
Bayesian Persuasion under Ex Ante and Ex Post Constraints∗

Yakov Babichenko, Inbal Talgam-Cohen, Konstantin Zabarnyi
Technion – Israel Institute of Technology

yakovbab@technion.ac.il, italgam@cs.technion.ac.il, konstzab@gmail.com

Abstract

Bayesian persuasion, as introduced by Kamenica and
Gentzkow in 2011, is the study of information sharing poli-
cies among strategic agents. A prime example is signaling in
online ad auctions: what information should a platform signal
to an advertiser regarding a user when selling the opportunity
to advertise to her? Practical considerations such as prevent-
ing discrimination, protecting privacy or acknowledging lim-
ited attention of the information receiver impose constraints
on information sharing. We propose a simple way to mathe-
matically model such constraints as restrictions on Receiver’s
admissible posterior beliefs. We consider two families of con-
straints – ex ante and ex post; the latter limits each instance
of Sender-Receiver communication, while the former more
general family can also pose restrictions in expectation. For
the ex ante family, a result of Doval and Skreta (2018) es-
tablishes the existence of an optimal signaling scheme with a
small number of signals – at most the number of constraints
plus the number of states of nature – and we show this result
is tight. For the ex post family, we tighten the previous bound
of Vølund (2018), showing that the required number of sig-
nals is at most the number of states of nature, as in the origi-
nal Kamenica-Gentzkow setting. As our main algorithmic re-
sult, we provide an additive bi-criteria FPTAS for an optimal
constrained signaling scheme assuming a constant number
of states of nature; we improve the approximation to single-
criteria under a Slater-like regularity condition. The FPTAS
holds under standard assumptions, and more relaxed assump-
tions yield a PTAS. We then establish a bound on the ratio
between Sender’s optimal utility under convex ex ante con-
straints and the corresponding ex post constraints. We demon-
strate how this result can be applied to find an approximately
welfare-maximizing constrained signaling scheme in ad auc-
tions.

1 Introduction
In many real-life situations, one entity relies on information
revealed by another entity to decide which action to take.
Call the former and the latter entities Receiver and Sender,
respectively. Sender has the power to commit to a revela-
tion policy, a.k.a. a signaling scheme. Sender would like to
strategically design such a scheme to persuade Receiver to
∗For omitted proofs, please see our full paper version, which is
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act in Sender’s interest. Mathematically, a signaling scheme
transforms Receiver’s prior belief about how some unknown
state of nature is distributed into a posterior belief, which
determines Receiver’s action.

Since strategic communication of information is intrinsic
to most human endeavours, persuasion is of high importance
in practice, and is becoming even more so in today’s digi-
tal economy. Indeed, persuasion has been estimated to ac-
count for at least 30% of the total US economy (McCloskey
and Klamer 1995; Antioch 2013). Persuasion has also at-
tracted significant research interest in recent years, initiated
by the celebrated Bayesian persuasion model of Kamenica
and Gentzkow.

We study a theoretical model for constrained Bayesian
persuasion under general families of ex ante and ex post
constraints. Ex ante constraints are statistical limitations
on the amount of information Receiver may learn when
the Sender-Receiver communication is repeated over time;
ex post constraints are a strong particular case restricting
the information passage on every instance of the commu-
nication. These constraint families have various applica-
tions. In particular, Tsakas and Tsakas (2019) model sig-
naling via noisy channels by ex ante-constrained persua-
sion. Doval and Skreta (2018) further show that optimal sig-
naling via a capacity-constrained channel is equivalent to a
constrained persuasion setting with a single entropy ex ante
constraint. Vølund (2018), based on research in cognitive
science, suggests ex post constraints as a possible model for
human behaviour upon receiving an unwelcome signal. One
of our main motivating examples in this work is online ad
auctions in which ex ante constraints reduce discrimination
and ex post constraints protect user privacy.

Our contribution and paper organization. Let m and k
be the numbers of constraints and states of nature, respec-
tively. Section 2 formally defines the model and describes
our main motivations. Section 3 proves tightness of the k+m
bound of Doval and Skreta (2018) on the support size of an
optimal ex ante-constrained signaling scheme; it further ex-
tends the lower bound result of Le Treust and Tomala (2019)
beyond a single constraint. For ex post constraints, Section 3
shows a tight bound of k on the support size, which is the
same as in the original setting of Kamenica and Gentzkow.
The support size of a signaling scheme is a standard mea-
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sure of its complexity, similar to menu-size complexity in
auctions (Hart and Nisan 2013, 2017). Section 4 provides an
additive bi-criteria FPTAS for an optimal signaling scheme
when k is constant and improves it to single-criteria under
a Slater-like regularity condition. Section 5 shows that for
a constant m, convex constraints and a wide family of nat-
ural objective functions, ex ante constraints outperform ex
post constraints by a constant multiplicative factor. We con-
clude by applications to ad auctions with an exponentially
large state of nature space, using the setting of Badanidiyuru,
Bhawalkar, and Xu (2018).

