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Abstract

We study fair resource allocation when the resources con-
tain a mixture of divisible and indivisible goods, focusing
on the well-studied fairness notion of maximin share fairness
(MMS). With only indivisible goods, a full MMS allocation
may not exist, but a constant multiplicative approximate allo-
cation always does. We analyze how the MMS approximation
guarantee would be affected when the resources to be allo-
cated also contain divisible goods. In particular, we show that
the worst-case MMS approximation guarantee with mixed
goods is no worse than that with only indivisible goods. How-
ever, there exist problem instances to which adding some di-
visible resources would strictly decrease the MMS approxi-
mation ratios of the instances. On the algorithmic front, we
propose a constructive algorithm that will always produce an
α-MMS allocation for any number of agents, where α takes
values between 1/2 and 1 and is a monotonically increasing
function determined by how agents value the divisible goods
relative to their MMS values.

1 Introduction
Fair division concerns the problem of allocating a set of
goods among interested agents in a way that is fair to all
participants involved. The goods involved could be hetero-
geneous and divisible, usually modelled by a cake, in which
case the problem is also known as cake-cutting; in some
other cases, the goods are heterogeneous and indivisible, and
the problem is known as indivisible resource allocation.

Due to its subjective nature, a plethora of fairness notions
have been proposed and investigated in different resource al-
location scenarios (see (Young 1995) and (Brams and Tay-
lor 1996) for a survey). In particular, as one of the most
classic and widely known fairness notions, Steinhaus (1948)
proposed that in an allocation that involves n participating
agents, each agent should receive a bundle which is worth
at least 1/n of her value for the entire set of goods. An al-
location satisfying such property is then known as a propor-
tional allocation. Moreover, Steinhaus (1948) also showed
that a proportional allocation can always be found for any
number of agents over any divisible good. However, this
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is not the case when goods are indivisible, with the sim-
plest counterexample of two agents dividing a single valu-
able good. In order to circumvent this issue, Budish (2011)
presented a natural alternative to the classic proportional-
ity notion that also works for indivisible goods, known as
the maximin share (MMS) guarantee. In this definition, the
maximin share (MMS) of an agent is defined as the largest
value she can get if she is allowed to partition goods into n
bundles and always receives the least desirable bundle. An
allocation is said to be an MMS allocation if every agent
receives a bundle which is worth at least her maximin share.

The notion of MMS nicely captures the local measure of
fairness even when the goods to be allocated are indivisi-
ble. A natural question then arises of whether an MMS allo-
cation always exists in all problem instances. Surprisingly,
Kurokawa, Procaccia, and Wang (2018) showed that even
with additive valuation functions, an MMS allocation may
not always exist. However, a 2/3-MMS allocation can al-
ways be found, in which each agent is guaranteed to receive
a bundle worth at least 2/3 of their MMS value. In other
words, if we define the MMS approximation guarantee of
a problem instance as the largest α such that the instance
admits an α-MMS allocation, the results in (Kurokawa, Pro-
caccia, and Wang 2018) imply that the worst MMS approx-
imation guarantee across all indivisible problem instances
is strictly less than 1 and at least 2/3. Since then, many
subsequent works have been carried out on the improve-
ments of MMS approximation guarantee, design of simpler
algorithms, etc. (Amanatidis et al. 2017; Barman and Kr-
ishnamurthy 2020; Ghodsi et al. 2018; Garg, McGlaughlin,
and Taki 2019; Garg and Taki 2020). MMS has also been
adopted as the fairness solution concept in several practical
applications (Budish 2011; Goldman and Procaccia 2015).

Even though MMS has been mainly studied in the context
of indivisible resource allocation, it is also a well-defined
fairness notion in a more general setting where both divisible
and indivisible goods are to be allocated. Many real-world
scenarios, including but not limited to divorce or inheri-
tance settlements, involve allocating simultaneously divis-
ible goods such as land or money and indivisible goods such
as houses or cars. What fairness notion should one adopt
when dividing resources of such mixed types? The problem
of fairly allocating mixed divisible and indivisible goods was
first studied by Bei et al. (2020a) (and recently by Bhaskar,
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Sricharan, and Vaish (2020)), in which the authors proposed
a new fairness notion called envy-freeness for mixed goods
(EFM) that generalizes envy-freeness, another well-studied
fairness notion, to the mixed goods setting. The maximin
share guarantee, on the other hand, can be directly applied
to the mixed goods setting without any modification. This
allows us to compare the results of MMS for mixed goods
directly to those for indivisible goods.

In this paper, we aim to provide such a comparison. More
specifically, we extend the analysis of MMS allocations to
the setting with mixed types of goods, and study its exis-
tence, approximation, as well as computation. In particular,
we hope to answer the following questions:

1. Is the worst-case MMS approximation guarantee across
all mixed goods instances the same as that across all indi-
visible goods instances?

