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Abstract
Deep reinforcement learning has been successful in a variety
of tasks, such as game playing and robotic manipulation. How-
ever, attempting to learn tabula rasa disregards the logical
structure of many domains as well as the wealth of readily
available knowledge from domain experts that could help
“warm start” the learning process. We present a novel rein-
forcement learning technique that allows for intelligent ini-
tialization of a neural network weights and architecture. Our
approach permits the encoding domain knowledge directly
into a neural decision tree, and improves upon that knowl-
edge with policy gradient updates. We empirically validate
our approach on two OpenAI Gym tasks and two modified
StarCraft 2 tasks, showing that our novel architecture outper-
forms multilayer-perceptron and recurrent architectures. Our
knowledge-based framework finds superior policies compared
to imitation learning-based and prior knowledge-based ap-
proaches. Importantly, we demonstrate that our approach can
be used by untrained humans to initially provide > 80% in-
crease in expected reward relative to baselines prior to training
(p < 0.001), which results in a > 60% increase in expected
reward after policy optimization (p = 0.011).

1 Introduction
As reinforcement learning (RL) is applied to increasingly
complex domains, such as real-time strategy games or robotic
manipulation, RL and imitation learning (IL) approaches fail
to quickly capture the wealth of expert knowledge that al-
ready exists for many domains. Existing approaches to using
IL as a warm start require large datasets or tedious human
labeling as the agent learns everything, from vision to control
to policy, all at once. Unfortunately, these large datasets often
do not exist, as collecting these data is impractical or expen-
sive, and humans will not patiently label data for IL-based
agents (Amershi et al. 2014). While humans may not label
enough state-action pairs to train IL-based agents , there is
an opportunity to improve warm starts by soliciting exper-
tise from a human once, and then leveraging this expertise
to initialize an RL agent’s neural network architecture and
policy. With this approach, we circumvent the need for IL
and instead directly imbue human expertise into an RL agent.

To achieve this blending of human domain knowledge
with the strengths of RL, we propose Propositional Logic
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Nets (PROLONETS), a new approach to directly encode do-
main knowledge as a set of propositional rules into a neural
network, as depicted in Figure 1. Our approach leverages de-
cision tree policies from humans to directly initialize a neural
network (Figure 2). We use decision trees to allow humans to
specify behaviors to guide the agent through a given domain,
such as high-level instructions for keeping a pole balanced on
the cart pole problem. Importantly, this policy specification
does not require the human to demonstrate the balancing act
in all possible states, nor does it require the human to label
actions as being “good” or “bad.”

By directly imbuing logical propositions from the tree into
neural network weights, an RL agent can immediately begin
learning productive strategies. This approach leverages read-
ily available domain knowledge while still retaining the abil-
ity to learn and improve over time, eventually outperforming
the expertise with which it was initialized. By exploiting the
structural and logical rules inherent to many tasks to which
RL is applied, we can bypass early random exploration and
expedite an agent’s learning in a new domain.

We demonstrate that our approach can outperform standard
deep RL across two OpenAI gym domains (Brockman et al.
2016) and two modified StarCraft II domains (Vinyals et al.
2017), and that our framework is superior to state-of-the-art,
IL-based RL, even with observation of that same domain
expert knowledge. Finally, in a wildfire simulation domain,
we show that our framework can work with untrained human
participants. Our three primary contributions include:

1. We formulate a novel approach for capturing human do-
main expertise in a trainable RL framework via our archi-
tecture, PROLONETS, which we show outperforms base-
line RL approaches, including IL-based (Cheng et al. 2018)
and knowledge-based techniques (Humbird, Peterson, and
McClarren 2018), obtaining > 100% more average reward
on a StarCraft 2 mini-game.

2. We introduce dynamic growth to PROLONETS, enabling
greater expressivity over time to surpass original initial-
izations and yielding twice as much average reward in the
lunar lander domain.

