for computing a social-cost-
minimizing CCE in SCGs would allow us to solve any 3SAT
instance in polynomial time. Given (C,V), let z == m?°,

12 and € := —L;. We build an SCG I'(C,V) ad-

u=m
mitting a CCE with social cost smaller than or equal to
v = 22+ (4us+s+3m)(z—u)+ 2% iff (C, V) is satisfiable.

Mapping. I'(C, V) is defined as follows (for every r € R,
the cost ¢, is an affine function with coefficients o, and j3,.).

e N ={py | v € V}IU{pyq | ¢ € Cqg € B]}U
{poj.po; |veEV.jeRu}Up i€z}

R = {Tt} U {Tv;Tm?“v,1,7“v72,7‘1-,,1,7“5,2 | v E V};
Ay, ={rv,rs, 1} YoeV;

Apao,q = {Tl | le 90} v@ € vaq S [3]9

Ap, = A{rv, 01,102} Yo € VY] € [2u];

Ap, = Are,ro,1,152} Yv € V,Vj € [2u];

Ay, ={r} Yielz];

op, =0y, =€and B, =B, =z+1—€ Ywel;
QAp, g = Qp, 5 = Qg = Qpy 5 = 1 YveV,;

Broy = Broo =Bros =Bry, =2+1—-uVoveV;
or, =1land 3, = 0.

Figure 2 shows a picture representing how the players’ ac-
tion sets are constructed in games I'(C, V'), where, for sim-
plicity, only the part referring to a single variable v € V" and
a single clause ¢ € C'is reported.

Overview. Intuitively, in games T'(C, V') the social cost is
small if players p; (for ¢ € [z]) are the only ones selecting
resource ry. Then, each player p, (for v € V') must choose
either r, or r; (rather than r;), representing the fact that vari-
able v is set to either false or true, respectively. At the same

“The reduction in Lemma 7 does not rely on standard construc-
tions, as most of the reductions for congestion games only work
with action profiles, while ours needs randomization. Indeed, in
asymmetric SCGs, a social-cost-minimizing action profile can be
computed in poly-time by solving an instance of min-cost flow
problem. This also prevents the use of other techniques for proving
the hardness of CCEs, e.g., those by Barman and Ligett [2015].
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Du,j i

Figure 2: Example of players’ action sets in a game instance
I'(C, V) used for the reduction in the proof of Lemma 7.

time, players p, do not deviate to resource r; only if they
are the only players selecting their resources. This implies
that all the players p, 4 (for ¢ € C and ¢ € [3]) must play
a resource not selected by any player p,. Hence, each player
De,q Plays a resource r; whose corresponding literal [ is true,
which results in ¢ being satisfied. The action profile defined
thus far does not constitute an equilibrium, as players p, 4
have an incentive to deviate to resources 7; with [ evaluating
to false. Players p, ; and pg_; are used to avoid such devi-
ations. They are told to play resources r; with very small
probability, so that other players do not deviate to them.