Ex ante constraints raise technical challenges not usually
encountered in the literature on persuasion. In our model,
we cannot restrict attention to straightforward policies (Ka-
menica and Gentzkow 2011) in which Sender recommends
an action to Receiver in an incentive-compatible way. These
policies are a very central tool in persuasion problems and
are widely applied across the literature (see, e.g., Dughmi
2017), but they are not descriptive enough for determining
whether a given ex ante constraint is satisfied. In particu-
lar, an optimal signaling scheme in our model cannot be de-
scribed by a finite linear program (LP). Note that we do not
assume Receiver’s action space is finite, but even such a sim-
plifying assumption would not have resolved these issues.

Related work. The seminal work of Kamenica and
Gentzkow (2011) introduces Bayesian persuasion and char-
acterizes Sender’s optimal signaling scheme using the con-
cavification approach. Among the works on algorithmic as-
pects of persuasion we mention a negative result of Dughmi
and Xu (2017), which is relevant to hardness of approximat-
ing Sender’s optimal utility; see (Dughmi 2017) for a com-
prehensive survey of computational results.

In the context of auctions, an early work on signaling
information is the classic paper of Milgrom and Weber
(1982). Emek et al. (2014); Miltersen and Sheffet (2012)
apply a computational approach to signaling in auctions; Fu
et al. (2012) study signaling in the revenue-maximizing My-
erson auction (Myerson 1981); Badanidiyuru, Bhawalkar,
and Xu (2018) study this in the welfare-maximizing sec-
ond price auction with exponentially many states of nature;
and Daskalakis, Papadimitriou, and Tzamos (2016) design
the signaling and auction mechanisms simultaneously.

The most closely related works to our own are the follow-
ing: (a) Our algorithmic approach in Section 4 is related to
that of Cheng et al. (2015), as both use discretization and
linear programming to achieve an additive FPTAS. (b) The
papers of Dughmi, Immorlica, and Roth (2014); Dughmi
et al. (2015) study constrained persuasion, but their con-
straints are on the complexity of the Sender-Receiver com-
munication (as measured by message length or number of
signaled features), and so are fundamentally different from
ours.1 Ichihashi (2019) considers persuasion by Sender who
is constrained in the information she can acquire (and there-
fore, send) and characterizes the set of possible equilib-
rium outcomes. Our Theorem 3.3 is related to this litera-

1They also study a version called “bipartite signaling”, which
has a combinatorial flavour different than ours, in an auction setting
with the strong assumption that bidder values are known.

ture in that it indicates that ex post constraints on persuasion
do not cause a blowup in the number of signals needed to
persuade optimally. (c) Inspired by (Le Treust and Tomala
2019), Doval and Skreta (2018) prove an upper bound on
the required number of signals in an ex ante-constrained op-
timal scheme; we prove that this bound is tight and provide
an analogous tight bound for ex post constraints in Section 3.
(d) Vølund (2018) studies a model of persuasion on compact
subsets, which is equivalent to our ex post constraints; there
is no parallel in that work to ex ante constraints, and the re-
sults on ex post in the two works do not overlap.

In Section 2, we discuss motivating applications of ex ante
and ex post constraints, including limited attention, as well
as privacy protection in online ad auctions. Bloedel and Se-
gal (2018); Lipnowski, Mathevet, and Wei (2020) study per-
suasion with limited attention – see Section 2 for details.
Eilat, Eliaz, and Mu (2019) study ex ante and ex post pri-
vacy constraints in the design of auctions rather than persua-
sion schemes. Ichihashi (2020) studies the economic impli-
cations of online consumer privacy; in his model, the con-
sumer rather than the seller plays the role of Sender. It is
important to note that the differential privacy paradigm (see
Dwork and Roth 2014) does not apply to privacy protection
in online ad auctions: the state of nature about which infor-
mation is revealed represents characteristics of an individual
rather than statistics of a large population, and it is inherent
to ad personalization that these characteristics influence the
outcome in a non-negligible way.

2 Our Model
Standard preliminaries. We consider Bayesian persua-
sion with a single Sender and a single Receiver, as intro-
duced by Kamenica and Gentzkow (2011). Fix a space of k
states of nature Ω and a commonly-known prior distribution
p on them. Take a compact non-empty setA to be Receiver’s
action space. Introduce two random variables ω and x, rep-
resenting the state of nature and Receiver’s action, respec-
tively. Fix a Sender’s utility function ũs : A×Ω→ R≥0 and
a Receiver’s utility function ur : A×Ω→ R≥0. The Sender-
Receiver communication is specified by a signaling scheme
Σ, a.k.a. a signaling policy, which is a random function –
that is, a stochastic map – from Ω to some set of signals
(this notion will be formalized soon). As usual, Sender must
commit to Σ before learning ω.

Denote by ∆(Ω) the set of probability distributions over
Ω. Consider it to be a subset of [0, 1]

k, with i-th coordinate
being the probability assigned to the i-th element of Ω.

