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Abstract

Many efficient algorithms have been designed to recover
Nash equilibria of various classes of finite games. Special
classes of continuous games with infinite strategy spaces,
such as polynomial games, can be solved by semidefinite pro-
gramming. In general, however, continuous games are not di-
rectly amenable to computational procedures. In this contri-
bution, we develop an iterative strategy generation technique
for finding a Nash equilibrium in a whole class of continu-
ous two-person zero-sum games with compact strategy sets.
The procedure, which is called the double oracle algorithm,
has been successfully applied to large finite games in the past.
We prove the convergence of the double oracle algorithm
to a Nash equilibrium. Moreover, the algorithm is guaranteed
to recover an approximate equilibrium in finitely-many steps.
Our numerical experiments show that it outperforms fictitious
play on several examples of games appearing in the literature.
In particular, we provide a detailed analysis of experiments
with a version of the continuous Colonel Blotto game.

Introduction
Action spaces of games appearing in AI applications are
often prohibitively large. Consequently, one has to strive
for efficiently computable approximations of equilibria, pos-
sibly with provable bounds on convergence rates (Gilpin,
Peña, and Sandholm 2012). A number of algorithms ap-
plied in AI like regret matching (Hart and Mas-Colell 2000),
the double oracle algorithm (McMahan, Gordon, and Blum
2003) or the policy-space response oracle (Lanctot et al.
2017; Muller et al. 2019) overcome the problem with the car-
dinality by selecting ‘good’ strategies iteratively. The recent
advances in algorithmic game theory have led to the devel-
opment of algorithms for approximately solving extremely
large finite games, such as variants of poker (Moravčı́k et al.
2017; Brown and Sandholm 2019) or multidimensional re-
source allocation problems (Behnezhad et al. 2017).

Completely new problems arise from considering games
with infinite strategy spaces, in which the strategies are vec-
tors of real numbers corresponding to physical parameters
(Archibald and Shoham 2009) or to the setting of classifiers
(Yasodharan and Loiseau 2019). The first theoretical obsta-
cle is that the existence of mixed strategy equilibria is guar-
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anteed only for infinite games whose utility functions satisfy
additional conditions such as continuity (Glicksberg 1952;
Fan 1952). On top of that, some well-understood classes
of infinite games have only optimal strategies with uncount-
able supports; see (Roberson 2006) for an in-depth discus-
sion of infinite Colonel Blotto games.

Computational procedures for finding (approximate)
equilibria of infinite games exist for rather special kinds
of utility functions. Two-person zero-sum polynomial
games are solvable by semidefinite programming (Parrilo
2006; Laraki and Lasserre 2012). Games with piecewise-
linear utility functions and their equilibria were analyzed
in (Kroupa and Majer 2014). Approximate equilibria of sep-
arable games can be computed under particular assumptions
(Stein, Ozdaglar, and Parrilo 2008). For some games the best
response can be approximated by neural nets (Kamra et al.
2018, 2019). One of the important iterative procedures for fi-
nite games, Brown-Robinson learning process known as fic-
titious play (Brown 1951; Robinson 1951), has been recently
applied to infinite games (Ganzfried 2020). However, the
dynamics of best response strategies generated by fictitious
play was analyzed only in special cases; cf. (Hofbauer and
Sorin 2006; Perkins and Leslie 2014). To the best of our
knowledge, not much is known about the convergence of fic-
titious play for general zero-sum continuous games as de-
fined below.

This paper deals with continuous games, which we define
as two-person zero-sum games with continuous utility func-
tions over compact strategy sets. Finding equilibria in such
games is a much harder problem than solving finite games.
Computational techniques exist only for special utility func-
tions mentioned above (polynomial, convex/concave, sep-
arable, etc.) In this paper we propose an iterative algo-
rithm that can be applied to all continuous games. Namely
we extend the double oracle algorithm (McMahan, Gordon,
and Blum 2003) to such games. This algorithm is an itera-
tive strategy generation technique based on (i) the solution
of subgames by LP solvers and (ii) the expansion of sub-
games’ strategy sets using the best response strategies ob-
tained thus far. Our main result, Theorem 1, is the conver-
gence of this algorithm for any continuous game. We point
out that this is a non-trivial generalization of Theorem 1
from (McMahan, Gordon, and Blum 2003). The crucial is-
sues to be overcome are the following.
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• Computing equilibria in continuous games is inherently
an infinite-dimensional optimization problem.

