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Abstract

We study the problem of fairly allocating indivisible goods
and focus on the classic fairness notion of proportionality.
The indivisibility of the goods is long known to pose highly
non-trivial obstacles to achieving fairness, and a very vibrant
line of research has aimed to circumvent them using ap-
propriate notions of approximate fairness. Recent work has
established that even approximate versions of proportional-
ity (PROPx) may be impossible to achieve even for small
instances, while the best known achievable approximations
(PROP1) are much weaker. We introduce the notion of pro-
portionality up to the maximin item (PROPm) and show how
to reach an allocation satisfying this notion for any instance
involving up to five agents with additive valuations. PROPm
provides a well-motivated middle-ground between PROP1
and PROPx, while also capturing some elements of the well-
studied maximin share (MMS) benchmark: another relax-
ation of proportionality that has attracted a lot of attention.

Introduction
We consider the well-studied problem of fairly distributing
a set of scarce resources among a group of n agents. This
problem is at the heart of the long literature on fair division,
initiated by Steinhaus (1948), which has recently received
renewed interest, partly due to the proliferation of automated
resource allocation processes. To reach a fair outcome, such
processes need to take into consideration the preferences of
the agents, i.e., how much each agent values each of the re-
sources. The most common modelling assumption regarding
these preferences is that they are additive: each agent i has a
value vij ≥ 0 for each resource j, and her value for a set S of
resources is vi(S) =

∑
j∈S vij . But, what would constitute

a “fair” outcome given such preferences?
One of the classic notions of fairness is proportionality.

An outcome satisfies proportionality if the value of every
agent for the resources that were allocated to them is at least
a 1/n fraction of her total value for all of the resources. For
the case of additive valuations, if M is the set of all the
resources, then every agent i should receive a value of at
least 1

n

∑
j∈M vij . This captures fairness in a very intuitive

way: since there are n agents in total, if they were to some-
how divide the total value equally among them, then each
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of them should be receiving at least a 1/n fraction of it; in
fact, they could potentially all receive more than that if they
each value different resources. However, it is well-known
that achieving proportionality may be impossible when the
resources are indivisible, i.e., cannot be divided into smaller
parts and shared among the agents. This can be readily ver-
ified with the simple example involving only a single indi-
visible resource and at least two agents competing for it. In
this case, whoever is allocated that resource will receive all
of her value but all other agents will receive none of it, vio-
lating proportionality.

In light of this impossibility to achieve proportionality
in the presence of indivisible resources, the literature has
turned to relaxations of this property. A natural candidate
would be a multiplicative approximation of proportionality,
aiming to guarantee that every agent receives at least a λ/n
fraction of their total value, for some λ ∈ [0, 1]. However,
the single resource example provided above directly implies
that no λ > 0 is small enough to guarantee the existence
of such an approximation. As a result, research has instead
considered additive approximations, leading to two interest-
ing notions: PROP1 and PROPx. These relaxations allow
the value of each agent i to be less than a 1/n fraction of
her total value but by no more than some additive differ-
ence di. For the case of PROP1, di corresponds to the maxi-
mum value of agent i over all the items that were allocated to
some other agent (Conitzer, Freeman, and Shah 2017). For
the case of PROPx, di corresponds to the minimum value of
agent i over all the items that were allocated to some other
agent (Aziz, Moulin, and Sandomirskiy 2020). On one hand,
PROP1 is a bit too forgiving, and is known to be easy to sat-
isfy, while on the other PROPx is too demanding and is not
guaranteed to exist even for instances with just three agents.

In a parallel line of work, an alternative relaxation that has
received a lot of attention is the maximin share (MMS) (Bud-
ish 2010). According to this notion, every agent’s “fair
share” is defined as the value that the agent could secure if
she could choose any feasible partition of the resources into
n bundles, but was then allocated her least preferred bun-
dle among them. It is not hard to verify that this benchmark
is weakly smaller than the one imposed by proportionality,
yet prior work has shown that this too may be impossible to
achieve, even for instances with just three agents.

In this paper, we propose PROPm, a new notion that pro-
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vides a middle-ground between PROP1 and PROPx, while
also capturing the “maximin flavor” of the MMS bench-
mark, and we prove that there always exists an allocation sat-
isfying PROPm for any instance involving up to five agents.

Additional Related Work
The proportionality up to the most valued item (PROP1) no-
tion is a relaxation of proportionality that was introduced
by Conitzer, Freeman, and Shah (2017), who observed that
there always exists a Pareto optimal allocation that satisfies
PROP1. Aziz et al. (2019) later extended this notion to set-
tings where the objects being allocated are chores, i.e., the
valuations are negative, and very recently Aziz, Moulin, and
Sandomirskiy (2020) provided a strongly polynomial time
algorithm for computing allocations that are Pareto optimal
and PROP1 for both goods and chores. On the other ex-
treme, it is known that the notion of proportionality up to
the least valued item (PROPx) may not be achievable even
for small instances with three agents (Moulin 2019; Freeman
and Shah 2019; Aziz, Moulin, and Sandomirskiy 2020).