Let σ be the actual signal realization. Note that σ in-
duces an updated distribution on Ω in Receiver’s view,
called the posterior distribution or the posterior. Let pσ ∈
∆(Ω) be the posterior induced by σ. The support of Σ,
supp(Σ), is the intersection of all the closed sets S ⊆ ∆(Ω)
s.t. PrΣ[pσ ∈ S] = 1. If Σ uses only countably many sig-
nals, then supp(Σ) is the set of all the posteriors induced by
signal realizations of Σ with a positive probability.

Formally, Σ is an unconditional on the state of nature dis-
tribution over the elements of ∆(Ω) that belong to supp(Σ).
For any ω0 ∈ Ω, assuming ω = ω0, Σ induces a conditional
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distribution over the elements of supp(Σ) that specifies how
Sender chooses the signal realization when ω = ω0. Denote
this distribution by Σ(ω0). Note that given p and Σ, it can be
computed by Bayes’ law.

For simplicity, we introduce the following notation for the
expectation of a function of the posterior over the elements
of supp(Σ) according to Σ:
Notation 2.1. For a function f : ∆(Ω)→ R:

E[Σ, f ] := Epσ∼Σ[f(pσ)] = Eω∼p,pσ∼Σ(ω)[f(pσ)].

By (Blackwell 1953; Aumann, Maschler, and Stearns
1995), a distribution Σ represents a signaling scheme if and
only if Σ is Bayes-plausible. That is:

∀ω0 ∈ Ω : p[ω0] = E[Σ, pσ[ω0]].

The persuasion process runs as follows: (1) Sender com-
mits to a signaling policy Σ. (2) Sender discovers the state
of nature ω. (3) Sender transmits a signal realization σ to
Receiver, according to Σ(ω). (4) Receiver chooses an ac-
tion x ∈ A s.t. x ∈ argmaxx′∈A(Eω′∼pσ [ur(x

′, ω′)]); as-
sume, as is standard, that ties are broken in Sender’s favour.
(5) Sender gets utility of ũs(x, ω), while Receiver gets util-
ity of ur(x, ω).

Since x depends only on pσ , there exists ūs : ∆(Ω)×Ω→
R≥0 s.t. ũs(x, ω) ≡ ūs(pσ, ω). Define us : ∆(Ω) → R≥0

by:

us(pσ) := Eω′∼pσ [ūs(pσ, ω
′)] =∑

ω′∈Ω

pσ[ω = ω′] · ũs(argmaxx′∈A(Eω′′∼pσ [ur(x
′, ω′′)]), ω′).

Remark 2.2. From now on we shall consider us instead
of ũs or ūs, thus assuming that Sender’s utility is state
of nature-independent. This is w.l.o.g. for our results from
Sections 3-4, since the passage from ūs to us preserves
the conditions required there (upper semi-continuity or ef-
ficient approximability by a piecewise constant function).2
While one cannot apply the results of Section 5 to the state-
dependent case without strengthening Assumption 5.2, the
natural applications to ad auctions discussed there have
state-independent Sender’s utility.

Throughout we make the following assumption, which is
a relaxation of the standard continuity assumption on us. In
particular, us can be any continuous or threshold function.
Assumption 2.3. The function us is upper semi-continuous.

Ex ante and ex post constraints. So far we have de-
scribed the setting of Kamenica and Gentzkow (2011). How-
ever, in our model we do not allow Sender to choose among
all Bayes-plausible signaling schemes, but only among
schemes that satisfy certain restrictions (see the next sub-
section for motivation). We define two general families of
constraints: ex ante and ex post. A constraint of the latter
type restricts the admissible values of a certain function of
pσ for every possible pσ , while a constraint of the former
type restricts only the expectation of such a function.

2In the state-dependent setting, ūs(·, ω0) has to satisfy the the-
orem requirements from us for every ω0 ∈ Ω.

Definition 2.4 (Ex ante constraints). An ex ante constraint
on a signaling scheme Σ is a constraint of the form:

E[Σ, f ] ≤ c

for continuous f : ∆(Ω)→ R and a constant c ∈ R.
Definition 2.5 (Ex post constraints). An ex post constraint
on a signaling scheme Σ is a constraint of the form:

∀pσ ∈ supp(Σ) : f(pσ) ≤ c

for continuous f : ∆(Ω)→ R and a constant c ∈ R.
Definition 2.6. A constraint defined as in either of the pre-
vious two definitions is said to be specified by the function f
and the constant c.
Definition 2.7. A constraint specified by a convex f and
some c is called convex.
Observation 2.8. Ex post constraints are a special case of
ex ante constraints.

Indeed, an ex post constraint specified by some f and c is
equivalent to the ex ante constraint specified by max{f, c}
and c. Note that if f is convex, then so is max{f, c}.

Every ex ante constraint can be transformed into a
(stronger) ex post constraint by ”erasing the expectation”
and vice versa. Formally:
Definition 2.9. An ex post and an ex ante constraint corre-
spond to each other if they are specified by the same function
and the same constant.
Definition 2.10. Given a set of constraints, a signaling
scheme satisfying all of them is called valid.
Definition 2.11. A set of constraints satisfied by every sig-
naling scheme is called trivial.

