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Abstract

We consider the problem of allocating a set on indivisi-
ble items to players with private preferences in an efficient
and fair way. We focus on valuations that have dichotomous
marginals, in which the added value of any item to a set is
either 0 or 1, and aim to design truthful allocation mecha-
nisms (without money) that maximize welfare and are fair.
For the case that players have submodular valuations with di-
chotomous marginals, we design such a deterministic truthful
allocation mechanism. The allocation output by our mecha-
nism is Lorenz dominating, and consequently satisfies many
desired fairness properties, such as being envy-free up to any
item (EFX), and maximizing the Nash Social Welfare (NSW).
We then show that our mechanism with random priorities is
envy-free ex-ante, while having all the above properties ex-
post. Furthermore, we present several impossibility results
precluding similar results for the larger class of XOS valu-
ations.

1 Introduction
A central problem in Algorithmic Game Theory is the prob-
lem of allocating indivisible goods among players with pri-
vate preferences. This problem is particularly challenging
in settings in which utilities cannot be transferred between
players (no money). One consideration in allocating the
items is the economic efficiency of the allocation, as we want
the best for society as a whole. Another consideration is fair-
ness of the allocation, because in the absence of money, there
is no other way for the players to evenly share the welfare
generated by the efficient allocation.

In this work we design allocation mechanisms that en-
joy desirable properties, related to their economic efficiency,
to fairness of the allocation, and to incentive compatibility
(truthfulness). Importantly, we consider only settings with-
out money, so a mechanism defines an allocation rule, but
does not involve a payment rule, as there are no payments.
With general valuations, even without any fairness proper-
ties, the VCG mechanism is the unique truthful welfare-
maximizing mechanism, and it requires payments. Conse-
quently, the focus of our work is on instances in which the

∗A full version with addition results and the missing proofs ap-
pears in https://arxiv.org/abs/2002.10704.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

valuation functions of the agents are restricted, and specifi-
cally, have the dichotomous marginals property. We say that
a valuation function f has dichotomous marginals (or for
brevity, we say that f is dichotomous) if for every set S of
items and every item a, the marginal value of a relative to S
is either 0 or 1. Namely, f(S ∪ a)− f(S) ∈ {0, 1}.

The study of fairness with dichotomous preferences was
initiated by Bogomolnaia and Moulin (2004), with addi-
tional extensive research of such preferences in various set-
tings (see references in Section 1.2). The above references
provide multiple examples of situations that can be mod-
eled using dichotomous preferences. We provide another ex-
ample that involves constraints not captured by prior work.
Consider a setting where the agents are arts students seek-
ing work as museum guides. The items are different shifts
in which the students can work as guides in the local arts
museum. Suppose that among the shifts (or combinations of
shifts) that are feasible for a given student in a given month
(for example, one student cannot work on weekends, another
student can work at most two shifts a week, etc.), the student
may wish to work for as many shifts as possible during the
month, but other than that is indifferent to the exact choice
of shifts (as long as the combination of shifts is feasible for
the student). A model that first-order approximates this set-
ting is one in which the valuation function of a student is
modeled as being dichotomous.1 The allocation problem is
to assign students to shifts. Economic efficiency may cor-
respond to filling as many shifts as possible. Fairness may
correspond to trying to equalize the number of shifts that
each student receives (subject to the feasibility constraints).
Incentive compatibility means that it is a dominant strategy
for a student to report her true valuation function to the mu-
seum – providing an incorrect report cannot lead to a situa-
tion in which she receives a bundle of shifts of higher value
to her.

1.1 Our Contribution and Techniques
We now provide an overview of our main results. Some defi-
nitions and technicalities are omitted from this overview, but

1In the full version we discuss a relaxation of the assumption
that all desired shifts are exactly equivalent for the student, allow-
ing strict preference, while still assuming approximately the same
marginals.
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can be found in Section 2.
We consider settings with a finite set M of m indivisible

and non-identical items. There is a set of n ≥ 2 players
(a.k.a. agents), denoted by V = [n], with each player v ∈
V having a valuation function fv over sets of items. The
value (or utility) of player v for a set S ⊆ M is denoted by
fv(S). We always assume that any valuation f is normalized
(f(∅) = 0) and non-decreasing (f(S) ≤ f(T ) for S ⊆ T ⊆
M ). Given an allocation A, we use Av to denote the set of
items allocated to player v.

One question that we ask in this work is what is the
largest class of dichotomous valuation functions for which
one has a truthful deterministic allocation mechanism that
enjoys good economic efficiency and fairness properties. Let
us briefly discuss its various ingredients.