The PROP1 and PROPx notions are analogs of relaxations
that have been proposed and studied for another very im-
portant notion of fairness: envy-freeness (EF). An allocation
is said to be envy-free if no agent would prefer to be allo-
cated some other agent’s bundle over her own. The example
with the single indivisible item discussed in the introduction
shows that envy-free outcomes may not exist, which moti-
vated the approximate fairness notions of envy-freeness up to
the most valued item (EF1) (Budish 2010) and envy-freeness
up to the least valued item (EFx) (Caragiannis et al. 2019).
These two notions permit each agent i some additive amount
of envy toward some other agent j, but this is at most i’s
highest value for an item in j’s bundle in EF1 and at most
i’s lowest value for an item in j’s bundle in EFx.

The existence of EF1 allocations was implied by an older,
and classic, argument by Lipton et al. (2004). Caragiannis
et al. (2019) demonstrated that the allocation maximizing the
Nash social welfare (the geometric mean of the agents’ val-
uations) satisfies both EF1 and Pareto optimality. But, com-
puting this allocation is APX-hard (Lee 2017), so Barman,
Krishnamurthy, and Vaish (2018) went a step further by de-
signing a pseudo-polynomial time algorithm that computes
an EF1 and Pareto optimal allocation. On the other hand,
the progress on the EFx notion has been much more limited.
Plaut and Roughgarden (2018) proved that EFx allocations
always exist in two-agent instances, even for general valua-
tions beyond additive, and a recent breakthrough by Chaud-
hury, Garg, and Mehlhorn (2020) showed that EFx alloca-
tions always exist in all instances with three additive agents.
Even though this result applies only to instances with three
agents, its proof required a very careful and cumbersome
case analysis to show how an EFx allocation can be pro-
duced for all possible scenarios. Whether an EFx allocation
always exists or not for instances of four or more agents is a
major open question in fair division.

The maximin share (MMS), originally defined by Bud-
ish (2010), is an alternative relaxation of proportionality that
uses a “maximin” argument to define the minimum amount
of utility that each agent “deserves”. However, similarly to

PROPx, an allocation satisfying this notion of fairness may
not always exist, even for three-agent instances (Kurokawa,
Procaccia, and Wang 2018). To circumvent this issue, a vi-
brant line of work has instead aimed to guarantee that every
agent’s value is always at least λ times their MMS bench-
mark, for some λ ∈ [0, 1]. The first result along this direction
showed that an allocation guaranteeing an approximation of
λ = 2/3 can be computed in polynomial time (Amana-
tidis et al. 2017). Subsequent work by Barman and Krishna-
murthy (2020) and Garg, McGlaughlin, and Taki (2018) also
provided simpler algorithms achieving the same guarantee.
Ghodsi et al. (2018) then provided a non-polynomial time al-
gorithm producing an allocation guaranteeing λ = 3/4 and
further developed this into a polynomial-time approximation
scheme guaranteeing λ = 3/4 − ε. The most recent update
in this line of work further improved the existence bound to
3/4 + 1/12n, while also providing a strongly polynomial
time algorithm to compute an allocation guaranteeing the
3/4 approximation (Garg and Taki 2020).

Our Results
We propose a relaxation of proportionality which we call
proportionality up to the maximin item (PROPm). Just like
PROP1 and PROPx, our notion allows the value of each
agent i to be less than a 1/n fraction of her total value, but
by no more than some additive difference di which is a func-
tion of agent i’s value for items allocated to other agents.
Rather than going with the most valued item (like PROP1)
or the least valued item (like PROPx), our definition of di
is equal to maxi′ 6=i minj∈Xi′{vij}, where Xi′ is the bundle
of items allocated to agent i′. In other words, we consider
the least valued item (from i’s perspective) in each of the
other agent’s bundles, and we take the highest value among
them. It is easy to verify that this notion lies between the
two extremes of PROP1 and PROPx, and it also captures
the maximin element that is used to define the MMS bench-
mark. To further motivate this notion, in Section we show
that multiple other natural alternatives fail to exist, even for
a single instance with just three agents.

Our main result is a constructive argument proving the
existence of a PROPm allocation for any instance with up
to five agents. This is in contrast to the PROPx and MMS
notions for which existence fails even for three-agent in-
stances. Similarly to the breakthrough by Chaudhury, Garg,
and Mehlhorn (2020) proving the existence of EFx alloca-
tions for three-agent instances, our proof requires a careful
case analysis to reach PROPm allocations for each scenario.

What significantly complicates the arguments for the ex-
istence of allocations that satisfy EFx or PROPm is that, ac-
cording to these notions, the satisfaction of each agent de-
pends not only on what they are allocated but also on how all
the remaining items are distributed among the other agents.
This leads to non-trivial interdependence which precludes
the use of greedy-like algorithms. To streamline our argu-
ments we introduce a notion of close-to-proportional bun-
dles, which allow us to decouple the allocation of one subset
of agents from another, and reduce the required case anal-
ysis. Although we prove the existence for up to five agent
instances, this is not due to a hard limit to our approach,
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other than the fact that the case analysis becomes more com-
plicated and does not provide much more intuition. In fact,
we suspect the PROPm property can be satisfied even for
instances with an arbitrary number of agents.