• Equilibria in continuous games may be mixed strategies
with uncountable supports, hence not computable struc-
tures.

• The convergence of the algorithm and the approxima-
tion of equilibria necessarily involve weak convergence
in the spaces of mixed strategies.

We discuss the results of numerical experiments, which
show that the double oracle algorithm converges faster
than fictitious play on several examples (polynomial
game, Townsend function, and a version of the Colonel
Blotto game). Our experiments’ codes are available at
https://github.com/sadda/Double Oracle.

Basic Notions
This section summarizes basic notions and results related to
continuous zero-sum games and their equilibria; see (Karlin
1959) or (Stein, Ozdaglar, and Parrilo 2008) for details.

Continuous Games
Player 1 and Player 2 select strategies from nonempty com-
pact sets X ⊆ Rm and Y ⊆ Rn, respectively. The utility
function of Player 1 is a continuous function u : X×Y → R.
The utility function of Player 2 is −u. The triple G =
(X,Y, u) is called a continuous game. Note that some au-
thors use the term ‘continuous game’ in a somewhat dif-
ferent sense, allowing utility functions to be discontinuous
functions over metric spaces of strategies.

A continuous game G is a finite game if X and Y are
finite, and G is an infinite game otherwise. We will need
the notion of subgame. When X ′ ⊆ X and Y ′ ⊆ Y
are nonempty compact sets, we define the subgame G′ =
(X ′, Y ′, u) of G by the restriction of u to X ′ × Y ′, which is
denoted by the same letter.

The concept of mixed strategy in continuous games al-
lows a player to randomize with respect to any probability
measure. We will spell out the definitions related to mixed
strategies only for Player 1. Their counterparts for Player 2
are completely analogous. A mixed strategy of Player 1
is a Borel probability measure p over X . The set of all
mixed strategies of Player 1 is denoted by ∆X . The support
of a mixed strategy p ∈ ∆X is the set

spt p :=
⋂
{K ⊆ X | K compact, p(K) = 1}.

Every mixed strategy p ∈ ∆X can be classified as one of the
following types depending on the size of its support.

1. Pure strategy p. This means that spt p = {x} for some
x ∈ X . Equivalently, p is equal to Dirac measure δx.

2. Finitely-supported mixed strategy p. The support spt p is
finite. Hence, p can be written as a convex combination

p =
∑

x∈spt p

p(x) · δx.

3. Mixed strategy p with infinite support spt p.

Put ∆ := ∆X ×∆Y . If players implement a mixed strat-
egy profile (p, q) ∈ ∆, the expected utility of Player 1 is

U(p, q) := ∫
X×Y

u(x, y) d(p× q). (1)

This yields a function U : ∆→ R, which can be effectively
evaluated in important special cases. For example, when
both spt p and spt q are finite,

U(p, q) =
∑

x∈spt p

∑
y∈spt q

p(x) · q(y) · u(x, y).

If Player 1 employs a pure strategy given by x ∈ X and
Player 2 uses a mixed strategy q ∈ ∆Y , we will use the short
notation U(x, q) := U(δx, q).

Equlibria in Continuous Games
A mixed strategy profile (p∗, q∗) ∈ ∆ is an equilibrium
in a continuous game G if, for all (p, q) ∈ ∆,

U(p, q∗) ≤ U(p∗, q∗) ≤ U(p∗, q). (2)
Every continuous game has at least one equilibrium; see
(Glicksberg 1952). Define the lower/upper value of G by

v(G) := max
p∈∆X

min
q∈∆Y

U(p, q) and

v(G) := min
q∈∆Y

max
p∈∆X

U(p, q).