If. Suppose (C, V) is satisfiable, and let 7 : V' — {T,F}
be a truth assignment satisfying all the clauses in C. For the
ease of presentation, we let 7(1) € {T, F} be the truth value
of literal [ € {v,¥ | v € V'} under 7. Using 7, we recover
a CCE ¢ € A, with social cost smaller than or equal to
7. This selects the action profiles {a',a? a®} C X ,cnA,
defined in the following with probabilities ¢,1 = @2 =
3 — 3a10 and ¢,s = —i. First, we determine actions for
players p,, ; (the same in a', a?, and @®). Each player p, ,
(for ¢ € C and g € [3]) plays a resource r; with [ € ¢ such
that 7(1) = T, so that none of these players has an incentive
to deviate to another resource r; with 7(I) = T. Moreover,
players’ actions are such that each r; with 7(I) = T has at
least one player using it, which is useful to avoid that other
players deviate on the resource. To formally define players
Dy,q actions, we consider a congestion game I'r restricted
to the players {p, | ¢ € C,q € [3]} with action spaces
limited to resources r; € A, with 7(l) = T (since 7 satis-
fies all clauses, each player has at least one action). Clearly,
'k admits a pure NE [Rosenthal 1973]. We show that, in any
pure NE, each resource is selected by at least one player. By
contradiction, suppose that there exists a resource r; such
that no player chooses it. Then, there must be at least two
players p, 4 (With [ € ¢) selecting some resource different
from r;. As a result, there must be one player with an incen-
tive to deviate to the empty resource (as she would pay z + 1
rather than something > 2z + 1 + ¢), contradicting the NE
assumption. In conclusion, for every ¢ € C and g € [3], we
let all,w , af%_q, and agw all be equal to the resource played
by the corresponding player in some pure NE of T'r. Now,
we define actions for players p,, ; and p; ;. Each player p; ;
plays r; in a® (drawn with a small probability of —7) only
if 7(1) = F, while this never happens in a' and a?. Intu-
itively, this avoids that other players deviate to a resource
r; with 7(I) = F. Moreover, players p; ; are split into two




groups alternating between resources 7,1 and 77 2 in action
profiles a' and a?. This prevents deviations to either 7,1 or
71,2 (as there are at least u players using the resource with
high probability). Formally, for every | € {v,v |v € V'}:

o forj € [u], welet allnj =71, a5 =T and af,lj =1
if 7(1) = F, while a?, ,=raifr(l) =T,

o for j € [2u] : j > u, welet a,, L= T2, a2, , =711, and
agu = ryif 7(I) = F, while af,u =r2if () =T.

Finally, we introduce players p,’ actions. In a' and a? (se-
lected with high probability 1 — ﬁ), each player p, uses
ry if 7(v) = F, while 75 otherwise. Instead, in a3 (drawn
with a small probability of ﬁ), player p, selects r; so as
to keep the cost of players p; ; small. Thus, for every v € V,

weletal = ryanda), = a2 = r,if 7(v) = F, while
1 = a2 = ryp if not. Next we show that players have no

1ncent1ve to defect from ¢, i.e., ¢ is a CCE. Given that player
Py.q s action (for ¢ € C and ¢ € [3]) is determined by a pure
NE of I'g, she does not have any incentive to deviate to an-
other resource r; € A, ; with 7(I) = T (as these resources
are not selected by players not participating to I'r and the
players in I'r are at an NE). Moreover, in ¢, player p, 4’s
expected cost is at most z + 1 4 3em, while she would pay at
least (2+1+¢€)(1— -5 )+ (2+1+2u€) 5 > 2+1+2em?
by selecting aresource r; € A, o with 7(/) = F. Each player
py (forv € V) does not defect from ¢, since her expected
costis (z+1)(1— —L5) + (2 + s) 4y, while she would pay:

W mio>

o the same amount by switching to resource 7;

e atleast z41+-¢ by playing r; with ! € {v, v} and 7(1)
(as there is at least one player p,, 4 on rl)'

e atleast (2+1)(1— 5 )+ (2+14+2ue) 45 = 241421
by selecting r; with [ € {v, v} and T(l) F.

=T

Each player p; ; (forl € {v,0 | v € V} and j € [2u]) with
7(l) = F does not deviate, smce her cost is (z + 1)(1 —

W) +(z+1—€+ 2ue) T while she would pay:
e atleast (241)(3 — 5215 )+(2+2) (3 — 5215) by switching

to either r; 1 or 7 2;

e atleast (z+1+¢€)(1— —5)
selecting resource r; € Ay, .

+ (2 +1— €+ 2ue) Ig by

Moreover, each player p; ; with 7(I) = T does not deviate
either, as her cost is (z 4 1), while she would pay:

e at least z 4+ 1 + € by playing resource 7;

e atleast (241)(3 + 310 )+(2+2) (5 — 5o1) by switching
to either r; 1 or ry 5.