Preliminaries
We study the problem of allocating a set M of m indivisi-
ble items (or goods) to a set of n agents N = {1, 2, . . . , n}.
Each agent i has a value vij ≥ 0 for each good j and her
value for receiving some subset of goods S ⊆M is additive,
i.e., vi(S) =

∑
j∈S vij . For ease of presentation, we nor-

malize the valuations so that vi(M) = 1 for all i ∈ N . Given
a bundle of goods S ⊆ M , we let mi(S) = minj∈S{vij}
denote the least valuable good for agent i in bundle S.

An allocation X = (X1, X2, . . . Xn) is a partition of
the goods into bundles such that Xi is the bundle allo-
cated to agent i. Given an allocation X , we use di(X) =
maxi′ 6=i{mi(Xi′)} to denote agent i’s value for her max-
imin good in X , and we say that an agent i is PROPm satis-
fied by X if vi(Xi) + di(X) ≥ 1/n. In turn, an allocation
X is PROPm if every agent is PROPm satisfied by it.

Given a positive integer k ≤ n and a set of goods S ⊆M ,
the close-to-proportional (CP) bundle for agent i, denoted
CPi(k, S), is the most valuable subset of goodsB ⊂ S from
agent i’s perspective for which vi(B) ≤ 1

kvi(S). In other
words, if i was one of k agents that need to be allocated the
set of goods S, then CPi(k, S) is the most valuable subset
of these goods that agent i could receive without exceeding
her proportional share. When there are multiple bundles that
satisfy this definition, then we let CPi(k, S) be one with the
maximum cardinality, breaking ties arbitrarily among them.
As we discuss in Section , finding the CPi sets is computa-
tionally hard.

Initial Observations
Before proving some helpful lemmas regarding the PROPm
notion and the CPi sets, we first prove that a list of natural
alternatives to PROPm fail to exist, even for a simple in-
stance involving just three agents and seven items. Rather
than adding the maximin value, di(X), to each agent i’s
value in X , we consider adding other alternative functions
of the agent’s value for the items she did not receive. For
example, the value added could be equal to the mean, the
median, the mode, or the minimax value of agent i for the
items in M \Xi.

Consider an instance with seven items and three agents
that are identical (with respect to their valuations). One of
the items has a high value of 1–6ε for some arbitrarily small
constant ε > 0, and the remaining six items each have a
small value ε. For any allocation of the items, it is easy to
verify that there always exists an agent who did not receive
the high value item and also received at most three of the
other items; as a result, that agent’s value is at most 3ε. It
is easy to verify that this agent would violate approximate
proportionality for all of the approximate notions proposed
above, i.e., the mean (which would add less than 0.25), the
median (which would add ε), the mode (which would add ε),
and the minimax item value (which would add ε).

In general, many alternatives to PROPm suffer from the
same type of issue: if we introduce dummy items to an in-
stance, i.e., items of insignificant value, the relaxation that
these alternative notions provide relative to the exact pro-
portionality vanishes, making them impossible to satisfy in
general. Our PROPm notion provides an interesting and non-
trivial benchmark that is not susceptible to this issue.

We now proceed to some initial observations regarding
the construction of PROPm allocations and CPi sets. Our
first observation provides us with a sufficient condition un-
der which “locally” satisfying PROPm can lead to a “glob-
ally” PROPm allocation. Given an allocation of a subset of
items to a subset of agents, we say that this partial allocation
is PROPm if the agents involved would be PROPm satisfied
if no other agents or items were present.

Observation 1. Let N1, N2 be two disjoint sets of agents,
let M1 and M2 = M \M1 be a partition of the items into
two sets, and let X be an allocation of the items in M1 to
agents in N1 and items in M2 to agents in N2. Then, if some
agent i ∈ N1 is PROPm satisfied with respect to the par-
tial allocation of the items in M1 to the agents in N1, and
vi(M1) ≥ |N1|

|N1+N2| , then i is PROPm satisfied by X regard-
less of how the items in M2 are allocated to agents in N2.

Proof. This follows from the definition of PROPm. For all
i ∈ N1 we have di(X) ≥ maxi′∈N1\{i}{minj∈Xi′{vij}}.
Then, if vi(Xi) + maxi′∈N1\{i}{minj∈Xi′{vij}} ≥

vi(M1)
|N1|

(i.e., i is PROPm satisfied by X with respect to the agents
in N1 and items in M1) and vi(M1) ≥ |N1|

|N1+N2| , it must be
that vi(Xi)+di(X) ≥ 1

n so i is also PROPm satisfied by X
in the overall allocation of the items in M to N1 ∪N2.

We now observe that we may, without loss of generality,
assume that vij ≤ 1/n for every agent i and item j.

Lemma 2. If there exists some agent i ∈ N and item j ∈M
such that vij > 1/n, we may allocate item j to agent i and
reduce the problem to finding a PROPm partial allocation
of the items in M \ {j} to agents in N \ {i}.