Proposition 1 gives several conditions for equilibrium,
which will be used throughout the paper without further ref-
erences. Its proof is omitted since it is completely analogous
to the case of finite games.
Proposition 1. Let G = (X,Y, u) be a continuous game
and (p∗, q∗) ∈ ∆. The following assertions are equivalent.

1. The strategy profile (p∗, q∗) is an equilibrium.
2. U(x, q∗) ≤ U(p∗, q∗) ≤ U(p∗, y), for all (x, y) ∈ X×Y .
3. min

y∈Y
U(p∗, y) = v(G) and max

x∈X
U(x, q∗) = v(G).

4. v(G) = U(p∗, q∗) = v(G).
Hence, the equality v(G) = v(G) holds for every continuous
game G, and v(G) := v(G) is called the value of G.

Bounds on the size of supports of equilibrium strate-
gies are known only for particular classes of continu-
ous games; see (Stein, Ozdaglar, and Parrilo 2008). There
are examples of games whose equilibria are almost any
sets of finitely-supported mixed strategies (Rehbeck 2018).
Moreover, some continuous games possess only equilibria
with uncountable supports (Roberson 2006).

In many applications it is enough to find an ε-equilibrium
(p∗, q∗) for some ε ≥ 0, that is,

U(p, q∗)− ε ≤ U(p∗, q∗) ≤ U(p∗, q) + ε (3)
for all (p, q) ∈ ∆. Note that this is a natural extension
of (2). According to Proposition 2, whose proof is in Ap-
pendix, we can always recover an approximate equilibrium
(p∗, q∗) with finite supports and such that U(p∗, q∗) is arbi-
trarily close to the value of game v(G).
Proposition 2. Let G be continuous game and let ε > 0.
• There exists an ε-equilibrium (p∗, q∗) of G such that both

spt p∗ and spt q∗ are finite.
• Every ε-equilibrium (p∗, q∗) of G satisfies the inequality
|U(p∗, q∗)− v(G)| ≤ ε.

5071



Algorithm 1 Double Oracle Algorithm

Input: Continuous game G = (X,Y, u), nonempty finite
subsets X1 ⊆ X , Y1 ⊆ Y , and ε ≥ 0

1: Let i := 0
2: repeat
3: Increase i by one
4: Find an equilibrium (p∗i , q

∗
i ) of subgame (Xi, Yi, u)

5: Find some xi+1 ∈ β1(q∗i ) and yi+1 ∈ β2(p∗i )
6: Let Xi+1 := Xi ∪ {xi+1} and Yi+1 := Yi ∪ {yi+1}
7: Let vi := U(p∗i , yi+1) and vi := U(xi+1, q

∗
i )

8: until vi − vi ≤ ε
Output: ε-equilibrium (p∗i , q

∗
i ) of game G

Double Oracle Algorithm
The double oracle algorithm uses the notion of best response
strategies. For every mixed strategy q ∈ ∆Y of Player 2,
the best response set of Player 1 is

β1(q) :=

{
x ∈ X | U(x, q) = max

x′∈X
U(x′, q)

}
.

Analogously, for any p ∈ ∆X , let

β2(p) :=

{
y ∈ Y | U(p, y) = min

y′∈Y
U(p, y′)

}
.

Note that best response strategies are defined to be pure,
without any loss of generality; see Proposition 4. Moreover,
by compactness and continuity, β1(q) and β2(p) are always
nonempty compact sets.

The double oracle algorithm proceeds as follows. In ev-
ery iteration i, finite strategy sets Xi and Yi are constructed,
and an equilibrium (p∗i , q

∗
i ) of finite subgame (Xi, Yi, u) is

computed by the linear programming. The best responses
xi+1 and yi+1 to q∗i and p∗i , respectively, are found, and then
added to the strategy sets Xi and Yi. This is repeated until
the terminating condition U(xi+1, q

∗
i )− U(p∗i , yi+1) ≤ ε is

satisfied. The resulting strategy profile is guaranteed to be
an ε-equilibrium.