2. Given any problem instance, would adding some divisible
resources to it always (weakly) increase the MMS approx-
imation ratio of this instance?

3. How to design algorithms that could find allocations
with good MMS approximation guarantee in mixed goods
problem instances?

1.1 Our Results
In this paper, we answer the three questions posed above.

In Section 3, we first show that any problem instance of
mixed goods can be converted into another problem instance
with only indivisible goods, such that the two instances have
the same MMS value for every agent, and any allocation of
the indivisible instance can be converted to an allocation in
the mixed instance. This reduction directly implies that the
worst-case MMS approximation guarantee across all mixed
goods instances is the same as that across all indivisible
goods instances.

This is not a surprising result, because the non-existence
of MMS allocations only arises when the resources to be
allocated become indivisible. It is therefore reasonable to
think that adding divisible goods to the set of indivisible
goods can only help with the MMS approximation guaran-
tee. However, we show that this intuition no longer holds at
the per-instance level. In particular, we provide a problem
instance with only indivisible goods, such that when a small
amount of divisible goods is added to the instance, the MMS
approximation guarantee of the instance strictly decreases,
i.e., while an α-MMS allocation exists in the original in-
stance, no α-MMS allocation exists after adding cake.

Next in Section 4, we focus on finding allocations with
good MMS approximations with mixed types of goods.
More specifically, we show via a constructive algorithm that
given any problem instance with mixed goods, there exists
an α-MMS allocation, where the parameter α, ranged be-
tween 1/2 and 1, is a monotonically increasing function of
how agents value the divisible goods relative to their MMS
values. This means when agents have more divisible goods
with them, one can achieve a better MMS approximation
guarantee. The idea of the algorithm is to repeatedly assign
some agent a set of indivisible goods along with a piece of
cake to reach the agent’s α-MMS value, and then reduce

the problem to a smaller size. When the cake to be allo-
cated is heterogeneous, the algorithm also makes use of a
generalized fairness notion of weighted proportionality to
help allocate the cake. On the computational front, we show
polynomial-time approximation schemes for approximating
the MMS value of an agent and for computing a (1 − ε)α-
MMS allocation in a mixed goods problem instance. These
algorithms run in time polynomial in n,m,L for any con-
stant ε > 0, where n is the number of agents, m is the num-
ber of indivisible goods, L is the input bit length.

Last, in Section 5, we discuss the relation between MMS
and the recently introduced envy-freeness for mixed goods
(EFM) in the mixed goods setting. Generally speaking, nei-
ther the MMS nor the EFM imply the other. We also provide
a result showing what fraction of MMS can be implied by
an EFM allocation.

1.2 Further Related Work
Maximin share (MMS) fairness was first introduced by Bud-
ish (2011). In addition to the works we mentioned above,
MMS allocations of indivisible resources have also been ex-
tensively studied in several other settings (Farhadi et al.
2019; Suksompong 2018; Bouveret et al. 2017; Gourvès
and Monnot 2019; Igarashi and Peters 2019; Lonc and
Truszczynski 2020).

A related line of research incorporates money into the fair
division of indivisible goods, with the consideration of find-
ing envy-free allocations (Alkan, Demange, and Gale 1991;
Maskin 1987; Klijn 2000; Meertens, Potters, and Reijnierse
2002; Halpern and Shah 2019; Brustle et al. 2020; Caragian-
nis and Ioannidis 2020; Aziz 2021). Another closely related
problem is rent division (see (Su 1999; Haake, Raith, and
Su 2002; Abdulkadiroğlu, Sönmez, and Ünver 2004; Brams
2008; Gal et al. 2017; Arunachaleswaran, Barman, and Rathi
2019)). Its cardinal utility version can be viewed as a special
case of the mixed setting where one wants to allocate (indi-
visible) rooms and the (divisible) rent among agents. How-
ever, in the mixed setting of fair division, the divisible goods
(the rent) must be allocated and the agents are not allowed
to use additional money to achieve more strict fairness con-
dition.

2 Preliminaries
Denote by N = {1, 2, . . . , n} the set of agents. Let M =
{1, 2, . . . ,m} be the set of indivisible goods. Each agent i ∈
N has a non-negative utility ui(g) for each indivisible good
g ∈ M . We assume that each agent’s utility for a set of in-
divisible goods is additive, that is, ui(M ′) =

∑
g∈M ′ ui(g)

for any i ∈ N andM ′ ⊆M . Let C = {D1, D2, . . . , D`} be
the set of heterogeneous divisible goods. We assume without
loss of generality that each cake Di ∈ C is denoted by the
interval [(i−1)/`, i/`]. Thus the entire set of divisible goods
is represented by one cake C = [0, 1].1 A piece of cake is
a finite union of subintervals of [0, 1]. Each agent i has a
non-negative integrable density function fi. Given a piece

1The agents’ density functions over the cakes are assumed to
be non-atomic. This property allows us to view two consecutive
intervals as disjoint if their intersection is a singleton.
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of cake S ⊆ [0, 1], agent i’s value over S is then defined as
ui(S) :=

∫
x∈S fi(x) dx. Denote by f = (f1, f2, . . . , fn)

the vector of density functions; f is called a density pro-
file. In this work, a resource allocation problem instance
I = 〈N,M ∪C〉 consists of a set of agentsN (together with
their utility and density functions), a set of indivisible goods
M , and a set of heterogeneous divisible goods or cakes C.