Proof. Let X be an allocation which gives j to agent i and
is a PROPm allocation with respect to items in M \ {j} and
agents in N \ {i}. Observe that agent i is clearly PROPm
satisfied byX (she is, in fact, proportionally satisfied). If any
other agent i′ 6= i also has value vi′j > 1/n for this item,
then di′(X) ≥ 1/n (since j is the only item in Xi). This
implies that i′ is PROPm satisfied since vi′(Xi′)+di′(X) ≥
di′(X) ≥ 1/n. Finally, all remaining agents i′ 6= i have
vi′j ≤ 1/n implying that vi′(M \ {j}) ≥ n−1

n and since i′
is PROPm satisfied by X with respect to the items in M \
{j} she must be PROPm satisfied with respect to the entire
allocation by Observation 1 substituting N1 = N \ {i} and
M1 =M \ {j}.

Our next observation provides some initial intuition re-
garding why CPi sets play a central role in this paper.

Observation 3. If agent i is allocated her CPi(n,M) set,
then i is guaranteed to be PROPm satisfied regardless of
how the other items are allocated.
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Proof. Let S be the CPi(n,M) set of agent i and consider
an arbitrary allocation of M \S among the remaining n− 1
agents. By definition vi(S) + minj∈M\S vij ≥ 1/n, so it
must be that if i is allocated S, she is PROPm satisfied.

We now provide a “recursive” construction of CPi(k, S)
sets which gives us even stronger guarantees. Suppose we
ask some agent i to first define the bundle Sn = CPi(n,M),
then the bundle Sn−1 = CPi(n−1,M \Sn), then the bundle
Sn−2 = CPi(n− 2,M \ (Sn ∪Sn−1)), and so on. We show
that as long as i receives one of these bundles, then we have
some flexibility over how to allocate the remaining items.
Theorem 4. Let Sn, Sn−1, . . . , S1 be the recursively de-
fined CPi sets for some agent i, as above. If this agent re-
ceives any bundle S` and no item from Sn∪Sn−1∪· · ·∪S`+1

is allocated to the same agent as an item from S`−1∪S`−2∪
· · · ∪ S1, then agent i will be PROPm satisfied.

Proof. For all k ∈ [n], we have vi(Sk) ≤ 1
kvi(M \ (Sn ∪

Sn−1 ∪ · · · ∪ Sk+1)) by definition of Sk. Applying this
upper bound on vi(Sk) for k = n, because vi(M) = 1
we have that vi(M \ Sn) ≥ 1 − 1

n = n−1
n . By ap-

plying the upper bound on vi(Sk) for k = n − 1 and
our lower bound on vi(M \ Sn) we get vi(M \ (Sn ∪
Sn−1)) ≥ n−1

n − 1
n−1 ·

n−1
n ≥ n−2

n . Iteratively repeat-
ing this process, we obtain that for all k ∈ [n] we know that
vi(M \ (Sn ∪ Sn−1 ∪ · · · ∪ Sk)) ≥ k−1

n . Also by defini-
tion, each Sk is a CPi(k,M \ (Sn ∪ Sn−1 ∪ · · · ∪ Sk+1))
set for M \ (Sn ∪ Sn−1 ∪ · · · ∪ Sk+1), so we have that
vi(S`) + minj∈M\(Sn∪Sn−1∪···∪S`+1){vij} ≥ 1

` · vi(M \
(Sn ∪ Sn−1 ∪ · · · ∪ S`+1)) ≥ 1

` ·
`
n = 1

n . But finally,
as long as the items from Sn ∪ Sn−1 ∪ · · · ∪ S`+1 are
not included in any of the bundles containing the items in
M \ (Sn ∪ Sn−1 ∪ · · · ∪ S`) in the complete allocation X ,
we have that di(X) ≥ minj∈M\(Sn∪Sn−1∪···∪S`){vij} so i
is PROPm satisfied when allocated set S`.

PROPm Allocations for 4-Agent Instances
In this section, we demonstrate that PROPm allocations can
be found for any instance with 4 agents. The construction
of the allocation proceeds by finding an appropriate initial
partition of the items into bundles (based on our notion of
CPi bundles) for some arbitrary agent i. Given these bun-
dles, we then show that we have enough freedom in real-
locating items to PROPm satisfy each agent. We note that
our proof is constructive, but finding the initial bundles is
computationally demanding (as determining if there is some
CPi(n,M) set with value 1/n is an instance of subset sum).

Whenever we say that a set of two or three agents split a
bundle M̃ , we mean that we find a PROPm allocation of the
items in M̃ for these agents. Note that Chaudhury, Garg, and
Mehlhorn (2020) show how to compute EFx allocations for
up to three agent instances, and it is easy to verify that EFx
outcomes that allocated all the items are also PROPm. But,
since the arguments for these results are quite complicated
and require additional machinery, for completeness in the
full version of the paper we provide much simpler arguments
for reaching PROPm outcomes with up to three agents using
only tools defined herein.

Theorem 5. In every instance involving 4 agents with addi-
tive valuations there always exists a PROPm allocation.