The main result of this paper is the convergence of Al-
gorithm 1. This result generalizes Theorem 1 from (McMa-
han, Gordon, and Blum 2003), which applies only to finite
games. We will first discuss several important properties of
the algorithm. At each step i we have

vi ≤ U(p∗i , q
∗
i ) ≤ vi, (4)

which follows from

U(p∗i , q
∗
i ) = max

x∈Xi

U(x, q∗i ) ≤ max
x∈X

U(x, q∗i ) = vi,

and similarly from the analogous inequality for vi. The same
bounds hold even for the value of game by Lemma 2:

vi ≤ v(G) ≤ vi.

The standard stopping condition of the double oracle algo-
rithm for finite games is Xi+1 = Xi and Yi+1 = Yi. Herein
we use the terminating condition vi − vi ≤ ε for two main
reasons.

• It is more general. Lemma 1 says that if Xi+1 = Xi and
Yi+1 = Yi, then vi − vi = 0.

• It enables us to control the quality of approximation. As-
sume that the algorithm terminates at step i. Then (p∗i , q

∗
i )

is an ε-equilibrium by Theorem 1 and Proposition 2 guar-
antees that v(G) is known precisely up to ε.

Theorem 1. Let G = (X,Y, u) be a continuous game.
1. If G is a finite game and ε = 0, Algorithm 1 converges to

an equilibrium of G in finitely-many iterations.
2. If G is an infinite game and ε = 0, then any weakly con-

vergent subsequence of Algorithm 1 converges to an equi-
librium of G in a possibly infinite number of iterations.
Moreover, such a weakly convergent subsequence exists.

3. If G is an infinite game and ε > 0, Algorithm 1 converges
to a finitely supported ε-equilibrium of G in finitely-many
iterations.

Proof. Let ε ≥ 0. Assume that the terminating condition

vi − vi = U(xi+1, q
∗
i )− U(p∗i , yi+1) ≤ ε

is satisfied. We will show that (p∗i , q
∗
i ) is an ε-equilibrium

of G. For every p′ ∈ ∆X ,

U(p′, q∗i )− ε ≤ max
p∈∆X

U(p, q∗i )− ε = max
x∈X

U(x, q∗i )− ε

= U(xi+1, q
∗
i )− ε ≤ U(p∗i , yi+1) ≤ U(p∗i , q

∗
i ),

where the second relation follows from Proposition 4 (see
Appendix), the third and the fifth from the definition of best
response, and the fourth inequality from the terminating con-
dition. We can derive a similar inequality for Player 2. This
proves that (p∗i , q

∗
i ) is an ε-equilibrium of G. Note that for

ε = 0, this means that (p∗i , q
∗
i ) is an equilibrium of G.

Item 1. Let G be a finite game and ε = 0. After finitely-
many iterations, necessarily Xi+1 = Xi and Yi+1 = Yi.
Lemma 1 implies that the terminating condition of Algo-
rithm 1 is satisfied with ε = 0 and the first paragraph of this
proof implies that (p∗i , q

∗
i ) is an equilibrium of G.

Item 2. Let G be an infinite game and ε = 0. If Al-
gorithm 1 terminates at step i, then the first paragraph
implies that (p∗i , q

∗
i ) is an equilibrium of G. In the op-

posite case, the algorithm generates an infinite sequence
(p∗1, q

∗
1), (p∗2, q

∗
2), . . . Consider any weakly convergent sub-

sequence1 of this sequence. Without loss of generality, this
and all other subsequences in this proof will be denoted
with the same indices as the original sequences. Therefore,
p∗i ⇒ p∗ for some p∗ ∈ ∆X and q∗i ⇒ q∗ for some
q∗ ∈ ∆Y , where the symbol ⇒ denotes the weak conver-
gence (see Appendix). We need to show that (p∗, q∗) is an
equilibrium of G. First, assume that y ∈