Motivation for constrained persuasion. In many appli-
cations of Kamenica and Gentzkow’s model, Sender cannot
reveal as much information as would theoretically be opti-
mal due to constraints. Such constraints can originate from
sources including law, professional integrity, political agree-
ments, public opinion and limited attention.

As a first motivating example, consider online ad auc-
tions. The auctioneer – an advertising platform – is Sender,
while the set of bidders – which are advertisers – is Re-
ceiver.3 The profile of the web user who will view the ad
is the state of nature. This profile is known to the auctioneer,
but not to the bidders; every signal reveals information about
it. Such information revelation should be restricted by both
privacy and fairness considerations.

The constraint families we introduce fit for protecting pri-
vacy – following Eilat, Eliaz, and Mu (2019), privacy pro-
tection can be modeled as imposing a threshold on the Kull-
back–Leibler (KL) divergence from the prior to the poste-
rior. The KL divergence quantifies how much more informa-
tive the posterior is compared to the prior due to extra infor-
mation about the user provided by the signal realization. An
ex post constraint on the KL divergence provides a relatively

3We treat the bidders as a single Receiver since they all get the
same signal; private signaling poses additional challenges (Arieli
and Babichenko 2019) and is left for future work.
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robust protection of individual privacy by ruling out sending
a very informative signal even with only a small probability.
In contrast, the corresponding ex ante constraint protects pri-
vacy on the group level – e.g., it limits Receiver’s ability to
learn the shopping habits of certain population groups, since
the posterior is close, on average, to the prior.

Another important restriction on signaling in ad auc-
tions is fairness, or anti-discrimination – e.g., ensuring that
enough women compared to men are shown an ad for a
high-paying job (Celis et al. 2019; Celis, Mehrotra, and
Vishnoi 2019). Consider, for simplicity, a uniform prior
over population groups. A simple constraint specified by
(−minω′∈Ω{pσ[ω′]}) lower-bounds the frequency of a pop-
ulation group in the posterior, thus ensuring its proportional
inclusion.4 An ex ante constraint of this form ensures that
on average, the advertiser does not get enough information
to discriminate against particular groups.

A second motivating example involves constraints aris-
ing from Receiver’s limited attention span. As Simon (1996)
noted, “a wealth of information creates a poverty of atten-
tion”. Our model enables limiting the signaled information
so that it “fits” within Receiver’s limited attention.5 Follow-
ing the rational inattention literature (Sims 2003), define the
attention required from Receiver to process Sender’s signal
σ as the entropy of the posterior pσ .6 By constraining the en-
tropy – either in expectation (i.e., ex ante) or of every poste-
rior (i.e., ex post) – we enable Receiver to process the signal
despite her limited attention (where the limit is either in ex-
pectation or per signal, respectively). A concrete application
from Bloedel and Segal (2018) includes a busy executive as
Receiver, one of her advisors as Sender and constraints on
the signaled information enforced by keeping meetings and
briefings short (on average or per meeting).

3 Existence Results
Doval and Skreta (2018) prove that for every set ofm ex ante
constraints, there exists an optimal valid signaling scheme
with support size of at most k +m:

Fact 3.1 (Doval and Skreta (2018) – existence of an optimal
valid signaling scheme under ex ante constraints with a lin-
ear-sized support). Fix m ex ante constraints. Then either
there exists an optimal valid signaling scheme with support
size at most k + m or the set of valid signaling schemes is
empty.

In our full paper version, we show that this bound is tight:

4If the prior over population groups is not uniform, then we can
easily add weights to this constraint: −minω′∈Ω{bω′pσ[ω′]}.

5An alternative model of Bloedel and Segal (2018); Lipnowski,
Mathevet, and Wei (2020) allows Sender to “flood” Receiver with
information, but Receiver chooses what to pay attention to. Con-
strained persuasion simply avoids flooding Receiver with informa-
tion in expectation (the ex ante model) or always (ex post).

6Bloedel and Segal (2018) use mutual information of pσ and
Receiver’s perception of it after paying limited attention as the
measure of the attention invested by Receiver. In our model, Re-
ceiver always pays full attention, thus the mutual information coin-
cides with the entropy of pσ .

Proposition 3.2. The bound on the support size from
Fact 3.1 is tight for every k and m.

We further show in the full version that for any numberm
of ex post constraints, a stronger bound of k holds, just as in
the unconstrained setting of Kamenica and Gentzkow; the
same proof outline yields an alternative proof to the result
of (Doval and Skreta 2018) on ex ante constraints.

Theorem 3.3 (Existence of an optimal valid signaling
scheme under ex post constraints with a linear-sized sup-
port). Fix a set of ex post constraints. Then either there ex-
ists an optimal valid signaling scheme with support size at
most k or the set of valid signaling schemes is empty.