Classes of valuation functions. The dichotomous ver-
sions of some simple classes of valuation functions were
considered in previous work (e.g., unit demand (match-
ing) (Bogomolnaia and Moulin 2004), additive (Ortega
2020) and 0/1 valued sets (Bouveret and Lang 2008)).
We consider here the hierarchy of complement-free valua-
tion functions introduced in Lehmann, Lehmann, and Nisan
(2006), whose four highest classes (in order of containment)
are gross substitutes (GS), submodular, XOS, and subaddi-
tive (recall that both unit demand and additive are gross sub-
stitutes). For valuations with dichotomous marginals, it can
be shown that every submodular function is in fact a Matroid
Rank Function (MRF), and hence also gross substitutes. We
note that valuation functions may be used to express not only
the preferences of the players, but also constraints imposed
by the allocator. In the museum example above, the museum
may impose a restriction that no student can work in two
shifts in the same day, and another restriction that no stu-
dent can work in five shifts in the same week. If a student
has an additive valuation function, then incorporating these
constraints into her valuation function makes it submodular.

Economic efficiency. We wish our allocations to maxi-
mize welfare, where the welfare of allocation A is defined
as

∑
v∈V fv(Av). Restricting attention to non-redundant al-

locations (no item can be removed from a set allocated to
a player without decreasing its value), in the setting of di-
chotomous valuations, maximizing welfare is equivalent to
allocating the maximum possible number of items. Hence
maximizing welfare can serve as a measure of economic ef-
ficiency not only from the point of view of the players, but
also from the point of view of the items (as in the museum
guides example, where it is in the interest of the museum to
fill as many shifts as possible).

Fairness. For allocation mechanisms without money it
is customary to impose some fairness requirements. They
come in many flavors. Safety guarantees (such as propor-
tionality, maximin share2) promise the player a certain min-
imum value, based only on the valuation function of the
given player and no matter what the valuation functions of
other players are. Envy-freeness guarantees (envy free up to

2The maximin share of player p is the maximum value that
could be given to the least happy player if all players had the same
valuation function as that of p.

one good (EF1), envy free up to any good (EFX)), ensure
that every player v is at least as happy with her own bun-
dle of goods as she would be with the bundle received by
any other player (perhaps up to one good (EF1), or up to
any good (EFX)). Egalitarian guarantees (lexicographically
maximal allocations, Lorenz-dominating allocations, maxi-
mizing Nash social welfare (NSW)) attempt to equalize the
utilities of all players (to the extent possible, given their val-
uation functions). Not all fairness notions are attainable in
all settings, and in addition, there are settings in which two
fairness notions that are attainable are not attainable simul-
taneously. For this reason, in our work we do not fix one par-
ticular fairness notion, but rather attempt to achieve a good
mix of fairness properties.

Truthfulness. We wish our mechanisms to have the prop-
erty that reporting her true valuation function is a (weakly)
dominant strategy for every player. That is, for every player
v, whatever the reports of other players are, if player v re-
ports a valuation function different than fv , the allocation
she gets cannot have higher value to her, compared to the
allocation when she reports fv .

We now return to our question concerning the largest
class of dichotomous valuation functions for which one has
a truthful deterministic allocation mechanism that enjoys
good economic efficiency and fairness properties. We ad-
dress this question in the framework of the hierarchy of
complement-free valuation functions defined in Lehmann,
Lehmann, and Nisan (2006). Our main result shows that if
the dichotomous valuation functions are submodular, then a
deterministic mechanism that we refer to as prioritized egal-
itarian (PE) indeed satisfies the above requirements.

Theorem 1 The prioritized egalitarian (PE) mechanism has
the following properties when players have submodular di-
chotomous valuations:

1. Being truthful is a dominant strategy.
2. When players are truthful the allocation is welfare maxi-

mizing.
3. When players are truthful, the allocation of the mecha-

nism is a Lorenz dominating allocation, and consequently
it enjoys additional fairness properties, including maxi-
mizing Nash social welfare, and being envy-free up to any
item (EFX). If furthermore, the valuations are additive di-
chotomous, the allocation gives every player at least her
maximin share.

4. If the valuations have succinct representations (that allow
computation of function values in polynomial time), then
the mechanism can be implemented in polynomial time3.

In contrast, we show that if the valuation functions belong
to the class XOS (one level higher than submodular in the
hierarchy of Lehmann, Lehmann, and Nisan (2006)), then
there is no truthful allocation mechanism (neither determin-
istic nor randomized) that maximizes welfare, even if one
disregards all fairness considerations.

The PE mechanism is based on first proving that in the set-
ting of submodular dichotomous valuation functions there

3In the full version we also present an ex-post incentive com-
patible polynomial implementation in the value queries model

5120



always is a Lorenz dominating allocation (exact definitions
will follow, but at this point the reader may think a Lorenz
dominating allocation as one that both maximizes welfare
and equalizes as much as possible the number of items re-
ceived by each player). The PE mechanism imposes a pri-
ority order σ among players, and chooses a non-redundant4
Lorenz dominating allocation (namely, it does not allocate
items that give 0 marginal value to the player receiving
them), breaking ties among Lorenz dominating allocations
in favor of higher priority players. Proving economic effi-
ciency and fairness properties for this mechanism is straight-
forward, given the fact that the output allocation is Lorenz
dominating. The main technical content in the proof of The-
orem 1 (beyond the proof that a Lorenz dominating alloca-
tion exists) is to show that the PE mechanism is truthful (for
players with submodular dichotomous valuations).