Proof. We index the agents arbitrarily and begin by recur-
sively constructing CPi sets from the perspective of agent 1.
We construct 4 bundles of items A,B,C,D as follows:

• C = CP1(4,M)

• B = CP1(3,M \ C)
• A = CP1(2,M \ (C ∪B))

• D = CP1(1,M \ (C ∪B ∪A)) =M \ (A ∪B ∪ C)

By Observation 3, we know that if agent 1 is allocated
bundle C, she satisfies PROPm. However, we can also ob-
serve that she would be satisfied if she is allocated bundle
D because v1(D) ≥ 1/4 (which follows by the repeated
application of the definition of CPi sets as in Theorem 4).

We next want to find bounds on the total value of items in
some bundles for agent 1. This will allow us to recursively
divide the problem into instances with a smaller number of
agents.

Lemma 6. With agent 1 and sets A,B,C,D as defined
above, v1(A ∪D) ≥ 1/2

Proof. By the definition of an CPi set, we have initial upper
bounds on the total value agent 1 has for the generated sets.

• v1(C) ≤ 1/4

• v1(B) ≤ 1/3(1− v1(C))
• v1(A) ≤ 1/2(1− v1(C)− v1(B))

By combining these upper bounds, we may obtain lower
bounds on v1(A ∪D) as follows

v1(A ∪D) = 1− (v1(B) + v1(C))

≥ 1− (1/3 + 2/3(v1(C)))

≥ 1− (1/3 + 1/6)

≥ 1/2

From here we proceed with case analysis based on the
value other agents have for A ∪D. We present each case as
a separate lemma for ease of presentation.

Lemma 7. If no agents in {2, 3, 4} have value weakly
greater than 1/2 for the items in A ∪ D we can construct
an allocation satisfying PROPm.

Proof. If there is no agent i ∈ {2, 3, 4} for which vi(D) ≥
1
4 then we can give D to agent 1 and split the remain-
ing items between the remaining three agents to produce a
PROPm allocation by Observation 1. Otherwise there must
be some agent i 6= 1 where vi(D) ≥ 1

4 . Then we can give
D to agent i, give A to agent 1 and split B ∪ C between
the remaining two agents to arrive at a PROPm allocation
by Observation 1 (since for any agent k if vk(A ∪D) < 1

2 ,
then vk(B ∪ C) ≥ 1

2 ) and Theorem 4.

Lemma 8. If one agent in {2, 3, 4} has value weakly greater
than 1/2 for the items in A∪D we can construct an alloca-
tion satisfying PROPm.

5146



Proof. Without loss of generality let this be agent 2. Split
A∪D between agents 1 and 2 and splitB∪C between agents
3 and 4 to generate a PROPm allocation by Observation 1.

Lemma 9. If exactly two agents in {2, 3, 4} have value
weakly greater than 1/2 for the items in A ∪D we can con-
struct an allocation satisfying PROPm.

Proof. Without loss of generality, let agent 2 be the agent
who has v2(A ∪ D) < 1/2. For agent 2 it must be that
v2(B) > 1

4 or v2(C) > 1
4 since v2(B ∪ C) ≥ 1

2 . But then,
we can split A ∪ D between the agents 3 and 4, give agent
2 her favorite bundle among B and C and give agent 1 the
remaining bundle to arrive at a PROPm allocation by Obser-
vation 1 and Theorem 4.

Lemma 10. If all three agents in {2, 3, 4} have value weakly
greater than 1/2 for the items in A∪D we can construct an
allocation satisfying PROPm.

Proof. If for one of the agents i ∈ {2, 3, 4} we have that
either vi(B) ≥ 1

4 or vi(C) ≥ 1
4 then the allocation follows

the same from the previous lemma. Otherwise, we have that
all three agents i 6= 1 have vi(C) < 1

4 and we can give C to
agent 1 who is PROPm satisfied by Observation 3 and split
the remaining items between the remaining agents which
yields a PROPm allocation by Observation 1.

Since in each case, we have demonstrated how one may
construct a PROPm allocation, for any set of four agents
with additive valuations, a PROPm allocation exists.

PROPm Allocations for 5-Agent Instances
In this section, we demonstrate that PROPm allocations can
be found for any instance with 5 agents. The proof proceeds
similarly to the four agent case but requires a closer analysis
of various cases. As above, whenever we say that a set of
fewer than five agents “split” a bundle M̃ , we mean that we
find a PROPm allocation of the items in M̃ for these agents.

Theorem 11. In every instance involving 5 agents with ad-
ditive valuations there always exists a PROPm allocation.

Proof. We index the agents arbitrarily and begin by recur-
sively constructing CPi sets from the perspective of agent 1.
We construct 5 bundles of items A,B,C,D,E as follows:

• D = CP1(5,M)

• C = CP1(4,M \D)

• B = CP1(3,M \ (C ∪D))

• A = CP1(2,M \ (B ∪ C ∪D))

• E = CP1(1,M \(A∪B∪C∪D)) =M \(A∪B∪C∪D)

By Observation 3, we know that if agent 1 is allocated
bundle D, she satisfies PROPm. However, we can also ob-
serve that she would be satisfied if she is allocated bundle E
because v1(E) ≥ 1/5 (which follows by the repeated appli-
cation of the definition of CPi sets as in Theorem 4).