Denote by G = M ∪ C the set of mixed goods (by abuse
of notation for convenience). LetM = (M1,M2, . . . ,Mn)
be a partition of indivisible goods M into n bundles such
that agent i receives Mi. Let C = (C1, C2, . . . , Cn) be a
partition of the cake C such that agent i gets a piece of cake
Ci. An allocation of mixed goods G = M ∪C is defined as
A = (A1, A2, . . . , An), where Ai = Mi ∪ Ci is allocated
to agent i. The utility of agent i in an allocation A is then
ui(Ai) = ui(Mi) + ui(Ci).

We now define the fairness notions considered in this pa-
per. We focus on the maximin share fairness, a generaliza-
tion of the classic proportionality fairness.

Definition 2.1 (PROP). An allocation A is said to satisfy
proportionality (PROP) if for each agent i ∈ N , ui(Ai) ≥
ui(G)/n.

Definition 2.2. Let Πk(G) = {{P1, P2, . . . , Pk} | Pi ∩
Pj = ∅ ∀i, j and ∪k Pk = G} be the set of k-partitions of
G. Define the k-maximin share of agent i as

MMSi(k,G) = max
P=(P1,P2,...,Pk)∈Πk(G)

min
j∈[k]

ui(Pj).

The maximin share of agent i is MMSi(n,G). Every parti-
tion in arg maxP∈Πn(G) minj∈[n] ui(Pj) is called an MMS
partition for agent i.

For notational convenience, we will simply write MMSi
when parameters n and G are clear from the context.

Definition 2.3 (α-MMS). An allocation A of mixed goods
G is said to satisfy the α-approximate maximin share fair-
ness (α-MMS), for some α ∈ [0, 1], if for every agent i ∈ N ,

ui(Ai) ≥ α ·MMSi(n,G).

We say a 1-MMS (or full-MMS) allocation satisfies the
(full) maximin share fairness and write MMS as a shorthand
for 1-MMS. To slightly abuse the notation, we will also refer
to an agent’s maximin share as MMS.
Precision and input representation. When discussing the
computational aspects, it is necessary to specify the preci-
sion and representation of the input problem instance. In this
paper, we assume that ui(g)’s for each i ∈ N, g ∈ M and
ui(C) for each i ∈ N are all rational numbers, and the whole
input can be represented in no more than L bits.
Robertson-Webb query model. We also adopt the
Robertson-Webb (RW) query model to access agents’ den-
sity functions for the cake. In the RW model, an algorithm is
allowed to ask each agent the following two types of queries:

Eval: An evaluation query returns ui([x, y]) of agent i over
interval [x, y].

Cut: A cut query of β for agent i from point x returns a
point y such that ui([x, y]) = β.

In this paper, we assume that each query in the RW model
takes unit time.

All omitted proofs can be found in the full version of this
paper (Bei et al. 2020b).

3 MMS Approximation Guarantee
In this section, we examine how mixed goods affect the ex-
istence and approximation of MMS allocations.

3.1 Worst Case MMS Approximation Guarantee
An MMS allocation, while being an appealing solution con-
cept, may not always exist in every problem instance with
indivisible goods (Kurokawa, Procaccia, and Wang 2018).
Therefore one has to resort to approximate MMS alloca-
tions. Allocating mixed types of goods is a generalization of
the indivisible good case, and hence suffers from the same
issue. We start by analyzing the worst-case MMS approxi-
mation guarantee for mixed good problem instances.
Definition 3.1. Given a mixed good problem instance I , let
γ(I) denote the maximum value of α such that the problem
instance admits an α-MMS allocation. 2 We also call γ(I)
the MMS approximation guarantee of problem instance I .

We further define two constants
γM = inf

I=〈N,M∪C〉
γ(I) and γI = inf

I=〈N,M〉
γ(I).

In other words, γM is the worst MMS approximation
guarantee across all mixed goods problem instances, and γI
is the worst MMS approximation guarantee across all prob-
lem instances that contain only indivisible goods. Previous
works have showed that γI < 1 (Kurokawa, Procaccia, and
Wang 2018) and γI ≥ 3

4 + 1
12n (Garg and Taki 2020).