In Section 3.3 we consider a randomized variation of our
PE allocation mechanism. This randomized mechanism first
assigns the agents priorities uniformly at random, and then
runs the PE allocation mechanism with the drawn priorities.
We show that this mechanism achieves Envy-Freeness in ex-
pectation (ex-ante), is universally truthful and it obtains all
the other good properties of the PE mechanism ex-post (a
best-of-both-worlds result).

Due to space limitations, most proofs (including the state-
ments of some lemmas) are deferred to the full version.

1.2 Previous Work
Dichotomous preferences: The study of dichotomous pref-
erences was initiated by Bogomolnaia and Moulin (2004).
They consider dichotomous matching problems (two-sided
unit-demand preferences) and suggest the randomized
Lorenz mechanism to get a probabilistic allocation that is
fair in expectation. Within the setting of one-sided markets,
the paper of (Bogomolnaia and Moulin 2004) addresses ran-
domized mechanisms for unit-demand valuations. We con-
sider the more general class of submodular valuations, and
our main focus is on ex-post fairness. Dichotomous pref-
erences have been further studied extensively in the litera-
ture for mechanisms without money (Bogomolnaia, Moulin,
and Stong 2005; Freitas 2010; Bouveret and Lang 2008;
Kurokawa, Procaccia, and Shah 2018; Ortega 2020), auc-
tion design (with private value scaling) (Babaioff, Lavi, and
Pavlov 2009; Mishra and Roy 2013) and exchanges (Roth,
Sonmez, and Utku Unver 2005; Aziz 2020b).

Maybe the most closely related to our paper is the work of
Ortega (2020) which studies the Multi-unit assignment prob-
lem (MAP) with dichotomous valuations. MAP is a sub-
class of the submodular class that slightly extends additive
(but does not contain unit demand, for example). The paper
suggests picking a fractional “welfarist” solution (vector of
fractional utilities) that is Lorenz dominating among those

4In the full version we discuss the issue of non-redundancy,
showing that the result of Theorem 1 is impossible to obtain when
one insists on allocating all items (even undesired ones). Specif-
ically, we show that there is no truthful deterministic allocation
mechanism that always allocates all items, maximizes welfare and
is EFX. This holds even for additive dichotomous valuations, and
even for only two agents.

that maximize welfare. Being fractional, this corresponds
to a randomized allocation mechanism rather than a deter-
ministic one. Consequently, the notion of truthfulness used
is that of being truthful in expectation. Moreover, the no-
tion of truthfulness is further restricted there, and only al-
lows to conceal desired items in the report, but not to report
undesirable items as desired. Under this notion, the solu-
tion is strongly group strategyproof. In contrast, the larger
class of submodular dichotomous valuations considered in
our work contains unit-demand dichotomous valuations, for
which no Pareto optimal deterministic allocation mechanism
is strongly group strategyproof (Bogomolnaia and Moulin
2004). Being Lorenz dominating, the fractional solution en-
joys multiple fairness properties. The work of Ortega (2020)
does not explicitly address the question of to what extent
these fairness properties are preserved ex-post, after the frac-
tional solution is rounded to an integer solution.

Fairness: The literature of fairness is too extensive to sur-
vey in this paper. For a general introduction see (Brandt et al.
2016; Brams and Taylor 1996; Moulin 2004). The notions of
EF1 and EFX were defined by Budish (2011) and Caragian-
nis et al. (2019), respectively.

Best-of-Both-Worlds: Freeman, Shah, and Vaish (2020)
presented a recursive probabilistic serial allocation mecha-
nism for additive valuations. They showed that ex-ante envy-
freeness can be achieved in combination with EF1 ex-post.
Moreover, they showed that achieving EF ex-ante, and EF1
and PO ex-post is impossible. We, in contrast, are able to
achieve all these properties (even for submodular valua-
tions) as we consider dichotomous valuations. Aleksandrov
et al. (2015) considered allocation mechanism of additive di-
chotomous agents when items arrive online that is both EF
ex-ante and EF1 ex-post. We consider the offline setting, but
for the more general submodular valuations case, and get
stronger fairness guarantees (EFX, Lorentz domination).