⋃∞
i=1 Yi. Then

y ∈ Yi0 for some i0, hence y ∈ Yi for each i ≥ i0. Since
(p∗i , q

∗
i ) is an equilibrium of subgame (Xi, Yi, u), we get

U(p∗i , q
∗
i ) ≤ U(p∗i , y)→ U(p∗, y),

where the convergence follows from (11). Since
U(p∗i , q

∗
i )→ U(p∗, q∗) due to (10), this implies

U(p∗, q∗) ≤ U(p∗, y). (5)

1At least one such subsequence exists by Proposition 3.
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The previous inequality holds for all y ∈ cl(
⋃∞

i=1 Yi), by
continuity of U .

Fix now an arbitrary y ∈ Y . The definition of yi+1 yields

U(p∗i , yi+1) ≤ U(p∗i , y)→ U(p∗, y), (6)

where the limit holds due to (11). Since yi ∈ Yi, compact-
ness of Y provides a convergent subsequence yi → ŷ such
that ŷ ∈ cl(

⋃∞
i=1 Yi). This allows us to use (5) to obtain

U(p∗i , yi+1)→ U(p∗, ŷ) ≥ U(p∗, q∗). (7)

Combining (6) and (7) yields U(p∗, q∗) ≤ U(p∗, y).
Similarly, we get U(x, q∗) ≤ U(p∗, q∗) for all x ∈ X .

Hence, (p∗, q∗) is an equilibrium of G by Proposition 1.
Item 3. As in item 2., we consider the subsequence

yi → ŷ such that ŷ ∈ cl(
⋃∞

i=1 Yi). Then from (7) and
from the inequality U(p∗i , yi+1) ≤ U(p∗i , q

∗
i ), we derive

U(p∗i , yi+1) → U(p∗, q∗). Completely analogously, we get
U(xi+1, q

∗
i )→ U(p∗, q∗). Then

U(xi+1, q
∗
i )− U(p∗i , yi+1)→ 0.

This means that for any ε > 0, there exists some j such that

U(xi+1, q
∗
i )− U(p∗i , yi+1) ≤ ε, for all i ≥ j.

Therefore, the terminating condition is satisfied in the j-th
step of Algorithm 1. It follows from the first paragraph of
this proof that (p∗j , q

∗
j ) is a finitely-supported ε-equilibrium

of G.

Since best response strategies are not necessarily unique,
the sequence generated by Algorithm 1 may fail to converge
for some continuous game. Hence, it is inevitable to consider
a weakly convergent subsequence of iterates in Theorem 1.
Such a continuous game is shown in Example 1. Another
feature of the double oracle algorithm is that the sequence
v1 − v1, v2 − v2, . . . has nonnegative terms and converges
to zero, but it is not necessarily monotone. This behavior can
be demonstrated even for some finite games.

Numerical Experiments
We present two classes of games. The first class con-
tains one-dimensional strategy spaces and the second class
consists of certain Colonel Blotto games. The equilib-
rium of each finite subgame is found by solving a lin-
ear program. The best responses were computed by select-
ing the best point of a uniform discretization for the one-
dimensional problems and by using a mixed-integer linear
programming reformulation for the Colonel Blotto games.
The examples were implemented in Python with solvers
scipy.optimize and mip. All computations were per-
formed on a laptop with Intel Core i5 CPU and 8GB RAM
and no GPU was involved. Randomness is present only in
the initialization of one-dimensional examples when a ran-
dom pair of pure strategies is found.

We compare the double oracle algorithm with fictitious
play. Its extension from finite to infinite games was recently
formulated in (Ganzfried 2020).
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Figure 1: Convergence to the value of game G1

One-dimensional Examples
We consider a polynomial game G1 from (Parrilo 2006) with
the strategy spacesX = Y = [−1, 1] and the utility function

u1(x, y) = 5xy − 2x2 − 2xy2 − y.

In the equilibrium, Player 1 has the pure strategy x∗ = 0.2
and Player 2 has the mixed strategy q∗ = 0.78δ1 + 0.22δ−1.
The value of game is−0.48. Figure 1 shows the convergence
of upper/lower estimates of the value of game. Note that the
fictitious play is much slower to converge than the double
oracle algorithm.