Finally, players p; must select resource 7¢; thus, they ex-
perience a cost of z(1 — —%5) + (2 + s)-15. Moreover,
since the maximum cost of a resource different from r; is
z + 1 + u, players pv incur a cost at most of (2 + 1 +
u)(1— —25) + (24 s) -4, while all the other players pay at
most z + 1+ u. Then the CCE ¢ provides a s001al cost
smaller than or equal to z [2(1 — —15) 4+ (2 + 8) 4] +

s[(z+1+u)(l— o)+ (z—|—s):1100] + (dus+3m) (= +
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1+u) < 224 Zi+ (2 1+u) (s+4us+3m)+s(2+s) 2 =
22 + (s + 4us + 3m)(z — u) + (2u + 1)(s + 4us +
3m) + s(2z 4+ s) -5 < 7, where the last inequality fol-
lows from (2u + 1)(s + 4us + 3m) + s(2z + §) - <
(2m'2 +1)(m + 4m* + 3m) + m(2z + m) L5 < 3% for
m large enough.

Only if. Suppose there exists a CCE ¢ € A 4 with social
cost smaller than or equal to . First, we prove that, with
probability at most 5, at least one player p, plays r;. By
contradiction, assume that this is not the case. Then, the so-
cial cost would be at least (22 + (4us+s—+3m)(z —u))(1 —
#)+((z+1)2+(4us—|—s+3m—1)(z—u)) 4>
2% + (4us + s+ 3m)(z — u) + (22 — z) =5 > 7. This im-
plies that each player p,, is playing either r,, or r; with prob-
ability at least 1 — % Then, we prove that p,, is the only
player on that resource with probability at least 1 — —5 — #
Otherwise by contradlction her cost would be : at least
241+ -5 =2+1 + mG , while by playing r; she would pay
atmost (2+1)(1—-55)+(2+5) 15 < 241+ 2. By aunion
bound, there exists an action proﬁle a € XpenAy played
with probability at least 1 — s(-1s 4+ -1;) > 0 in which all the
players p, are alone on their resources (either r, or rz). Let
7 : V — {T,F} be a truth assignment such that 7(v) = T
if ap, = ry and 7(v) = Fif a,, = r,. Then, 7 satisfies all
the clauses, since all the players p,, , play r; with 7(1) = T
and, thus, each clause has at least a true literal. O

The following lemma concludes the proof of Theorem 2.

Lemma 8. Any SCG can be represented as an NCG of size
polynomial in the size of the original SCG.

Proof. Given an SCG (N, R, {A,}pen, {¢r}rer) we build
an NCG (N, G, {cc}tecr, {(sp:tp)pen) as follows. The
graph G = (V, E) has two nodes v,.1,v,2 € V for each
resource r € R, and, additionally, for every player p € N,
there is a source node s, € V' and a destination one ¢, € V.
Moreover, there is an edge (v,1,v,2) € E forevery r € R
and, for every p € N and r € A,, there two edges
(sp,vr1) € E and (vy2,t,) € E. Finally, for the edges
e = (vp1,vr2), we let c. = ¢, while ¢, = 0 for all the
other edges. Clearly, the size of the NCG is polynomially
bounded by that of the original SCG, proving the result. [

Discussion and Future Works

The paper studies information-structure design problems
in atomic BNCGs, where an informed sender can observe
the actual state of the network and commit to a signaling
scheme. We focus on the problem of computing optimal ex
ante persuasive signaling schemes in such setting. We show
that, with affine costs, symmetry is the property marking the
transition from polynomial-time tractability to NP-hardness.

In the future, we are interested in studying the prob-
lem of approximating optimal ex ante persuasive signaling
schemes, and in the design of practical algorithms for real-
world network signaling problems. Moreover, to make the
framework even more applicable, it would be interesting
to explore how the sender can handle uncertainty about re-
ceivers’ payoffs [Castiglioni et al. 2020].
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