1.3 Independent and Concurrent Work
Concurrent and independent of our work, Halpern et al.
(2020) devise an allocation mechanism for the class of addi-
tive dichotomous valuations. They show that their MNWtie

deterministic allocation mechanism is EF1, PO, and weakly
group strategyproof. The additive dichotomous valuations
setting is a special case of our more general setting of sub-
modular dichotomous valuations, and our PE mechanism
and MNWtie are identical for this special case. Halpern
et al. (2020) also obtain a “best of both worlds” type result.
They consider a randomized allocation mechanism based on
rounding the fractional Nash Social Welfare maximizing al-
location, and show that their mechanism is ex-ante weakly
group strategyproof and ex-post PO and EF1. Aziz (2020a)
reproves a similar result, using the same fractional allocation
(and noting that it is in fact ex-ante strongly group strategy
proof), but using a different rounding procedure. Our best-
of-both-world result5 (Theorem 6) holds for submodular di-
chotomous valuations, whereas the results of Halpern et al.
(2020) and Aziz (2020a) hold only for dichotomous additive

5A previous version of our paper did not contain Theorem 6. It
did contain a different best-of-both-worlds result.
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valuations. Moreover, our randomized mechanism is univer-
sally truthful (agents have no regret even after they see the
realized allocation), whereas it is not known whether this
property holds for the mechanisms of Halpern et al. (2020)
and Aziz (2020a). For submodular dichotomous valuations,
no mechanism can be simultaneously ex-ante strongly group
strategy proof and ex-post EF1 (see full version), and in our
work we do not attempt to achieve ex-ante weak strategy
proofness.

Another concurrent and independent work is of Benabbou
et al. (2020), that shows how to find welfare-maximizing and
EF1 allocations for dichotomous submodular valuations in a
computational efficient way. Their result is purely algorith-
mic and does not consider incentives, whereas we solve the
harder problem of designing a truthful mechanism that ob-
tains all desired fairness and economic efficiency properties
(while being computationally efficient).

2 Model and Preliminaries
2.1 Valuations
In this paper we consider several classes of valuation func-
tions. The marginal value of item a ∈M given a set S ⊆M
is defined to be f(a|S) = f(S∪{a})−f(S). Next we define
some properties of valuation functions we will be using:

• A valuation function f is dichotomous if the marginal
value of any item is either 0 or 1, that is, f(a|S) =
f(S ∪ {a}) − f(S) ∈ {0, 1} for every set S ⊆ M and
item a ∈M .

• A valuation function is additive if f(S) + f(T ) = f(S ∪
T ) for any disjoint sets S, T ⊆M .

• A valuation function f is submodular if f(S ∪ {a}) −
f(S) ≥ f(T ∪ {a}) − f(T ) for every pair of sets S ⊆
T ⊆M and every item a ∈M .

• A valuation function f is a Matroid Rank Function (MRF)
if there exists a matroid6 for which for every set S it holds
that f(S) is the rank of set S in the matroid.

A valuation function f is submodular dichotomous if it is
both submodular and dichotomous. It is known that a func-
tion is submodular dichotomous if and only if it is a rank
function of a matroid. 7 Thus, for brevity we will often refer
to a submodular dichotomous valuation function as an MRF
valuation.

6A matroid (U , I) is constructed from a non-empty ground set
U and a nonempty family I of subsets of U , called the independent
subsets of U . I must be downward-closed (if T ∈ I and S ⊆ T ,
then S ∈ I) and satisfy the exchange property (if S, T ∈ I and
|S| < |T |, then there is some element x ∈ T \ S such that S ∪
{x} ∈ I). The rank of a set S is the size of the largest independent
set contained in S.

7(It is easy to see that an MRF is submodular and dichotomous.
For the converse direction, given a submodular dichotomous func-
tion f , consider the family I that contains those sets S for which
f(S) = |S|. This family is downward closed, because f is dichoto-
mous. Submodularity of f implies that if f(T ) > f(S) there is an
item x ∈ (T \ S) for which f(S ∪ {x}) = f(S) + 1. This in turn
implies that I satisfies the exchange property. Hence I defines a
matroid, and f can be seen to be the rank function of this matroid.)

An interesting special case of submodular dichotomous
valuations are such valuations that are additive. A valuation
function f is additive dichotomous if it is both additive and
dichotomous.

2.2 Allocations
We consider mechanisms to allocate items in M to the play-
ers. As we assume that utilities cannot be transfered and
there is no money, a mechanism will only specify the allo-
cation function, mapping valuation functions to allocations.
We will mostly consider deterministic allocation functions.

An allocation (A1, A2, . . . , An) with Av ⊆ M for every
v ∈ V and ∪vAv ⊆M , is an assignment of items to players,
possibly leaving some items unallocated. We denote by Av

the set of items allocated to player v under allocation A.
The value (or utility) of allocation A for player v that has
valuation function fv is fv(Av).