Proof Idea of Theorem 3.3. At a high level, we translate the
problem into an infinite LP, with the “variables” being the
distribution Σ over ∆(Ω). We first prove that the target func-
tion of the infinite LP is upper semi-continuous. Secondly,
we show, using infinite-dimensional optimization tools, that
it must attain a maximum at an extreme point of the fea-
sible set. Specifically, we use Bauer’s maximum principle
– see, e.g., Theorem 7.69 from (Charalambos and Border
2006). Thirdly, we argue that every extreme point has a fi-
nite support of bounded size, analyzing the effect of adding
the Bayes-plausibility constraints one by one by consider-
ing the hyperplanes specifying the constraints: the maximal
support size of extreme points is at most doubled upon each
addition. Finally, we improve the bound on the support size
of each extreme point using a finite LP.

Observation 3.4. The bound from Theorem 3.3 is achieved
by us(pσ) := ||pσ||∞ and a set of trivial ex post constraints.

4 Computational Aspects
In this section, we provide positive computational results for
a constant number of states of nature k. We focus on constant
k since a hardness result of Dughmi and Xu (2017) implies
that unless P = NP , there is no additive PTAS or constant-
factor multiplicative approximation of the optimal Sender’s
utility in poly(k)-time, even for piecewise constant us.7

Call L-Lipschitz a function with Lipschitz constant at
most L. We first present an additive bi-criteria FPTAS for
ex ante-constrained persuasion problems (Theorem 4.4).
Specifically, we show how to compute in polynomial time
a signaling policy that achieves a utility that is additively at
most ε-far from optimal and violates each constraint by at
most ε; Bayes-plausibility is satisfied precisely. To achieve
this, we impose regularity assumptions on both us and the
constraints, requiring them to be efficiently approximable,
respectively, by piecewise constant functions and Lipschitz
functions (Assumptions 4.2-4.3). In particular, an O(1)-
Lipschitz Sender’s utility function under ex ante constraints
specified by KL divergence, entropy or norms (including to-
tal variation distance of probability measures) satisfies our
conditions. Then we show that under a further Slater-like
regularity condition, one obtains a single-criteria additive

7Their result is on public persuasion with multiple Receivers,
which can be replaced by a single Receiver with a large ac-
tion space.
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FPTAS (Theorem 4.6). By Observation 2.8, these results
hold also for ex post constraints. Throughout this section,
we assume that both us and the functions specifying the con-
straints are given by explicit formulae and can be evaluated
at every point in constant time.

In the full paper version, we show that if one drops all
the assumptions on the ex ante constraints and just assumes
that us is either continuous or piecewise constant – with a
constant number of pieces s.t. each piece covers a convex
polygon in ∆(Ω) with a constant number of vertices – then
the algorithms from Theorems 4.4, 4.6 still provide an addi-
tive PTAS (rather than FPTAS).
Remark 4.1. Our approximation algorithms output a solu-
tion of a finite LP with k + m constraints; therefore, their
output – which is w.l.o.g. a basic feasible solution – is a
signaling scheme with support size at most k + m, which
matches the tight theoretical bound from Fact 3.1.

Bi-criteria FPTAS. We introduce the following assump-
tions on us and the constraints.
Assumption 4.2. For every ε > 0 and everyM = poly

(
1
ε

)
,

one can compute in poly
(

1
ε

)
-time an explicit formula for an

upper semi-continuous piecewise constant uε,M : ∆(Ω) →
R≥0, with a poly

(
1
ε

)
-number of pieces, s.t.:

• Every piece of uε,M covers a region of ∆(Ω) that is a
convex polygon with a poly

(
1
ε

)
-number of vertices and

diameter at most ε
M .

• ∀q ∈ ∆(Ω) : 0 ≤ uε,M (q)− us(q) ≤ ε.
Assumption 4.3. The i-th ex ante constraint (1 ≤ i ≤ m)
is specified by fi : ∆(Ω) → R s.t. for every ε > 0, one can
compute in poly

(
1
ε

)
-time an explicit formula for a poly

(
1
ε

)
-

Lipschitz function gi : ∆(Ω)→ R s.t. for every q ∈ ∆(Ω):

0 ≤ fi(q)− gi(q) ≤ ε.
Note that Assumptions 4.2-4.3 are not restrictive. Utility

functions naturally arising in applications are either O(1)-
Lipschitz (if Receiver has a continuum of actions) or piece-
wise constant (if Receiver has finitely many actions), thus
they satisfy Assumption 4.2 (see full paper version). The
constraints are not necessarily Lipschitz, but Assumption 4.3
requires only approximability by a Lipschitz function, which
is satisfied by constraints including KL divergence, entropy
and norms.
Theorem 4.4 (An additive bi-criteria FPTAS for an optimal
valid signaling scheme). Suppose that k is constant, us sat-
isfies Assumption 4.2 and we have m ex ante constraints
satisfying Assumption 4.3. Then either the set of valid sig-
naling schemes is empty or for every ε > 0, there exists
a poly

(
m, 1

ε

)
-time algorithm that computes an additively

ε-optimal signaling scheme that violates each ex ante con-
straint at most by ε.

We first strengthen Assumption 4.3 and assume that the
constraints are specified by poly

(
1
ε

)
-Lipschitz functions.