3. We conduct a user study in which non-expert humans
leveraged PROLONETS to specify policies that resulted in
higher cumulative rewards, both before and after training,
relative to all baselines (p < 0.05).
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Figure 1: A visualization of our approach as it applies to our user study. Participants interact with a UI of state-checks and
actions to construct a decision tree policy that is then used to directly initialize a PROLONET’s architecture and parameters. The
PROLONET can then begin reinforcement learning in the given domain, outgrowing its original specification.

2 Related Work
Warm starts have been used for RL (Cheng et al. 2018;
Zhang and Sridharan 2019; Zhu and Liao 2017) as well
as in supervised learning for many tasks (Garcez, Broda,
and Gabbay 2012; Hu et al. 2016; Kontschieder et al. 2015;
Wang et al. 2017). While these warm start or knowledge-
based systems have provided an interesting insight into the
efficacy of warm starts or human-in-the-loop learning in
various domains, these systems typically involve either large
labeled datasets with tedious human labeling and feedback,
or they require some automated oracle to label actions as
“good” or “bad.” In highly challenging domains or problems,
building such an oracle is rarely feasible. Moreover, it is not
always possible to acquire a large labeled dataset for new
domains. However, it is often possible to solicit a policy from
a human in the form of a high-level series of if-then checks in
critical states. These decisions can be collected as a decision
tree, which our research converts into a neural network.

Researchers have previously sought to bridge the gap be-
tween decision trees and deep networks (Humbird, Peterson,
and McClarren 2018; Kontschieder et al. 2015; Laptev and
Buhmann 2014). This work has focused on partitioning a
subspace of the data for more efficient inference (Tanno et al.
2018), enabling explicit interpretability by visualizing a net-
work’s classification policy (Frosst and Hinton 2017; Paleja
et al. 2020; Silva et al. 2020), or warm starting through su-
pervised pre-training on labeled data. As discussed, this data
may not be available thus creating a need for methods which
can solicit this initialization tree directly from a human.

Most closely related to our work is deep jointly-informed
neural networks (DJINN) (Humbird, Peterson, and McClar-
ren 2018), which is the latest in a long line of knowledge-
based neural network research (França, Zaverucha, and
Garcez 2014; Garcez, Broda, and Gabbay 2012; Maclin and
Shavlik 1996; Richardson and Domingos 2006; Towell and
Shavlik 1994). DJINN uses a decision tree learned over a
training set in order to initialize the structure of a network’s
hidden layers and to route input data appropriately. How-
ever, DJINN does not explicitly initialize rules, nor does it

leverage rules solicited from humans. This distinction means
that DJINN creates an architecture for routing information
appropriately, but the decision-criteria in each layer must be
learned from scratch. Our work, on the other hand, directly
initializes both the structure and the rules of a neural network,
meaning that the human’s expertise is more completely lever-
aged for a more useful warm start in RL domains. We build
on decades of research demonstrating the value of human-
in-the-loop learning (Towell and Shavlik 1994; Zhang et al.
2019) to leverage logical rules solicited from humans in the
form of a decision tree to intelligently initialize the structure
and rules of a deep network.

Our work is related to IL and to knowledge-based or
human-in-the-loop RL frameworks (Zhang et al. 2019; Zhang
and Sridharan 2019; MacGlashan et al. 2017) and apprentice-
ship learning and inverse RL (Abbeel and Ng 2004; Knox and
Stone 2009; Chen, Paleja, and Gombolay 2020; Chen et al.
2020; Wang and Gombolay 2020a,b). Importantly, however,
our approach does not require demonstrations or datasets
to mimic human behavior. While our approach directly ini-
tializes with a human-specified policy, IL methods require
large labeled datasets (Edwards et al. 2018) or an oracle to
label data before transitioning to RL, as in the LOKI (Cheng
et al. 2018) framework. Our approach translates human ex-
pertise directly into an RL agent’s policy and begins learning
immediately, sidestepping the IL and labeling phase.