Fix some valuation functions f = (f1, f2, . . . , fn). The
welfare of an allocation A given f is

∑
v fv(Av) and an

allocation is welfare maximizing if there is no other allo-
cation with larger welfare. Note that a welfare maximizing
allocation is Pareto optimal. An allocation A is called non-
redundant for f if it does not give any player an item for
which she has no marginal value, that is, for any player v
and any item a ∈ Av it holds that fv(Av) > fv(Av \ {a}),
or equivalently, every strict subset of Av has strictly lower
value for v. We note that for MRF valuation f , for any non-
redundant set S it holds that f(S) = |S|. A non-redundant
allocation has maximal size with respect to f , if there is no
other non-redundant allocation with respect to f that allo-
cates more items. We say that an allocation is reasonable for
f if it both non-redundant and has maximal size with respect
to f . Note that if all players have dichotomous additive val-
uations, any reasonable allocation is welfare maximizing.

2.3 Mechanisms
An allocation mechanism (without money) maps profiles of
valuations to an allocation. That is, given valuation func-
tions f = (f1, . . . , fn) an allocation mechanism M out-
puts an allocation A =M(f) =M(f1, . . . , fn). We some-
times abbreviate and call an allocation mechanism simply a
mechanism. A mechanism asks each player to report a valu-
ation function, getting a report f ′v from each player v, and
allocates the items by running the mechanism on the re-
ported valuations (f ′1, . . . , f

′
n), that is, mechanism M out-

puts A =M(f ′1, . . . , f
′
n). We are interested in mechanisms

that are truthful, that is, give players incentives to report
their valuation function truthfully. A mechanismM is truth-
ful if for every player v, reporting fv is a weakly dominant
strategy (maximizes her value given any reports of the other
players).

We say that a mechanism M has property P if for any
input f , its output allocation A = M(f) has property P .
For example, a mechanism is reasonable if for any f the
allocation A =M(f) is reasonable for f .

2.4 Fairness
The list below presents standard fairness conditions that one
may desire.
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1. The maximin share of a player iwith valuation fi, denoted
by maximin(fi), is the maximum over all partitions of the
items into n disjoint bundles S1, . . . , Sn of the minimum
value according to fi of a bundle, minj∈[n] fi(Sj).

2. An allocation is envy free (EF) if for all i, j ∈ [n] it holds
that fi(Ai) ≥ fi(Aj).
Envy free up to one good (EF1). The envy free condition
is relaxed as follows: for all i, j ∈ [n] either fi(Ai) ≥
fi(Aj), or there is an item e ∈ Aj such that fi(Ai) ≥
fi(Aj \ {e}).
Envy free up to any good (EFX). For all i, j ∈ [n] either
fi(Ai) ≥ fi(Aj), or for every item e ∈ Aj it holds that
fi(Ai) ≥ fi(Aj \ {e}). EFX is stronger than EF1.

3. Given an allocation A = (A1, . . . , An) and valuation
functions f = {f1, . . . , fn}, the utility vector is uA,f =
(f1(A1), . . . , fn(An)), and the sorted utility vector sA,f

is a vector whose entries are those of uA,f sorted from
smallest to largest. We impose a lex-min order among
sorted vectors, where s1 >lexmin s2 if there is some k ∈
[n] such that s1(k) > s2(k) and for every 1 ≤ j < k we
have that s1(j) = s2(j). Given the valuation functions f ,
an allocation A is maximal in the lex-min order if for ev-
ery other allocation A′ we have that sA,f ≥lexmin sA′,f .
We refer to such an allocation as a lex-min allocation.
Given f , a lex-min allocation always exists (as the set of
allocations is finite).

4. Using notation as above, we also impose a Lorenz
domination partial order over sorted vectors, where
s1 ≥Lorenz s2 if for every k ∈ [n], the sum of first k
entries in s1 is at least as large as the sum of first k entries
in s2. A Lorenz dominating allocation is an allocation that
Lorenz dominates every other allocation. Given the valua-
tion functions f , a Lorenz dominating allocation need not
exist, but if it does, then it is also a lex-min allocation.

5. Given valuation functions f , an allocation A is said to
maximize the Nash Social Welfare (NSW) if it maximizes
the product

∏
i fi(Ai). (Formally, such an allocation max-

imizes NSW relative to the disagreement point of not al-
locating any item.) Given f , a maximum NSW allocation
always exists, though it need not maximize welfare.

3 Submodular Dichotomous Valuations
In this section we prove Theorem 1.

One aspect of the proof of the theorem involves showing
that a Lorenz dominating allocation exists. Lorenz domina-
tion can be shown to imply the desired welfare and fairness
properties. However, simply picking an arbitrary Lorenz
dominating allocation does not guarantee truthfulness (see
full version). Hence a major part of the proof of the theorem
is to show that a particular choice of a Lorenz dominating
solution does ensure truthfulness.

3.1 Lorenz Dominating Allocations
The following proposition puts together several observations
regarding fairness properties of Lorenz dominating alloca-
tions, most (if not all) of which are known.