Then we restrict ourselves to the grid of the extreme points
of the pieces of uε,M , where M is the maximal Lipschitz
constant of the functions specifying the constraints, and out-
put the resultant optimal valid signaling scheme for uε,M

rather than us. Finally, we bound the loss in Sender’s utility
and the constraint values by the approximability guarantees.

Proof of Theorem 4.4. We strengthen Assumption 4.3 to the
following: the i-th ex ante constraint (1 ≤ i ≤ m) is spec-
ified by a poly

(
1
ε

)
-Lipschitz function fi : ∆(Ω) → R and

some constant ci. The original theorem follows from apply-
ing the theorem under the strengthened Assumption 4.3 with
ε replaced by ε

2 and the fis replaced by the gis. This is be-
cause the original Assumption 4.3 ensures that upon replac-
ing fi with gi, every valid signaling scheme remains such
and E[Σ, fi] decreases at most by ε.

Now we prove the theorem under the strengthened As-
sumption 4.3. Suppose that a valid signaling scheme exists
and let OPT be Sender’s expected utility under an optimal
valid scheme. Fix ε > 0 and let M be the maximal Lips-
chitz constant among the fis. Compute an explicit formula
for uε,M . Denote by l the number of pieces in uε,M . Let
q1, ..., qn be the extreme points of the regions of ∆(Ω) cov-
ered by the pieces of uε,M . Let us solve the following, as-
suming supp(Σ) ⊆ {q1, ..., qn}:

max E[Σ, uε,M ]

s.t. p[ω0] = E[Σ, pσ[ω0]] ∀ω0 ∈ Ω

E[Σ, fi] ≤ ci + ε ∀1 ≤ i ≤ m

The problem defines a finite LP with n variables (represent-
ing the probability masses assigned by Σ to the qis) and
k + m constraints (note that we should add a constraint for
the probability masses in Σ to sum up to 1, but then we could
remove one of the Bayes-plausibility constraints, as it would
follow from the other constraints); this LP can be solved in
time poly(n, k +m) = poly

(
1
ε ,m

)
. We return its solution

Σ as the desired signaling scheme.
By the design of our LP, Σ is Bayes-plausible and vio-

lates each ex ante constraint at most by ε. Take now a valid
optimal signaling scheme ΣOPT (for Sender’s utility func-
tion us rather than uε,M ). For every 1 ≤ j ≤ l, move
all the probability weight in Σ from the region covered by
the j-th piece of uε,M to the extreme points of that region
in an expectation-preserving way (so Bayes-plausibility still
holds) and denote the resultant signaling scheme by Σ′OPT .
Since the diameter of every such region is at most ε

M and
the ex ante constraints have Lipschitz constants at most M ,
we get that each ex ante constraint is violated at most by
ε
M ·M = ε. Thus Σ′OPT is a feasible solution to our LP, so
E[Σ′OPT , uε,M ] ≤ E[Σ, uε,M ].

Since uε,M is upper semi-continuous and piecewise con-
stant we have: E[ΣOPT , uε,M ] ≤ E[Σ′OPT , uε,M ]. Fur-
thermore, the second bullet from Assumption 4.2 yields:
E[Σ, uε,M ] − E[Σ, us] ≤ ε and E[ΣOPT , us] ≤
E[ΣOPT , uε,M ]. Combining the last four inequalities im-
plies: E[Σ, us] ≥ E[ΣOPT , us]− ε = OPT − ε.

Single-criteria FPTAS. The reason for relaxing the con-
straints is to avoid degenerate cases. For example, finding
the root of a polynomial with a single real root can be de-
scribed in the language of ex ante constraints. This problem
has a unique feasible distribution and if we do not relax the
constraints, any algorithm missing the exact real root cannot
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give a satisfactory approximation. Theorem 4.4 can be im-
proved under a Slater-like regularity condition disallowing
such degenerate cases.
Assumption 4.5 (Slater-like regularity condition). There ex-
ists a signaling scheme satisfying all the given ex ante con-
straints with strict inequality.
Theorem 4.6 (An additive FPTAS for an optimal valid sig-
naling scheme). Suppose that k is constant, us satisfies As-
sumption 4.2 and we have m ex ante constraints satisfying
Assumptions 4.3 and 4.5. Then for every ε > 0, there exists
a poly

(
m, 1

ε

)
-algorithm computing an additively ε-optimal

valid signaling scheme.
The algorithm applies Theorem 4.4 to a persuasion prob-

lem with strengthened ex ante constraints. The analysis com-
pares the output to a convex combination of two outputs of
Theorem 4.4 – one might violate the ex ante constraints,
while the other satisfies them with strict inequality. We use
the proof of Theorem 4.4 to bound the utility loss.