It is straightforward from definition that γM ≤ γI . In the
following, our first result shows that γM is also no less than
γI . This is proved via the following reduction theorem.
Theorem 3.2. Given any problem instance with mixed
goods I = 〈N,M ∪ C〉, there exists another problem in-
stance I ′ = 〈N,M ′〉 with only indivisible items M ′ and the
same set N of agents, such that
• any allocation A′ of M ′ can be converted to another al-

locationA ofM ∪C, such that ui(Ai) = ui(A
′
i) for each

agent i ∈ N ;
• MMSi(n,M ∪C) = MMSi(n,M ′) for each agent i ∈ N .

We note that this reduction is not computationally effi-
cient as it requires being able to compute the MMS values.
Moreover, Theorem 3.2 directly implies the following result.
Corollary 3.3. γI = γM .

In other words, having mixed types of goods does not af-
fect the worst-case MMS approximation guarantee across all
problem instances. As another corollary, this also means that
if there exists a universal β-MMS algorithm for indivisible
goods for some β, it immediately implies that every problem
instance of mixed goods also admits a β-MMS allocation.
We will discuss more on the algorithmic implication of this
result in Section 4.

2The γ(I) is defined to be the maximum value of α instead
of the supremum. This is because the density functions are non-
atomic and the maximum α can always be achieved.
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3.2 Cake Does Not Always Help
Note that the equation in Corollary 3.3 is about the worst-
case MMS approximation guarantee across all problem in-
stances. Next we show that such equivalence may not hold
on a per-instance level. In particular, we will demonstrate via
an example that sometimes, adding some divisible resources
to some problem instance I may hurt its MMS approxima-
tion guarantee value γ(I).
Theorem 3.4. There exist some agent set N , indivisible
goods M , and divisible goods C, such that

γ(〈N,M〉) > γ(〈N,M ∪ C〉).
In other words, adding some divisible goods to the set of
resources may decrease the MMS approximation guarantee
of this problem instance in some cases.

In the following we explain the intuition of the theorem
proof. We want to find a problem instance I = 〈N,M〉 such
that γ(〈N,M〉) < 1, and the instance should have the fol-
lowing properties.

Fix an agent i. In her MMS partition, the least valued bun-
dle is unique, i.e., the value of the least valued bundle is
strictly less than that of the second least valued bundle. If
this is the case, then given a cake C with a small enough
value ε, the new MMS value MMSi(n,M ∪ C) should be
exactly MMSi(n,M) + ε. Now suppose that in the instance
I , all the agents have this property. This means that every
agent’s MMS value will increase by ε when we add a cake
C of a small enough value ε to the instance I . The second
required property of I is that in any γ(〈N,M〉)-MMS al-
location, there are at least two agents that receive exactly
γ(〈N,M〉) times their MMS values.

With these two properties, the actual cake C will not be
enough for distributing to all the agents while clinging to
a large enough MMS approximation ratio γ(〈N,M ∪ C〉).
In other words, with the cake C added, the new MMS ratio
γ(〈N,M ∪ C〉) will decrease, comparing to γ(〈N,M〉).

Finally, the counterexample used to show the non-
existence of MMS allocation in (Kurokawa, Procaccia, and
Wang 2018) can be utilized to construct the instance I
that satisfies all above mentioned properties. The details are
omitted here.

4 Algorithms for Computing Approximate
MMS Allocations

The previous section investigates MMS approximation guar-
antee, which is the best possible MMS approximation of a
problem instance. In this section, our goal is to design al-
gorithms that could compute allocations with good MMS
approximation ratios in a mixed goods problem instance.
We hope such an algorithm can be flexible, in the sense that
when the problem instance contains only indivisible goods,
the MMS approximation of the output allocation should
match or be close to the previously best-known approxi-
mation ratio for indivisible goods; on the other hand, when
the resources contain enough divisible goods, the indivisible
goods would become negligible, and our algorithm should
be able to produce an allocation that gives each agent their
full MMS value.

As the main result of this section, in the following we
present such an algorithm. We will show that the algorithm
will always produce an α-MMS allocation in the mixed
goods setting, where α is a monotonically increasing func-
tion of how agents value the divisible goods relative to their
MMS values and ranges between 1/2 and 1.
Theorem 4.1. Given any mixed good problem instance
〈N,M ∪ C〉, an α-MMS allocation always exists, where

α = min

{
1,

1

2
+ min

i∈N

{
ui(C)

2(n− 1) ·MMSi

}}
.

Furthermore, for any constant ε > 0, we can compute a
ratio α′ and an allocation A in time polynomial in n,m,L
such that:

1. α′ ≥ α, and
2. the allocation A is (1− ε)α′-MMS.

Here n is the number of agents, m is the number of items,
and L is the total bit length of all input parameters.