Proposition 2 Given any (normalized and monotone) val-
uation functions f = (f1, . . . , fn), a Lorenz dominating
allocation, if it exists, also maximizes welfare, is lex-min,
and maximizes NSW. If moreover the valuation functions
are MRFs, a Lorenz dominating allocation that is non-
redundant (see definition of non-redundant in Section 2.2)
is also EFX (and hence also EF1). If furthermore, the valu-
ations are additive dichotomous, a Lorenz dominating allo-
cation gives every agent at least his maximin share.

For MRF valuations Lorenz dominating allocations might
not give all agents their maximin share, but are approxi-
mately so.
Proposition 3 There are MRF valuation functions with re-
spect to which no Lorenz dominating allocation is maximin
fair. For every collection of MRF valuation functions, in ev-
ery Lorenz dominating allocation every player gets at least
half her maximin share.

In view of Propositions 2 and 3, we choose Lorenz dom-
ination as our fairness requirement. As we shall see in The-
orem 4, in our setting of MRF valuations, a Lorenz dom-
inating allocation always exists, and often, more than one
such allocation exists. For example, if there is only one item
and all players desire it, then allocating the item to any of
the players is a Lorenz dominating allocation. We now wish
to address truthfulness of the allocation mechanism. This
will be achieved by implementing a particular choice among
Lorenz dominating allocations. This choice will be guided
by two principles.

The first principle is that the allocation will be non-
redundant. Namely, for every player, the allocation is such
that the set of items given to the player does not contain re-
dundant items that give the player no marginal value. In our
setting, this is equivalent to requiring that the set of items
received by a player forms an independent set in the matroid
underlying the MRF of the player.

The second principle is that of imposing some arbi-
trary priority order among the players, fixed independently
of their valuations. Among the possibly many Lorenz-
dominating allocations that may exist, we choose one that
favors the higher priority players as much as possible. Still,
there may be several different allocations that satisfy this
condition, but any two of them will be equivalent in terms of
the utilities that the players (who have MRF valuation func-
tions) derive from them.

W.l.o.g., let the priority order be such that player i has
priority i (player 1 has highest priority, player n has lowest
priority). A convenient mathematical way to reason about
the priority order is as follows. Add to the instance n aux-
iliary items a1, . . . , an. For every player i ∈ [n], pretend
that the marginal value of item ai is i

n2 to player i (re-
gardless of any other items that player i may hold), and the
marginal value of aj with j 6= i is 0. With the auxiliary
items, the new valuations f ′ = (f ′1, . . . , f

′
n) of players sat-

isfy f ′i(S) = fi(S∩M)+ i
n2 |S∩{ai}|. They are not MRFs

(because the marginals of auxiliary items are not in {0, 1}),
but they are still gross substitutes (because each f ′i is a sum
of a gross substitute function fi on the original items and
a gross substitute function on the auxiliary items). In every

5123



welfare maximizing allocation, for every i ∈ [n], item ai
is given to player i. Given the auxiliary item, when allocat-
ing the original items, a Lorenz dominating allocation will
break ties in favor of higher priority players, as they derive
less value from the auxiliary items.
Theorem 4 Given MRF valuations f = (f1, . . . , fn) and
the auxiliary items (giving rise to new valuations f ′ =
(f ′1, . . . , f

′
n)), there is a Lorenz dominating allocation A′.

Moreover there is a unique vector of utilities (uA′,f ′ =
(f ′1(A

′
1), . . . , f

′
n(A

′
n)) shared by all Lorenz dominating al-

locations. Removing the auxiliary items from the Lorenz
dominating allocation gives an allocation A that is Lorenz
dominating with respect to the original MRF valuations.

Proof. Consider the following function W that we shall
refer to as a welfare function. Given a set M of indivis-
ible items, a set V of n agents, and valuation functions
f1, . . . , fn, the function W is a set function defined over
the players. Given a set S ⊆ V , W (S) is the maxi-
mum welfare attainable by the set S. Namely, W (S) =
maxA=(A1,...,An)[

∑
i∈S fi(Ai)]. In the full version, we

show that given our valuation functions f ′ = (f ′1, . . . , f
′
n)

(the MRFs, augmented with the auxiliary items), the re-
spective welfare function W is submodular. Dutta and Ray
(1989) prove that if W is submodular, then a Lorenz dom-
inating allocation exists. Consequently, with our valuation
functions f ′, a Lorenz dominating allocation A′ exists.

Uniqueness of the vector of utilities is a consequence of
the fact that with the auxiliary items, the utility of a player
uniquely identifies the player. Consequently, any two differ-
ent vectors of utilities give two different sorted vectors. The
sorted vector of a Lorenz dominating allocation is unique
(by definition of the Lorenz domination partial order), and
hence the (unsorted) vector is also unique.