Proof of Theorem 4.6. From Assumption 4.2, us is bounded
from above by some constant C. Assume w.l.o.g. that C >
2. Let OPT be Sender’s optimal utility for a valid scheme.
Restrict ourselves to small enough values of 0 < ε < 2

C
s.t. strengthening each ex ante constraint by ε leaves the set
of valid signaling schemes non-empty (it is possible by As-
sumption 4.5).8 We return the signaling scheme Σ outputted
by the algorithm from Theorem 4.4 on 0.5ε and the problem
obtained by strengthening each ex ante constraint by 0.5ε.
Then Σ satisfies the original constraints; it remains to bound
its utility loss compared to OPT .

Let Σ′ be the output of Theorem 4.4 on 0.125ε3 and the
original problem; denote by Σ′′ the output of Theorem 4.4
on 0.5ε and the problem obtained by strengthening each
original ex ante constraint by ε.

Let M be the maximal Lipschitz constant among the gis
from Assumption 4.3. Then M is not affected by adding
constant factors to the constraints; furthermore, note that by
Assumption 4.2, u0.125ε3,M can also serve as u0.5ε,M (since
0.125ε3 < 0.5ε and 1

0.125ε3 = poly
(

1
0.5ε

)
). Therefore,

by the proof of Theorem 4.4, we can assume w.l.o.g. that
Σ,Σ′,Σ′′ are all supported on the extreme points of the
pieces of u0.125ε3,M ; furthermore, 1

1+0.25ε2 Σ′+ 0.25ε2

1+0.25ε2 Σ′′

satisfies each original ex ante constraint. Note that Σ is
0.5ε-additively-optimal among the schemes supported on
the above extreme points and satisfying the original ex ante
constraints, since Σ is exactly optimal among such schemes
if we replace us with u0.5ε,M , by Theorem 4.4 proof. Thus:

E[Σ, us] ≥ E
[

1

1 + 0.25ε2
Σ′ +

0.25ε2

1 + 0.25ε2
Σ′′, us

]
− ε

2
=

E[Σ′, us]

1 + 0.25ε2
+

0.25ε2E[Σ′′, us]

1 + 0.25ε2
− ε

2
≥

OPT − 0.125ε3

1 + 0.25ε2
− ε

2
≥ OPT − ε,

where the last transition follows from ε
2 <

1
C ≤

1
OPT .

8To be precise, we assume that an upper bound on such values
of ε is known in advance.

5 Ex Ante vs. Ex Post Constraints
In this section, we bound the multiplicative gap in the
Sender’s optimal utility between ex ante constraints and the
corresponding ex post constraints; then we apply our bound
to signaling in ad auctions. Note that in full generality, the
gap can be arbitrarily large even for k = 2 states of nature
and m = 1 convex constraints:
Example 5.1. Fix ε ∈

(
0, 1

2

)
; take Ω := {0, 1} with a uni-

form prior; define f(pσ) := pσ[ω = 1] and c := 1
2 + ε. Let

us(pσ) be 0 if pσ[ω = 1] ∈
[
0, 1

2

]
and 2 ·pσ[ω = 1]−1 oth-

erwise. The ex ante constraint specified by f and c allows
full revelation, which yields expected utility of 1

2 for Sender.
Convexity of us implies that under the corresponding ex

post constraint, there exists an optimal signaling scheme for
which always pσ[ω = 1] ∈ {0, c}; straightforward calcula-
tions show that Sender’s optimal utility is 2ε

1+2ε . Thus, the
multiplicative gap tends to∞ as ε tends to 0.

We identify a multiplicatively-relaxed Jensen assumption
on us parameterized by M ≥ 1, which, combined with the
convexity of them constraints, yields a bound ofMm on the
multiplicative gap between ex ante and ex post constraints.
Assumption 5.2 (parameterized by M ≥ 1). For every λ ∈
[0, 1] and pσ1 , pσ2 ∈ ∆(Ω):

λus(pσ1
) + (1− λ)us(pσ2

) ≤M · us(λpσ1
+ (1− λ)pσ2

).

For example, Assumption 5.2 holds with M = 2 for the
welfare and revenue functions in the single-item, second-
price auction (see full paper version). Note that for some us,
the assumption does not hold for any finite M : those us that
“grow too slowly” near 0 (in particular, if us maps a nonzero
measure of the domain to 0, as in Example 5.1).
Theorem 5.3 (A bound on the multiplicative gap between
ex ante and ex post constraints). Suppose that us satisfies
Assumption 5.2 with parameter M ≥ 1. Fix m convex ex
ante constraints and let Σex ante be a valid signaling scheme.
Then there exists Σex post, a valid signaling scheme under the
corresponding m ex post constraints, s.t.:
E[Σex post, us] ≥ 1

Mm · E[Σex ante, us].

The proof runs Algorithm 1 for each constraint separately.
The algorithm repeatedly pools a posterior violating the ex
post constraint with a posterior satisfying it with a strict
inequality, replacing one of them by a posterior on which
the ex post constraint is tight and decreasing the probabil-
ity mass of the other posterior. We assume that |supp(Σ)| is
finite, which is w.l.o.g. by Fact 3.1. The algorithm stops as
each iteration decreases the number of posteriors in supp(Σ)
on which the ex post constraint is not tight. By the constraint
convexity, the resultant scheme satisfies the ex post con-
straint; Assumption 5.2 implies that the multiplicative loss
due to the pooling process (for each constraint) is at most
M .