Theorem 4.1 has several implications. For example, when
every agent i has ui(C) ≥ (n/2)MMSi, Theorem 4.1 im-
plies the existence of an α-MMS allocation with α better
than the currently best-known approximation ratio 3

4 + 1
12n

with indivisible goods due to Garg and Taki (2020). In addi-
tion, the following corollary shows the amount of divisible
good needed to ensure that the instance admits a full-MMS
allocation.
Corollary 4.2. Given a mixed good problem instance I =
(N,M ∪C), if ui(C) ≥ (n− 1)MMSi holds for each agent
i ∈ N , then an MMS allocation is guaranteed to exist.

This means even with the presence of indivisible items, as
long as there are enough divisible goods, a full-MMS allo-
cation can always be found. However, this corollary should
not be interpreted as that this is the least amount of divisi-
ble goods required. For example, Halpern and Shah (2019)
and Brustle et al. (2020) studied the allocation of indivisi-
ble goods and a very special type of divisible goods, money.
They investigated the least amount of money needed for a
problem instance to have an envy-free allocation. Although
an envy-free allocation is also a full-MMS allocation, their
result and this corollary are incomparable.

The remaining of this section is dedicated to the proof of
Theorem 4.1. The proof consists of the following steps.
Section 4.1: We first focus on a restricted case in which the

cake to be allocated is homogeneous to every agent. We
show via a constructive, but not necessarily polynomial
time algorithm, that an α-MMS allocation always exists
in this setting.

Section 4.2: Next we generalize the above algorithm to the
general case with heterogeneous cake, using the concept
of weighted proportionality in cake-cutting.

Section 4.3: We discuss how to convert the algorithm to a
polynomial time algorithm at the cost of a small loss in
the MMS approximation ratio.
We also discuss how to further improve the approximation

ratio α in Section 4.4.
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4.1 Homogeneous Cake
We begin with a special case where the cake to be allocated
is homogeneous, meaning that each agent values all pieces
of equal size the same. In other words, the value of a piece of
cake to each agent depends only on the length of the piece.3

We refer to the homogeneous cake as Ĉ. Formally, given a
piece of homogeneous cake S ⊆ [0, 1], each agent i’s value
over S is then defined as ui(S) := (

∑
[a,b]∈S(b− a))ui(Ĉ).

The Algorithm The complete algorithm to compute an α-
MMS allocation is shown in Algorithm 1. Our algorithm is
in spirit similar to the algorithm in (Ghodsi et al. 2018). Af-
ter initialization, the algorithm can be decomposed into two
phases as follows:

• Phase 1: allocate big goods (lines 4-6). Algorithm 1 re-
peatedly allocates some agent a single indivisible good
which has value at least α times this agent’s MMS value.
Then, both the agent and the allocated good are removed
from all further considerations.

• Phase 2: allocate small goods (lines 7-13). This phase ex-
ecutes in rounds. In each round, Algorithm 1 chooses an
agent i∗ and allocates some indivisible goods B (formed
at line 9) along with a piece of cake [a, xi∗ ] to agent i∗
(line 12). Then again, both the agent and her goods are
removed from the instance.

The Analysis Algorithm 1 consists of two phases. We an-
alyze each of them separately.
Phase 1: Allocate big goods. First, when goods are all in-
divisible, Amanatidis et al. (2017) showed that allocating a
single good to an agent does not decrease the MMS values
of other agents. Here we show that this result holds in the
mixed goods setting as well.
Lemma 4.3 (Monotonicity property). Given an instance
(N,G = M ∪ C), for any agent i ∈ N and any indivis-
ible good g ∈ M , it holds that MMSi(n − 1, G \ {g}) ≥
MMSi(n,G).

Denote by N1 the set of remaining agents and G1

the set of unallocated goods just before Phase 2 is exe-
cuted. Let n1 = |N1|. Applying the monotonicity property
(Lemma 4.3) n − n1 times, we have that for each agent
i ∈ N1, MMSi(n1, G1) ≥ MMSi(n,G). In addition, each
agent i who leaves the system in this phase receives an item
of value at least α · MMSi. This implies that Phase 1 will
not affect the correctness and termination of Algorithm 1.
It simply adds the property that in Phase 2, each remaining
agent i will value each of the remaining indivisible goods
less than α ·MMSi.
Phase 2: Allocate small goods. In this phase, at each round,
for the agent i∗ selected at line 11, we show that it satisfies
two properties:
(1) ui∗(Ai∗) ≥ α ·MMSi∗ ;
(2) For each agent j remaining in N , uj(Ai∗) ≤ MMSj .

3An even more restricted case is when the cake is valued the
same to all agents. The canonical example of the divisible goods of
this special case is money.

Algorithm 1: MIXED-MMS-HOMOGENEOUS(〈N,M∪
Ĉ〉)
Input: Agents N , indivisible goods M and a

homogeneous cake Ĉ, utility and density
functions.

1 Compute MMSi, for each i ∈ N .

2 α← min
{

1, 1
2 + mini∈N

{
ui(Ĉ)

2(n−1)·MMSi

}}
3 A1, A2, . . . , An ← ∅
// Phase 1: allocate big goods.