The utility function u2 in our second example (game G2)
is based on (Townsend 2014). Specifically,

u2(x, y) = − cos2((x− 0.1)y)− x sin(3x+ y)

is defined on X = [−2.25, 2.5] and Y = [−2.5, 1.75]; see
Figure 2. The convergence to the value is depicted on Fig-
ure 3. Once again the double oracle algorithm converges
fast, while fictitious play is rather slow to converge. In Fig-
ure 4 we show the optimal strategies of Player 1. The double
oracle algorithm converged to a mixed strategy supported
by four points, the fictitious play seems to reach in limit
a continuous distribution whose peaks are those points. Note
that the vertical axis is rescaled to account for the difference
between discrete and continuous distributions.

Figure 2: Townsend function u2
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Figure 3: Convergence to the value of game G2
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Figure 4: Mixed strategies in game G2

Colonel Blotto Game
We consider a continuous variant of the Colonel Blotto
game. Two players simultaneously allocate forces across n
battlefields. Both strategy spaces X and Y equal to{

x := (x1, . . . , xn) ∈ Rn
+ | x1 + · · ·+ xn = 1

}
.

The utility function of Player 1,

u(x,y) :=
n∑

j=1

aj · l(xj − yj),

captures the total excess of the first army over the second
army. The result on a battlefield j is aj · l(xj − yj), where
aj > 0 is a weight of battlefield j and l(xj − yj) mea-
sures the performance of the first army on a battlefield j. The
standard choice is the signum function l(z) = sgn(z); see
(Gross and Wagner 1950) or (Roberson 2006). This paper
assumes that each player must allocate a sufficiently higher
proportion of forces than the opponent to win the battle on
a single battlefield. Specifically, we consider

l(z) =


−1 if z ≤ −c,
1
c z if z ∈ [−c, c],
1 if z ≥ c,

for some c > 0. (8)

When c→ 0, we recover the classical infinite colonel Blotto
game since (8) approaches sgn(z) in the limit.

We will show how to compute best response strate-
gies in case of (8). Assume that Player 2 employs strate-
gies (y1, . . . ,yk) with probabilities (q1, . . . , qk), where
yi := (y1

i , . . . , y
n
i ) ∈ Y . Then any best response strategy

of Player 1 is a solution to

max
x∈X

k∑
i=1

qi

n∑
j=1

aj · l(xj − yji ). (9)

Since l is a piecewise affine function, this nonlinear opti-
mization problem can be reformulated as a mixed-integer
linear problem. In Appendix we derive its equivalent form

max
x,s,t,z,w

k∑
i=1

qi

n∑
j=1

aj (sij − tij − 1)

s.t. x ∈ X,
sij ≥ 0, sij ≥ 1

c (xj − yji + c),

sij ≤ 1
c (xj − yji + c) +Ms

l (1− zij),
sij ≤Ms

uzij ,

tij ≥ 0, tij ≥ 1
c (xj − yji − c),

tij ≤ 1
c (xj − yji − c) +M t

l (1− wij),

tij ≤M t
uwij ,

sij ∈ R, tij ∈ R, zij ∈ {0, 1}, wij ∈ {0, 1},

whereMs
l = M t

u = 1
c −1 andM t

l = Ms
u = 1

c +1. The best
response of Player 2 is obtained by solving an analogous
MILP. Note that the MILP defined above is necessarily dif-
ferent from the one formulated in (Ganzfried 2020).

For the numerical results we consider three battlefields
(n = 3) with equal weights (a = (1, 1, 1)). We observed
that the choice of initial strategy sets X1 and Y1 is crucial.
Indeed, setting

X1 = Y1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

provides much faster convergence than starting from a ran-
dom point. The reason lies in the left-hand side of Fig-
ure 5, which shows the optimal solution produced by the
double oracle algorithm for c = 1

32 . The optimal strategies
are equidistant on the grid with distance c. This is a sen-
sible result as the best response of Player 1 to the strategy
(y1, y2, y3) of Player 2 is (y1 + c, y2 + c, y3− 2c). Since X1

and Y1 already belong to the grid, all the iterates stay in it.
However, they may not converge within this set when initial
strategies are chosen at random.