Removing the auxiliary items from a Lorenz dominating
allocation A′ gives an allocation A that is Lorenz domi-
nating with respect to the original MRF valuations f . For
the sake of contradiction, suppose otherwise, that there is
some allocation B such that A does not Lorenz dominate
B. Then there is some k ≤ n such that the sum of the first
k terms of the sorted vector of B is larger than the sum of
the first k terms of the sorted vector of A. As the values of
both sums are integer, the difference between the two sums
is at least 1. Consequently, even A′ does not Lorenz domi-
nate B, because the total contribution of auxiliary items is
at most

∑n
i=1

i
n2 < 1, contradicting the assumption that A′

was Lorenz dominating with respect to f ′. �

3.2 The Prioritized Egalitarian (PE) Mechanism
We can now present our allocation mechanism for MRF val-
uations, that we refer to as the prioritized egalitarian (PE)
mechanism. We assume for this purpose that each MRF fi
has a succinct representation (of size polynomial in the num-
berm of items) such that given this representation, for every
S one may compute fi(S) (answer value queries) in time
polynomial in m.

1. The mechanism imposes an arbitrary priority order σ
among the agents. For simplicity and without loss of gen-

erality, we assume that the order is from 1 to n, where
player 1 has highest priority.

2. Every player is requested to report his MRF to the mech-
anism. A report that is not an MRF (or failure to pro-
vide a report at all) is considered illegal, and is replaced
by the MRF that is identically 0 (and consequently, the
non-redundant allocation will not give such a player any
item)8.

3. Given the reported MRF valuation functions r1, . . . , rn,
the mechanism computes a non-redundant Lorenz domi-
nating allocation A = (A1, . . . , An) with respect to these
reports and σ (as implied by Theorem 4), and gives each
player i the respective set Ai.
We now show that the PE mechanism is truthful. For this

we introduce some notation. Given a valuation function fi
and a set D of items, we use fi|D to denote the function
fi restricted to the items of D. Namely, for every set S,
fi|D(S) = fi(S ∩ D). We note that if fi is an MRF, then
so is fi|D. Truthfulness will be a consequence of the follow-
ing properties of the allocation mechanism.

We say that an allocation mechanism is faithful if the fol-
lowing holds for every collection f = (f1, . . . , fn) of val-
uation functions and for every player i. Let Ai denote the
allocation of the mechanism to player i when the reported
valuation functions are f . Then if instead player i reports
valuation function fi|Ai

(and the reports of the other players
remain unchanged), then the allocation to player i remains
Ai. We say that an allocation mechanism is strongly faithful
if it is faithful, and in addition, for every set A′ ⊂ Ai, if
player i reports valuation function fi|A′ (and the reports of
the other players remain unchanged), then the allocation to
player i becomes A′.

We say that an allocation mechanism is monotone if the
following holds for every collection f = (f1, . . . , fn) of
valuation functions, every player i, and every two sets of
items S and T with S ⊂ T . Let Ai|S denote the allocation
of the mechanism to player i when the reported valuation
function for player i is fi|S and the remaining reports are
as in f . Then if instead player i reports a legal (see remark
that follows) valuation function fi|T (and the remaining re-
ports remain unchanged), then the allocationAi|T to player i
satisfies fi(Ai|T ) ≥ fi(Ai|S). (Remark. It may happen that
fi is not an MRF, fi|T is not an MRF, but fi|S happens to
be an MRF. In this case the PE mechanism might produce
a nonempty Ai|S and an empty Ai|T , violating the inequal-
ity fi(Ai|T ) ≥ fi(Ai|S). For this reason we do not impose
the monotonicity condition if the valuation function fi|T is
illegal with respect to the underlying allocation mechanism.)

We next prove that the PE mechanism is truthful.
Theorem 5 The PE mechanism is truthful for players with
MRF valuations. Namely, for every player with an MRF val-
uation, reporting her true valuation function maximizes her
utility, for any reports of the other players.
Proof. Consider an arbitrary player v. Fix the reported val-
uation functions of all other players. All these reported val-
uation functions can be assumed to be MRFs, because the

8See full version for more details.
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PE mechanism replaces every non-MRF reported function
by the all 0 MRF. Let fv be the MRF valuation of v. Let
Av denote the set of items that v receives when reporting
fv . Suppose now that instead v reports a different valuation
function f ′v 6= fv , and receives an allocation A′

v . We need to
show that fv(Av) ≥ fv(A′

v).
We may assume that f ′v is an MRF, as otherwise v gets

no item and fv(Av) ≥ 0 = fv(∅). Change the report f ′v to
f ′v|A′

v
. By faithfulness (proven in the full version) the allo-

cation to v remains A′
v . Let B ⊆ A′

v be a subset of small-
est cardinality for which fv(B) = fv(A

′
v). Necessarily,

|B| = fv(A
′
v) = fv(B), and B is a maximum size subset

of A′
v that is independent with respect to the matroid under-

lying fv . Change the report f ′v|A′
v

to f ′v|B . By strong faith-
fulness (proven in full version) the allocation to v becomes
B. Now change the report f ′v|B to fv|B . This changes noth-
ing because as functions f ′v|B = fv|B (both f ′v and fv give
value 1 to items ofB, value 0 to other items, and are additive
over B – for f ′v additivity follows because the allocation is
non-redundant, and for fv becauseB was chosen to be an in-
dependent set of the matroid), and hence the allocation to v
remains B. Finally, change the report fv|B to fv . By mono-
tonicity (proven in full version), the resulting allocation to v
(which is now simply Av) has value to v at least as high as
B does. We conclude that fv(Av) ≥ fv(B) = fv(A

′
v), as

desired. �

In the full version we prove that the PE mechanism can
be computed efficiently, as claimed in Theorem 1.