4 while ∃i ∈ N, g ∈M such that ui(g) ≥ α ·MMSi do
5 Ai ← {g} // arbitrary tie-breaking
6 N ← N \ {i}, M ←M \ {g}

// Phase 2: allocate small goods.
7 while |N | ≥ 2 do
8 B ← ∅
9 Add one indivisible good at a time to B until

uj(B) ≥ (1− α) ·MMSj for some agent j or
B = M .

10 Suppose Ĉ = [a, b]. For each i ∈ N , let xi be the
leftmost point with ui(B ∪ [a, xi]) ≥ α ·MMSi.

11 i∗ ← arg mini∈N xi // arbitrary
tie-breaking

12 Ai∗ ← B ∪ [a, xi∗ ]

13 N ← N \ {i∗}, M ←M \B, Ĉ ← Ĉ \ [a, xi∗ ]

14 Give all remaining goods to the last agent.
15 return (A1, A2, . . . , An)

(1) is straightforward by the way each xi is computed at
line 10. To show (2) is true, we remark that no single good is
valued more than α·MMSi for any agent i. Therefore, the set
B selected at line 9 must satisfy uj(B) ≤ MMSj for all j ∈
N . After line 10, it continues to satisfy that uj(B∪[a, xj ]) ≤
MMSj for each j ∈ N . Then, because i∗ is selected such
that xi∗ is the smallest value, one would have uj(Ai∗ =
B ∪ [a, xi∗ ]) ≤ uj(B ∪ [a, xj ]) ≤ MMSj for each agent
j ∈ N .

In particular, property (2) ensures that the last agent at
line 14 is still left with enough goods to reach her maximin
share. Therefore, every agent i will receive value at least
α ·MMSi after the two phases. It only remains to show that
the cake Ĉ is enough to be allocated throughout the process.

Lemma 4.4. Cake Ĉ is enough to be allocated in Algo-
rithm 1. In other words, xi for each agent i ∈ N at line 10
is always well defined in each round.

Combining everything together, we conclude that Algo-
rithm 1 is a correct algorithm that always outputs an α-MMS
allocation.

4.2 Heterogeneous Cake
We now show how to extend algorithm 1 to the general set-
ting with a heterogeneous cake C. The new algorithm fol-
lows a very simple idea as follows. First we replace cake C
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Algorithm 2: The Mixed MMS Algorithm
Input: Agents N , indivisible goods M and cake C,

utility and density functions.
1 Let Ĉ = [0, 1] be a homogeneous cake with

ui(Ĉ) = ui(C) for each agent i ∈ N .
2 (M1 ∪ Ĉ1,M2 ∪ Ĉ2, . . . ,Mn ∪ Ĉn)←

MIXED-MMS-HOMOGENEOUS(〈N,M ∪ Ĉ〉)
3 For each i ∈ N , let wi ← ui(Ĉi)/ui(C) if

ui(C) > 0; wi ← 0 otherwise.
4 (C1, C2, . . . , Cn)← WPRALLOC(N,C,w =

(w1, . . . , wn)) // allocate cake C
5 return (M1 ∪ C1,M2 ∪ C2, . . . ,Mn ∪ Cn)

with a homogeneous cake Ĉ such that ui(Ĉ) = ui(C) for
each agent i, and allocate resources M and Ĉ to all agents
using Algorithm 1. Let Ĉi be the piece allocated to agent
i. Note that since Ĉ is homogeneous, only the length of Ĉi
matters, which we denote as wi. Because Ĉ has total length
1, wi also represents the fraction of the cake Ĉ allocated to
agent i. Next, we view wi as the entitlement (or weight) of
agent i to the real cake C, and obtain the actual allocation of
cake C via a procedure known as the weighted proportional
allocation.
Weighted proportional cake-cutting. This concept gener-
alizes the proportional cake-cutting to the weighted case.
Formally, assume that every agent i ∈ N is assigned a non-
negative weight wi, such that

∑
i∈N wi = 1. We call the

vector of weights w = (w1, w2, . . . , wn) a weight profile.

Definition 4.5 (WPR). Given a weight profile w, an allo-
cation C = (C1, C2, . . . , Cn) of cake C is said to satisfy
weighted proportionality (WPR) if for every agent i ∈ N ,
ui(Ci) ≥ wi · ui(C).

A weighted proportional allocation of cake gives each
agent at least her entitled fraction of the entire cake from
her own perspective. The proportionality fairness (Defini-
tion 2.1) is a special case of WPR with weight profile
w = (1/n, 1/n, . . . , 1/n). With any set of agents and
any weight profile, a weighted proportional allocation al-
ways exists (Cseh and Fleiner 2018). In the following, we
will assume that our algorithm is equipped with a protocol
WPRALLOC(N,C,w) that could return us a weighted pro-
portional allocation of cake C, among the set of agent N
with weight profile w.