We next want to find bounds on the total value of items in
some bundles for agent 1. This will allow us to recursively

divide the problem into instances with a smaller number of
agents.

Lemma 12. With agent 1 and sets A,B,C,D,E as defined
above, v1(A ∪ E) ≥ 2/5 and v1(A ∪B ∪ E) ≥ 3/5.

Proof. By the definition of an CPi set, we have initial upper
bounds on the total value agent 1 has for the generated sets.

• v1(D) ≤ 1/5

• v1(C) ≤ 1/4(1− v1(D))

• v1(B) ≤ 1/3(1− v1(D)− v1(C))
• v1(A) ≤ 1/2(1− v1(D)− v1(C)− v1(B))

By combining these upper bounds, we may obtain lower
bounds on v1(A ∪ E) as follows

v1(A ∪ E) = 1− (v1(B) + v1(C) + v1(D))

≥ 1− (1/3 + 2/3(v1(C) + v1(D)))

≥ 1− (1/3 + 1/6 + 1/2v1(D))

≥ 1− (1/2 + 1/10)

≥ 2/5.

Similarly, we can lower bound v1(A ∪B ∪ E) as

v1(A ∪B ∪ E) = 1− (v1(C) + v1(D))

≥ 1− (1/4 + 3/4v1(D))

≥ 1− (1/4 + 3/20)

≥ 3/5

With Lemma 12 in hand, we proceed with case analysis
on the value that the other agents have for A ∪ E and A ∪
B ∪ E. We present each case as a separate lemma for ease
of presentation.

Lemma 13. If all four agents {2, 3, 4, 5} have value weakly
greater than 3/5 for the items inA∪B∪E we can construct
an allocation satisfying PROPm.

Proof. Suppose that at least one of the agents i ∈ {2, 3, 4, 5}
has vi(C) ≥ 1/5 or vi(D) ≥ 1/5. Without loss of general-
ity, let this be agent 2. Then, we may give agent 2 either C
or D, respectively and 2 is satisfied. We can give the other
of these two sets to agent 1 and then then find a PROPm al-
location of A ∪ B ∪ E for agents {3, 4, 5}. By Observation
1 and the assumption that agents 3, 4, and 5 have value at
least 3/5 for A∪B ∪E, we know that they will also be sat-
isfied. Finally, since we have only repartitioned A ∪B ∪E,
we know by Theorem 4 that agent 1 is also satisfied.

Now suppose that all of the agents i ∈ {2, 3, 4, 5} have
value vi(C) < 1/5 and vi(D) < 1/5. Then, by Theorem
4, we know that we may give D to agent 1 and reallocate
A ∪B ∪C ∪E to the remaining agents and satisfy agent 1.
But since all four remaining agents have value at least 4/5
for A ∪ B ∪ C ∪ E, by Observation 1 we can then find an
allocation PROPm satisfying these agents as well.

Lemma 14. If exactly three of the agents in {2, 3, 4, 5} have
value weakly greater than 3/5 for the items in A ∪ B ∪ E
we can construct a PROPm allocation.
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Proof. Without loss of generality suppose agent 2 is the
agent who has value v2(A ∪ B ∪ E) < 3/5. We can then
give agent 2 her preferred bundle among C and D and agent
1 the other bundle. Agent 2 must be satisfied since she re-
ceives value at least 1/5 and agent 1 is satisfied regardless
of how the items inA∪B∪E are distributed by Theorem 4.
But then, since all i ∈ {3, 4, 5} have vi(A ∪ B ∪ E) ≥ 3/5
we can split A ∪ B ∪ E between these agents to obtain a
PROPm allocation by Observation 1.

Lemma 15. If exactly two of the agents in {2, 3, 4, 5} have
value weakly greater than 3/5 for the items in A ∪ B ∪ E
we can construct a PROPm allocation.

Proof. Without loss of generality, let agents 4 and 5 be the
agents with value weakly greater than 3/5 for the items in
A ∪ B ∪ E. By Lemma 12 we know that agent 1 also has
value greater than 3/5 for A ∪ B ∪ E. Further, we know
then that agents 2 and 3 each have value greater than 2/5
for the items in C ∪D. By Observation 1, we can then find
a PROPm allocation of these items by splitting A ∪ B ∪ E
between agents 1, 4, and 5 and splitting C ∪ D between
agents 2 and 3.

We now move to consider the number of agents that have
value greater than 2/5 for A ∪ E. The case where at most
one agent has value at least 3/5 of A∪B ∪E is captured in
the following lemmas.

Lemma 16. If exactly two of the agents in {2, 3, 4, 5} have
value weakly greater than 2/5 for the items in A∪E we can
construct a PROPm allocation.

Proof. Without loss of generality let agents 4 and 5 have
value weakly greater than 2/5 for the items in A ∪ E. We
let these two agents split A ∪ E and move to allocate the
remaining bundles among agents 1, 2, and 3. We perform a
small case analysis on the number of bundles that agent 2 or
agent 3 values greater than 1/5.