3.3 Best-of-Both-Worlds via Random Priorities
We have presented the PE mechanism that is truthful, wel-
fare maximizing and EFX (among other fairness properties).
Yet, as this is a deterministic mechanism, it cannot be envy-
free (deterministic envy freeness is clearly impossible: con-
sider a single desired item and two agents). In this section we
show that envy can be eliminated (ex-ante) by running the
PE mechanism with uniformly random priorities, and that
this holds even if agents are not risk neutral.

The random priority egalitarian (RPE) mechanism is the
mechanism that first assigns the agents priorities uniformly
at random, and then runs the PE allocation mechanism with
the drawn priorities. This mechanism is universally truthful
(truthful for any realization of the random priorities), wel-
fare maximizing and obtains all the fairness properties of
the PE mechanism ex-post. We also show that it is stochasti-
cally envy free. This establishes a best-of-both-worlds result:
both stochastic envy freeness of the randomized allocation,
and EFX (among other fairness properties) ex-post.

For given valuation functions (v1, v2, . . . , vn), a distribu-
tion over allocations is stochastically envy free if for every
two agents i and j, and for every value t,

Pr[vi(A(i)) ≥ t] ≥ Pr[vi(A(j)) ≥ t],

where the probability is taken over the choice of random
allocation according to the given distribution.

We note that this notion of stochastic envy-freeness im-
plies ex-ante envy-freeness, that is, it implies E[vi(Ai)] ≥

E[vi(Aj)], but it is stronger (see full version), and it implies
that for any risk attitude, and not only when an agent is risk
neutral, he prefers his own lottery over the lottery of any
other agent (e.g., he can be risk seeking or risk averse).

We next present our result for the RPE mechanism:
Theorem 6 The random priority egalitarian (RPE) mecha-
nism has the following properties when players have sub-
modular dichotomous valuations:

1. Being truthful is a dominant strategy for any realization
of the priorities (universally truthful).

2. When players are truthful the realized allocation is wel-
fare maximizing.

3. When players are truthful, the realized allocation of the
mechanism is a Lorenz dominating allocation, and conse-
quently it enjoys additional fairness properties, including
maximizing Nash social welfare, and being envy-free up
to any item (EFX). If furthermore, the valuations are ad-
ditive dichotomous, the allocation gives every player at
least her maximin share.

4. The mechanism is stochastically envy-free, and thus is ex-
ante envy free as well as ex-ante proportional.

4 XOS Valuations
We next consider dichotomous valuations beyond the sub-
modular case. A class of valuations that contains submodu-
lar valuations is the class of XOS valuations. An XOS valua-
tion f is defined by a set of additive valuations {f1, . . . , fk}
and for every S, f(S) = maxi∈[k] fi(S). An XOS dichoto-
mous valuation, is a function that is both XOS and dichoto-
mous. We use the following construction of an XOS dichoto-
mous valuation. Given a family F of sets of items, we de-
fine fF (S) = maxT∈F |T ∩ S|. Clearly fF is XOS and
dichotomous, since we can define for every T ∈ F , the ad-
ditive function fT (S) = |T ∩S|, and fF is the max over the
{fT }T∈F .
Proposition 7 For the setting with two dichotomous XOS
players and four items, there is no randomized truthful-in-
expectation mechanism that always maximizes welfare.
Proof. Let the set of items M = {1, 2, 3, 4}. Given a family
F of feasible subsets of M , let fF be the XOS dichotomous
function

fF (S) = max
T∈F
|T ∩ S|

Consider any mechanism that always picks an allocation
that maximizes the welfare. If both players have the same
family F1 with only one feasible set T = {2, 3, 4}, then
there is a player that gets more than one item in expecta-
tion, as welfare maximization implies that all three items in
{2, 3, 4}must be allocated. W.l.o.g., we assume that player 1
is that player. Suppose now that player 1 has the family
F2, that contains T and the set {1}. If player 1 reports F2

(and player 2 reports F1), a welfare maximizing mechanism
must allocate item 1 to player 1 and the remaining items
to player 2. Yet player 1 can get higher expected value by
reporting F1, and thus the mechanism is not truthful in ex-
pectation. �

For additional impossibility results, see the full version.
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