The complete algorithm to compute an α-MMS allocation
of mixed goods for any number of agents is shown in Algo-
rithm 2. To show that this algorithm can find an α-MMS
allocation with mixed goods that contain a heterogeneous
cake, it suffices to prove the following two simple facts.

1. MMSi(n,M ∪ C) = MMSi(n,M ∪ Ĉ). This is obvious
because both C and Ĉ are divisible with ui(C) = ui(Ĉ).
Only changing the density of a cake will not affect the
MMS value of any agent.

2. ui(Ci) ≥ ui(Ĉi). This is because by weighted propor-

tionality, we have

ui(Ci) ≥ wi · ui(C) = wi · ui(Ĉ) = ui(Ĉi).

4.3 Computation
We investigate the computational issues in finding an α-
MMS allocation in this part. Note that Algorithm 2 is not
a polynomial time algorithm unless P=NP. This is because
it requires the knowledge of every agent’s MMS value,
which is NP-hard to compute even with only indivisible re-
sources (Kurokawa, Procaccia, and Wang 2018).

To obtain a polynomial time approximation algorithm, we
first show how to approximate the MMS value of an agent
with mixed goods, then focus on obtaining an approximate
α-MMS allocation.
Approximate MMS value with mixed goods. When goods
are indivisible, Woeginger (1997) showed a polynomial-
time approximation scheme (PTAS) to approximately com-
pute the MMS value of an agent. More specifically, given
any constant ε > 0 and any agent, we can partition the indi-
visible goods into n bundles in polynomial time, such that
each bundle is worth at least 1 − ε of that agent’s MMS
value. By utilizing this PTAS from Woeginger (1997), here
we present a new PTAS to approximate MMS values for
mixed goods.
Lemma 4.6. Given any mixed goods instance I = 〈N,M ∪
C〉 and constant ε > 0, for any agent i ∈ N , one can com-
pute a partition (P1, P2, . . . , Pn) of M ∪ C in polynomial
time, such that minj∈N ui(Pj) ≥ (1−ε) ·MMSi(n,M∪C).

Lemma 4.6 also implies that in the mixed goods setting,
we can compute in polynomial time a value MMS′i such that
MMSi ≥ MMS′i ≥ (1− ε)MMSi.
Approximate α-MMS allocation. Now we turn to the
polynomial-time algorithm for computing an approximate
α-MMS allocation.

The algorithm is almost similar to Algorithm 2 except for
1. at line 1 of Algorithm 1, we compute the approximate val-

ues MMS′i, which is at most MMSi and at least (1 − ε) ·
MMSi for each agent i ∈ N ;

2. at line 2 of Algorithm 1, we compute the ratio
α′ using the approximate values MMS′, i.e., α′ ←
min

{
1, 1

2 + mini∈N

{
ui(C)

2(n−1)·MMS′i

}}
.

A similar analysis to Lemma 4.4 shows that the new algo-
rithm with these approximate values will still terminate.

According to Lemma 4.6, we know MMSi ≥ MMS′i for
each i ∈ N , which implies that α′ ≥ α. Next, for any agent
i, by the design of the algorithm, she is guaranteed a bundle
with value at least α′ ·MMS′i ≥ (1−ε)α′ ·MMSi. Therefore
the resulting allocation is (1− ε)α′-MMS.
Time complexity analysis. In light of Lemma 4.6, com-
puting approximate MMS values takes polynomial time.
Then the only step that needs time complexity anal-
ysis is the weighted proportional allocation protocol
WPRALLOC(N,C,w) at line 4 of Algorithm 2. When all
weights are rational numbers, Cseh and Fleiner (2018) gave
an implementation of the protocol usingO(n logD) queries,
where D is the common denominator of weights. They
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also showed that their implementation is asymptotically the
fastest possible.

We have assumed that our input has size at most L bits.
Then each of the arithmetic operations in steps before line 4
(Algorithm 2) keeps the numbers rational with polynomial
bit size. Thus, by applying the protocol from Cseh and
Fleiner (2018), WPRALLOC at line 4 of Algorithm 2 can
be implemented in polynomial time. Summarize everything
together, we obtain a polynomial-time algorithm.

Sections 4.1, 4.2 and 4.3 together complete the proof of
Theorem 4.1.

4.4 Boosting the Approximation Ratio
In Theorem 4.1, the smallest value for α is 1

2 , achieved when
the resources contain only indivisible goods. In this case,
the theorem ensures that a 1

2 -MMS allocation always ex-
ists. However, there is a gap between this 1

2 guarantee from
our result and that of the currently best-known result with
only indivisible goods, which is γI ≥ 3

4 + 1
12n according

to Garg and Taki (2020). In the following, we show that a
simple procedure can boost the MMS approximation ratio
computed by our algorithm to (almost) match the currently
best-known ratio for indivisible goods.