Suppose that agents 2 and 3 collectively value at least two
distinct bundles in {B,C,D} greater than or equal to 1/5
(i.e., they both value exactly one bundle more than 1/5 but
these bundles are distinct or at least one of the two agents
values more than one bundle more than 1/5). Then, we may
give both of these agents a bundle which they value at least
1/5 and agent 1 the remaining bundle to arrive at a PROPm
allocation by Observation 1 and Theorem 4.

Now suppose that agents 2 and 3 collectively value ex-
actly one bundle in {B,C,D} at least 1/5. If this bundle is
B or C, we know that v2(B ∪ C) ≥ 2/5 and v3(B ∪ C) ≥
2/5 (since v2(D) < 1/5 and v3(D) < 1/5). We can then al-
locateD to agent 1 and splitB∪C between agents 2 and 3 to
arrive at a PROPm allocation. If the bundle that 2 and 3 value
more than 1/5 is D then we know that v2(C ∪ D) ≥ 2/5
and v3(C ∪D) ≥ 2/5 so we may allocate B to agent 1 and
split C ∪ D between agents 2 and 3 to arrive at a PROPm
allocation by Observation 1 and Theorem 4.

Lemma 17. If exactly one agent in {2, 3, 4, 5} has value
weakly greater than 2/5 for the items in A ∪E we can con-
struct a PROPm allocation.

Proof. Without loss of generality, let agent 5 have value
weakly greater than 2/5 for the items in A ∪ E. By Lemma
12, we know that agent 1 also has value at least 2/5 for these
items, and by assumption it must be that agents 2, 3, and 4
have value at least 3/5 for the items in B∪C ∪D. But then,
by Observation 1, we can find a PROPm allocation for all
the items by reallocating items in A ∪ E to agents 1 and 5
and reallocating items inB∪C∪D to agents 2, 3, and 4.

Lemma 18. If no agents in {2, 3, 4, 5} have value weakly
greater than 2/5 for the items in A ∪ E we can construct a
PROPm allocation.

Proof. If this is the case, then it must be that all four of these
agents have value more than 3/5 for items in B ∪C ∪D. If
none of these agents have value more than 1/5 for E, then
we can allocate E to agent 1 and allocate A ∪ B ∪ C ∪ D
to agents 2, 3, 4, and 5 to arrive at a PROPm allocation.
Suppose, on the other hand, that at least one of these agents,
say agent 2, has v2(E) ≥ 1/5, we can allocate E to agent 2,
A to agent 1 and repartition B ∪ C ∪D to agents 3, 4, and
5 to find an allocation that remains PROPm for all agents by
Observation 1 and Theorem 4.

We now proceed to analyze the four remaining cases
which are more elaborate.

Lemma 19. If all four of the agents in {2, 3, 4, 5} have value
weakly greater than 2/5 for A ∪ E and value less than 3/5
for A ∪B ∪ E we can construct a PROPm allocation.

Proof. Observe that by assumption all agents 2, 3, 4, and 5
have value weakly greater than 2/5 for C ∪D. We can then
allocate B to agent 1 and split A ∪ E among agents 2 and 3
and C ∪D among 4 and 5. Note that agent 1 is satisfied by
Theorem 4 and since agents 2 and 3 split value at least 2/5
and agents 4 and 5 split value at least 2/5 by Observation 1
we construct a PROPm allocation.

We then immediately resolve the case when agents 2, 3,
4, and 5 all have value weakly greater than 2/5 for A ∪ E
and exactly one agent, (without loss of generality) say agent
2, has value greater than 3/5 for A∪B∪E by following the
same allocation described in the previous lemma.

Lemma 20. If all four of the agents in {2, 3, 4, 5} have value
weakly greater than 2/5 for A ∪ E and exactly one of these
agents has value weakly greater than 3/5 for A∪B ∪E we
can construct a PROPm allocation.

The final two cases we examine occur when all but one
agent have value at least 2/5 for A ∪ E.

Lemma 21. If exactly three of the agents in {2, 3, 4, 5} have
value weakly greater than 2/5 for A ∪ E and all of these
agents have value less than 3/5 for A ∪B ∪E we can con-
struct a PROPm allocation.

Proof. Without loss of generality, suppose that v5(A∪E) <
2/5. Since the remaining agents i ∈ {2, 3, 4} have vi(A ∪
E) ≥ 2/5, we can split the setA∪E between agents 2 and 3
and they will be satisfied by Observation 1. Moreover, since
we have that v4(C∪D) ≥ 2/5 and v5(C∪D) ≥ 2/5 we can
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split the set C ∪D between agents 4 and 5 and they will be
satisfied by Observation 1. Finally, by assigning B to agent
1 we construct a PROPm allocation by Theorem 4.

Lemma 22. If exactly three of the agents in {2, 3, 4, 5} have
value weakly greater than 2/5 for A ∪E and exactly one of
these agents has value weakly greater than 3/5 forA∪B∪E
we can construct a PROPm allocation.