The previous observation inspired us to start with both
X1 and Y1 as the whole grid. It turned out that the dou-
ble oracle converged in one iteration (the initial point was
already an equilibrium) to the strategies depicted in Fig-
ure 6. The left-hand side shows the results for c = 1

16 , while
the right-hand side corresponds to c = 1

32 . These results
are close to the hexagonal solutions obtained in (Gross and
Wagner 1950) and (Roberson 2006).
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Figure 5: The optimal strategy for c = 1
32 when started from three corner points (left). The convergence of the double oracle

algorithm for n = 3 and n = 10 (scaled by 1
50 for demonstration purposes) battlefields (right).
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Figure 6: The optimal strategies for c = 1
16 (left) and c = 1

32 (right) produced by the double oracle algorithm when started from
the grid. Both solutions are symmetric.

The right-hand side of Figure 5 shows the convergence of
the double oracle algorithm for n = 3 with a = (1, 1, 1)
and for n = 10 with a = (3, 4, . . . , 12). In both cases we
put c = 1

16 . It appears that the convergence is influenced
by c more than by the number of battlefields n.

Conclusions
We extended the double oracle algorithm from finite to
continuous games. We proved that the algorithm recovers
a finitely-supported ε-equilibrium in finitely many iterations
and converges to an equilibrium in a possibly infinite num-
ber of iterations. We showed that the double oracle algorithm
performs better than fictitious play on selected examples. It
is evident that the convergence of this algorithm depends on
the size of constructed subgames and the best response cal-
culation in each iteration. An important open problem is to
analyze the speed of convergence of the double oracle algo-
rithm.
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Appendix
Weak Convergence of Measures
We will summarize a necessary background in weak topol-
ogy on the space of probability measures (Billingsley 1968).
A sequence of mixed strategies (pi) in ∆X weakly converges
to p ∈ ∆X if

lim
i→∞

∫X f(x) dpi = ∫X f(x) dp

for every continuous function f : X → R, and we denote
this by pi ⇒ p. Endowed with the topology corresponding
to weak convergence, the convex set of mixed strategies ∆X

is a compact space. Analogously, ∆Y becomes a compact
set and so is the set ∆ = ∆X ×∆Y . Then the definition (1)
warrants that U is a continuous function on ∆. Note that
compactness of ∆ and continuity of U imply the existence
of all maximizers/minimizers throughout the paper.
Proposition 3. The space ∆ is weakly sequentially compact,
that is, every sequence in ∆ contains a weakly convergent
subsequence.
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Since U is continuous, the definition of weak convergence
immediately implies the following two statements:

• If pi ⇒ p in ∆X and qi ⇒ q in ∆Y , then

U(pi, qi)→ U(p, q). (10)

• If pi ⇒ p in ∆X and yi → y in Y , then

U(pi, yi)→ U(p, y). (11)

Finally, it can be shown that the optimal value of utility func-
tion in response to the opponent’s mixed strategy is attained
for some pure strategy.

Proposition 4. For any p ∈ ∆X we have

min
y∈Y

U(p, y) = min
q∈∆Y

U(p, q).

Proofs and Additional Results
Proof of Proposition 2. The existence of an ε-equilibrium
follows from Theorem 1. To prove the second part, assume
that (p∗, q∗) is an ε-equilibrium. Then (3) implies

max
p∈∆X

U(p, q∗)−ε ≤ U(p∗, q∗) ≤ min
q∈∆Y

U(p∗, q)+ε. (12)

Let (p̂, q̂) be an equilibrium of G. Then

U(p̂, q̂) ≤ U(p̂, q∗) ≤ max
p∈∆X

U(p, q∗) ≤ U(p∗, q∗) + ε,

where the first inequality follows from (2) and the third
from (12). In a similar way, we can show

U(p̂, q̂) ≥ U(p∗, q̂) ≥ min
q∈∆Y

U(p∗, q) ≥ U(p∗, q∗)− ε.