First, existence-wise, combining Theorem 4.1 with Corol-
lary 3.3 (γI = γM ), we can improve ratio directly to
max{α, γI} in Theorem 4.1. Next, computation-wise, sup-
pose there exists a polynomial-time algorithm that guaran-
tees to output a β-MMS allocation with indivisible goods
for some β. Then given a mixed good problem instance, we
first compute α′ via Theorem 4.1 and compare it with β: if
α′ ≥ β, we directly apply Theorem 4.1; otherwise, we cut
the cake C into small intervals, each valued at most ε·ui(C)

2n
for each agent i, and use the β-MMS algorithm to obtain
the allocation of this instance with only indivisible goods. In
summary, we have the following strengthened result:

Theorem 4.7. A max{α, γI}-MMS allocation with mixed
goods lways exists for any number of agents.

In addition, if there exists a polynomial-time algorithm
that can always output a β-MMS allocation with indivis-
ible goods, then for any constant ε > 0, there is an-
other polynomial-time algorithm that computes a (1 −
ε) max{α′, β}-MMS allocation with mixed goods.

The proof of Theorem 4.7 utilizes the proof of Lemma 4.6
and is straightforward to prove. The currently best lower
bound of γI is γI ≥ 3

4 + 1
12n and the currently best-known

value of β is 3
4 , both are due to Garg and Taki (2020). Any

better lower bound of γI and value of β found in the fu-
ture would immediately imply a better MMS approximation
guarantee in the mixed goods setting as well.

5 Relation of MMS and EFM
Proportionality fairness, and its generalization, MMS, are
often compared to another well studied fairness notion of
envy-freeness (EF). It is known that with only divisible
goods, envy-freeness implies proportionality but not vice
versa. With only indivisible goods, the relaxed notion of EF,

known as envy-freeness up to one item (EF1), and the re-
laxed notion of proportionality, MMS, do not imply each
other (Caragiannis et al. 2016). In a recent work, Bei et al.
(2020a) proposed a new envy-freeness notion, termed envy-
freeness for mixed goods (EFM), that generalizes both EF
and EF1 to the mixed goods setting. We include the defini-
tion of EFM as follows.
Definition 5.1 (EFM). An allocation A is said to satisfy
envy-freeness for mixed goods (EFM) in the sense that for
any i, j ∈ N ,
• if j’s bundle consists of only indivisible goods, there ex-

ists g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g});
• otherwise, ui(Ai) ≥ ui(Aj).

As, with only indivisible goods, EFM reduces to EF1, it is
obvious to see that neither EFM nor MMS implies the other.
We then consider the relation between EFM and the approx-
imation of MMS, focusing on what approximation ratio of
MMS can be achieved by an EFM allocation.

On the one hand, when all goods are divisible, EFM (or
EF) is always 1-MMS (or proportionality). On the other
hand, when all goods are indivisible, Amanatidis, Birmpas,
and Markakis (2018) showed that any EFM (or EF1) alloca-
tion is always 1

n -MMS and this approximation ratio is tight.
Then, with mixed goods, one might ask if an EFM allocation
would have the MMS approximation ratio laying between 1

n
and 1. Our next lemma confirms this conjecture.
Lemma 5.2. Given any mixed goods instance (N,M ∪C),
for any EFM allocation (A1, A2, . . . , An) and any agent i ∈
N , we have

vi(Ai) ≥
MMSi(n,M) + vi(C)

n
≥ MMSi(n,M ∪ C)

n
.

The proof is a direct generalization of the proof of Propo-
sition 3.6 in (Amanatidis, Birmpas, and Markakis 2018).

From Lemma 5.2, we know that EFM implies α-MMS
where α is a monotonically increasing function that depends
on the agent’s value on the whole cake. In other words, one
can directly utilize the EFM allocation to obtain an α-MMS
allocation with α varied from 1/n (when goods are indivis-
ible only) to 1 (when goods are divisible only). On the other
hand, our result in Section 4 shows that we can always have
an α-MMS allocation with α ranging from 1/2 to 1.

6 Conclusion and Future Work
In this paper, we have studied the extent to which we can
find approximate MMS allocations when the resources con-
tain both divisible and indivisible goods. We analyzed the
relation of the worst-case MMS approximation guarantees
between mixed goods instances and indivisible goods in-
stances. We also presented an algorithm to produce an α-
MMS allocation for any number of agents, where α mono-
tonically increases in terms of the ratio between agents’ val-
ues for the divisible goods and their MMS values. For future
work, it would be interesting to improve the MMS approxi-
mation guarantee with mixed goods. Another working direc-
tion is to study fair allocations in the mixed goods setting in
conjunction with economic efficiency notions such as Pareto
optimality.

5173



Acknowledgments
This project is supported by the Ministry of Education,
Singapore, under its Academic Research Fund Tier 1
(RG23/20).

References
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