We leave as an open question the tightness of Theorem 5.3
for general m. However, the following statement holds.
Proposition 5.4. (a) Our analysis is tight for any m and
M = 2;9 (b) the bound from Theorem 5.3 on the multiplica-

9Note that we use M = 2 in our applications.
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Algorithm 1 Ex ante to ex post
Input: A signaling scheme Σ with a finite support satisfy-
ing: E[Σ, f ] ≤ c.
Parameters: A continuous convex function f : ∆(Ω)→ R,
a constant c.
Output: An updated signaling scheme Σ with a multiplica-
tive expected utility loss of at mostM compared to the input,
s.t. ∀pσ ∈ supp(Σ) : f(pσ) ≤ c.

1: S ← supp(Σ) ∩ f−1((−∞, c)).
2: T ← supp(Σ) ∩ f−1((c,∞)).
3: while S, T 6= ∅ do
4: Take qS ∈ S, qT ∈ T .
5: rS ← Prpσ∼Σ[pσ = qS ], rT ← Prpσ∼Σ[pσ = qT ].
6: Find λ ∈ (0, 1) s.t. f(λqS + (1− λ)qT ) = c.
7: Define qc := λqS + (1− λ)qT .
8: supp(Σ)← supp(Σ) ∪ {qc}.
9: if λrT ≥ (1− λ)rS then

10: supp(Σ)← supp(Σ) \ {qS}.
11: rS ← 0, rT ← rT − (1−λ)rS

λ , rc ← rS
λ .

12: else
13: supp(Σ)← supp(Σ) \ {qT }.
14: rS ← rS − λrT

1−λ , rT ← 0, rc ← rT
1−λ .

15: end if
16: Update Σ according to rS , rT , rc.
17: end while
18: return Σ.

tive gap between ex ante and ex post is tight for m = 1 and
anyM ; (c) this gap grows withm and can be at leastm+1.

Applications. We apply Theorem 5.3 to signaling in ad
auctions. We adopt the model of Badanidiyuru, Bhawalkar,
and Xu (2018) and add to it constraints on the signaling
scheme; here we sketch the model and findings.

Consider a single-item second-price auction with n bid-
ders. Recall from Section 2 that the item being sold is the
opportunity to show an online advertisement to a web user,
whose characteristics are known to the auctioneer, but not
to the bidders. Each bidder targets a certain set of users to
whom showing her ad would be most valuable; the auction-
eer signals information about which targeted sets the user
belongs to. In the language of persuasion, Sender is the auc-
tioneer while Receiver is the set of bidders. The state of na-
ture is a binary vector of length n in which the i-th coordi-
nate specifies whether the web user is in the i-th advertiser’s
targeted set. Importantly, the number of states of nature is
exponential, thus the results from Section 4 do not apply.

The combination of signaling and auction works as fol-
lows. The bidders have privately-known, i.i.d. types drawn
from a commonly-known distribution. The i-th bidder’s
value for showing her ad is a function of her type and
whether the user is in her targeted set. After the auction-
eer signals information, the bidders update their values using
their posterior beliefs and submit them as bids. The resultant
welfare (the winner’s value) is Sender’s utility us.

Proposition 5.5. Consider the expected welfare of a single-
item second-price auction with signaling as a function of

pσ , where the expectation is taken over the bidders’ private
types. Then Assumption 5.2 is satisfied with M = 2.

This result extends to expected revenue and to sponsored
search (slot) auctions. Proposition 5.5 suggests the following
“recipe” for solving signaling problems in ad auctions under
a constant number of convex ex ante constraints: (approxi-
mately) solve for the corresponding ex post constraints; this
yields, by Theorem 5.3, a constant-factor approximation for
the original problem. The next example demonstrates.
Example 5.6. Take a single ex ante constraint specified by
the function (−min{bω′pσ[ω = ω′]}ω′∈Ω) with some con-
stant weights {bω′}ω′∈Ω. As mentioned in Section 2, this
constraint is a possible model for anti-discrimination. Find-
ing an optimal valid scheme Σ∗ex ante is an open question.
However, the corresponding ex post constraint just restricts
the posteriors to an appropriate simplex; since us (the social
welfare) is convex – the optimal scheme Σ∗ex post is supported
precisely on the vertices of this simplex, and is uniquely
specified by Bayes-plausibility. By Theorem 5.3 and Propo-
sition 5.5, Σ∗ex post is a 1

2 -approximation to Σ∗ex ante.

6 Future Work
We study the setting of ex ante- and ex post-constrained per-
suasion, which has applications to areas including ad auc-
tions and limited attention. A future research direction, espe-
cially considering Theorem 5.3, is studying (nearly) optimal
signaling schemes under common ex post constraints, such
as KL divergence. Another direction is constrained persua-
sion with private signaling, e.g., when Receivers have bi-
nary actions and Sender’s utility is a function of the set of
Receivers adopting a certain action (Arieli and Babichenko
2019).
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