3 Preliminaries
Within RL, we consider problems presented as a Markov
decision process (MDP), which is a 5-tuple 〈S,A, T,R, γ〉
where s ∈ S are states drawn from the state space or domain,
a ∈ A are possible actions drawn from the action space,
T (s′, a, s) is the transition function representing the likeli-
hood of reaching a next state s′ by taking some action a in a
given state s, R(s) is the reward function which determines
the reward for each state, and γ is a discount factor. In this
work, we examine discrete action spaces and semantically
meaningful state spaces–intelligent initialization for continu-
ous outputs and unstructured inputs is left to future work. The
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Figure 2: A traditional decision tree and a PROLONET. De-
cision nodes become linear layers, leaves become action
weights, and the final output is a sum of the leaves weighted
by path probabilities.

goal of our RL agent is to find a policy, π(a|s), that selects
actions in states to maximize the agent’s expected long-term
cumulative reward. IL approaches, such as ILPO (Edwards
et al. 2018), operate under a similar framework, though they
do not make use of the reward signal and instead perform
supervised learning according to oracle data.

4 Approach
A visual overview of the PROLONET architecture is in Fig-
ure 2. To intelligently initialize a PROLONET, a human user
first provides a policy in the form of some hierarchical set of
decisions. These policies are solicited through simple user
interactions for specifying instructions, as in Section 6. The
user’s decision-making process is then translated into a set
of weights ~wn ∈ W and comparator values cn ∈ C repre-
senting each rule, shown in Algorithm 1. Each weight ~wn

determines which input features to consider, and, optionally,
how to weight them, as there is a unique weight value for
each input feature (i.e. | ~wn| == |S| for an input space S).
The comparator cn is a threshold for the weighted features.

Each decision node Dn throughout the network is repre-
sented as Dn = σ[α( ~wn

T ∗ ~X − cn)], where ~X is the input
data, σ is the sigmoid function, and α serves to throttle the
confidence of decision nodes. Less confidence in the tree
allows for more uncertainty in decision making (Yuan and
Shaw 1995), leading to more exploration, even from an ex-
pert initialization. High values of α emphasize the difference
between the comparator and the weighted input, thus pushing
the tree to be more boolean. Lower values of α encourage
a smoother tree, with α = 0 producing uniformly random
decisions. We allow α to be a learned parameter1.
Example 1 (PROLONET Initialization). Assume we are in
the cart pole domain (Barto, Sutton, and Anderson 1983) and
have solicited the following from a human: “If the cart’s x
position is right of center, move left; otherwise, move right,”
and that the user indicates x position is the first input fea-
ture of four and that the center is at 0. We therefore initialize
our primary node D0 with ~w0 = [1, 0, 0, 0] and c0 = 0, fol-
lowing lines 5-8 in Alg. 1. Following lines 11-13, we create
a new leaf ~l0 = [1, 0] (Move Left) and a new leaf ~l1 = [0, 1]

1Code for our implementation and experiments is available at
https://github.com/CORE-Robotics-Lab/ProLoNets

(Move Right). Finally, we set the paths Z(~l0) = D0 and
Z(~l1) = (¬D0). The resulting probability distribution over
the agent’s actions is a softmax over (D0 ∗ ~l0+(1−D0)∗ ~l1).

Algorithm 1 Intelligent Initialization

1: Input: Expert Propositional Rules Rd

2: Input: Input Size IS , Output Size OS

3: W,C,L = {}
4: for r ∈ Rd do
5: if r is a state check then
6: s = feature index in r
7: w = ~0IS , w[s] = 1
8: c = comparison value in r
9: W =W ∪ w, C = C ∪ c

10: end if
11: if r is an action then
12: a = action index in r
13: l = ~0OS , l[a] = 1
14: L = L ∪ l
15: end if
16: end for
17: Return: W , C, L

Algorithm 2 Dynamic Growth

1: Input: PROLONET Pd

2: Input: Deeper PROLONET Pd+1

3: Input: ε = minimum confidence
4: H(~li) = Entropy of leaf ~li,
5: for li ∈ L ∈ Pd do
6: Calculate H(~li) // ProLoNet leaf entropy
7: Calculate H( ~ld1), H( ~ld2) // Deeper leaf entropies
8: for leaves under ~li in Pd+1 do
9: if H(~li) > (H( ~ld1) +H( ~ld2) + ε) then