Proof. First suppose that the agent with value less than 2/5
for A ∪ E is the agent with value weakly greater than 3/5
for A ∪ B ∪ E. Without loss of generality, let this be agent
5. By additivity, it must be that v5(B) > 1/5 so agent 5 is
satisfied by bundle B. We have that v3(C ∪ D) ≥ 2/5 and
v4(C∪D) ≥ 2/5 so we can split the setC∪D between these
agents and they will be satisfied by Observation 1. Finally,
we know that v1(A ∪ E) ≥ 2/5 by Lemma 12 and v2(A ∪
E) ≥ 2/5 so we may split the set A ∪ E between these
agents to complete the PROPm allocation by Observation 1.

On the other hand, suppose that the agent with value less
than 2/5 forA∪E is not the agent with value weakly greater
than 3/5 for A∪B ∪E. Without loss of generality, suppose
v4(A ∪ E) < 2/5 and v5(A ∪ B ∪ E) ≥ 3/5. We know
that v3(C ∪ D) ≥ 2/5 and v4(C ∪ D) ≥ 2/5 so we again
can split this set between agents 3 and 4 and they will be
satisfied by Observation 1. Since v2(A ∪ E) ≥ 2/5 and
v5(A ∪ E) ≥ 2/5 we can split A ∪ E between 2 and 5
and satisfy both by Observation 1. Finally, we can give B to
agent 1 to produce a PROPm allocation by Theorem 4.

Since in each case, we have demonstrated how one may
construct a PROPm allocation, for any set of five agents with
additive valuations, a PROPm allocation exists.

The Average EFx Property
According to our definition, an allocation X is PROPm,
if for every agent i we have vi(Xi) + di(X) ≥ 1/n,
where di(X) = maxk 6=i{mi(Xk)} is that agent’s value for
her maximin good in X . On the other hand, an allocation
X is EFx if for every pair of agents i, k ∈ N we have
vi(Xi) +mi(Xk) ≥ vi(Xk), where mi(Xk) is the smallest
value of agent i for an item in Xk. It is easy to verify that
EFx is a stricly more demanding property than PROPm. In
this section, we propose a middle-ground property between
these two extremes, average-EFx (a-EFx), which we find to
be of interest, and posing a demanding open problem.

Given some agent i, summing up over all k ∈ N \ {i} the
inequalities that EFx requires for agent i, we get:∑

k∈N\{i}

(vi(Xi) +mi(Xk)) ≥
∑

k∈N\{i}

vi(Xk) ⇒

(n− 1)vi(Xi) +
∑

k∈N\{i}

mi(Xk) ≥ 1− vi(Xi) ⇒

nvi(Xi) +
∑

k∈N\{i}

mi(Xk) ≥ 1 ⇒

vi(Xi) +
1

n

∑
k∈N\{i}

mi(Xk) ≥
1

n
. (1)

We say that an allocation X satisfies a-EFx if Inequal-
ity (1) is satisfied for every agent i ∈ N . Clearly, the argu-
ment above verifies that EFx implies a-EFx, but the inverse
is not true. Specifically, for an agent i to satisfy EFx she
needs to not envy any other agent k more than mi(Xk). On
the other hand, agent i could still satisfy a-EFx if she en-
vies some agent k more than mi(Xk), as long as this extra
envy “vanishes” after averaging over all agents k 6= i, i.e., it
satisfies EFx “on average”, hence the name. Also, note that

di(X) = max
k∈N\{i}

{mi(Xk)} ≥
1

n

∑
k∈N\{i}

mi(Xk),

so a-EFx implies PROPm. We believe that an interesting
open problem is to study the existence of a-EFx allocations
in instances with more than 3 agents. Since the PROPm no-
tion is a relaxation of a-EFx, and a-EFx is a relaxation of
EFx, this provides an interesting path toward the exciting
open problem of whether EFx solutions always exist for in-
stances with 4 or more agents.

Conclusion
Our work defines a new notion of approximate proportion-
ality called PROPm. In contrast to similar notions of fair-
ness such as PROPx and MMS, we show that PROPm does
exist in the cases of four and five agents with additive valu-
ations. After constructing particular subsets of items for an
arbitrary agent (i.e., the close-to-proportional sets), we are
able to carefully assign these subsets to agents, or unions
of these subsets to a group of agents, and recursively con-
struct PROPm allocations. We conjecture that the existence
of PROPm allocations is guaranteed even for instances with
more than five agents. The main barrier toward extending
our results to these instances seems to be the increasingly
complex casework that arises from our approach as the num-
ber of agents increases.

Although we prove the existence of PROPm allocations
using a constructive proof, the worst-case running time of
our proposed algorithm is not polynomial. In particular, find-
ing a CPi set is at least as hard as subset sum (as one
needs to check if some subset gives an agent exactly pro-
portional value), a known NP-hard problem (Karp 1972), so
our approach does not provide an efficient way to calculate
a PROPm allocation. Finding a polynomial time algorithm
producing a PROPm allocation for any number of items (and
any number of agents) via an alternative method is an inter-
esting possible avenue of future research. Another question
we do not explore in this work is achieving PROPm and
Pareto efficiency simultaneously. Aziz, Moulin, and San-
domirskiy (2020) provide an algorithm that simultaneously
achieves Pareto optimality and PROP1, so an analogous re-
sult combining PROPm and Pareto optimality (or proof that
no such allocation exists) would nicely complement both
their work and ours.
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