Combining these two relations with U(p̂, q̂) = v(G) implies
the second statement of Proposition 2.

Lemma 1. Assume Xi+1 = Xi and Yi+1 = Yi in some step
i of Algorithm 1. Then U(p∗i , yi+1) = U(xi+1, q

∗
i ).

Proof. The condition Xi+1 = Xi implies xi+1 ∈ Xi. Then

U(p∗i , q
∗
i ) = max

x∈Xi

U(x, q∗i ) = max
x∈X

U(x, q∗i ) = U(xi+1, q
∗
i ),

where the first equality follows from Proposition 1 applied
to the subgame (Xi, Yi, u), the second from xi+1 ∈ Xi, and
the third from the definition of iterate xi+1.

Similarly, we can show U(p∗i , q
∗
i ) = U(p∗i , yi+1), which

means U(p∗i , yi+1) = U(xi+1, q
∗
i ).

Lemma 2. The inequality

vi ≤ v(G) ≤ vi
holds in every step i of Algorithm 1.

Proof. Let (p∗, q∗) be an equilibrium of G. Then

vi = U(p∗i , yi+1) = min
y∈Y

U(p∗i , y) = min
q∈∆Y

U(p∗i , q)

≤ U(p∗i , q
∗) ≤ U(p∗, q∗) = v(G).

The second inequality can be obtained analogously.

Example 1. Let X := [0, 1], Y := [0, 1], and consider any
continuous function u : X × Y → R for which the dou-
ble oracle algorithm produces an infinite number of iterates
(x1, y1), (x2, y2), . . . for ε = 0. Put X̃ := [0, 1] ∪ [2, 3] and
define ũ : X̃ × Y → R by

ũ(x, y) =

{
u(x, y) if x ∈ [0, 1],

u(x− 2, y) if x ∈ [2, 3].

Since u is continuous, (X̃, Y, ũ) is a continuous game. Since
ũ(x, y) = ũ(x+2, y), the extrema of marginal functions are
not unique. Considering ỹi = yi, the double oracle algo-
rithm may produce the sequence of iterations

x̃i =

{
xi if i is odd,
xi + 2 if i is even.

This sequence is obviously not convergent. However, there
exists a convergent subsequence and its limit is an equilib-
rium by Theorem 1.

Best Response for Colonel Blotto Game
Function l from (8) can be written as

l(z) = max
{

1
c (z + c), 0

}
−max

{
1
c (z − c), 0

}
− 1.

With each i, j in (9) we associate auxiliary variables sij
and tij and the contraints ensuring l(xj−yji ) = sij−tij−1.
The constraints on sij and tij follow from Lemma 3.
Lemma 3. Let a > 0, b ∈ R, Ml > 0, Mu > 0 and
f(x) := max{a(x−b), 0}. For every x such that a(x−b) ∈
[−Ml,Mu] there are a unique s ∈ R and a possibly non-
unique z ∈ {0, 1} solving the system

s ≥ 0, s ≤ a(x− b) +Ml(1− z),
s ≥ a(x− b), s ≤Muz.

Moreover, it holds f(x) = s.

Proof. The proof is based on the well-known big-M method
for the deactivation of constraints. The claim follows from
the following implications,

a(x− b) < 0 =⇒ z = 0 =⇒ s = 0,

a(x− b) > 0 =⇒ z = 1 =⇒ s = a(x− b).

If a(x − b) = 0, then s = 0 is unique, whereas z may have
either value.

Since xj , yji ∈ [0, 1], we have

1
c (xj − yji + c) ∈ [− 1

c + 1, 1
c + 1],

1
c (xj − yji − c) ∈ [− 1

c − 1, 1
c − 1],

which gives the bounds in Lemma 3.
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