10: Deepen Pd at ~li using ~ld1 and ~ld2
11: Deepen Pd+1 at ~ld1 and ~ld2 randomly
12: end if
13: end for
14: end for

After all decision nodes are processed, the values of Dn

from each node represent the likelihood of that condition
being TRUE. In contrast, (1−Dn) represents the likelihood
of the condition being FALSE. With these likelihoods, the
network then multiplies out the probabilities for different
paths to all leaf nodes. Every leaf ~l ∈ L contains a path
z ∈ Z, a set of decision nodes which should be TRUE or
FALSE in order to reach ~l, as well as a prior set of weights
for each output action a ∈ ~a. For example, in Figure 2,
z1 = D1 ∗ D2, and z3 = (1 − D1) ∗ D3. The likelihood
of each action a in leaf ~li is determined by multiplying the
probability of reaching leaf ~li by the prior weight of the
outputs within leaf ~li. After calculating the outputs for every
leaf, the leaves are summed and passed through a softmax
function to provide the final output distribution.
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Figure 3: The dynamic growth process with a deeper PRO-
LONET shown in paler colors and dashed lines. When
H(~l3) + H(~l4) < H(~l1), the agent replaces ~l1 with D2,
~l3, and ~l4 and adds a new level to the deeper actor.

Example 2 (PROLONET Inference). Consider an example
cart pole state, X=[2, 1, 0, 3] passed to the PROLONET

from Example 1. Following Dn = σ[α( ~wn
T ∗ ~X − cn)], the

network arrives at σ([1, 0, 0, 0] ∗ [2, 1, 0, 3]− 0) = 0.88 for
D0, meaning “mostly true.” This probability propagates to
the two leaf nodes using their respective paths, making the
output of the network a probability given by (0.88 ∗ [1, 0] +
(1 − 0.88) ∗ [0, 1]) = [0.88, 0.12]. Accordingly, the agent
selects the first action with probability 0.88 and the second
action otherwise. An algorithmic expression of the forward-
pass is provided in the supplementary material.

Dynamic Growth – PROLONETS are able to follow expert
strategies immediately, but they may lack the expressive ca-
pacity to learn more optimal policies once they are deployed
into a domain. If an expert policy involves a small number of
decisions, the network will have a small number of weight
vectors and comparators to use for its entire existence. To
enable the PROLONET architecture to continue to grow be-
yond its initial definition, we introduce a dynamic growth
procedure, which is outlined in Algorithm 2 and Figure 3.

Upon initialization, a PROLONET agent maintains two
copies of its actor. The first is the shallower, unaltered ini-
tialized version, and the second is a deeper version in which
each leaf is transformed into a randomly initialized decision
node with two new randomly initialized leaves (line 1 of
Alg. 2). This deeper agent has more parameters to potentially
learn more complex policies, but at the cost of added random-
ness and uncertainty, reducing the utility of the intelligent
initialization.

As the agent interacts with its environment, it relies on
the shallower network to generate actions, as the shallow
network represents the human’s domain knowledge. After
each episode, the off-policy update is run over the shallower
and deeper networks. Finally, after the off-policy updates, the
agent compares the entropy of the shallower actor’s leaves
to the entropy of the deeper actor’s leaves and selectively
deepens when the leaves of the deeper actor are less uniform
than those of the shallower actor (lines 3-7). We find that this
dynamic growth mechanism improves stability and average
cumulative reward.

Example 3 (PROLONET Dynamic Growth). Assume the cart
pole agent’s shallower actor has found a local minimum with
~l1 = [0.5, 0.5], while the deeper actor has ~l3 = [0.9, 0.1]

and ~l4 = [0.1, 0.9]. Seeing that ~l1 is offering little benefit
to the current policy, and D2 in the deeper actor is able to
make a decision about which action offers the most reward,
the agent would dynamically deepen at ~l1, copying over the
deeper actor’s parameters and becoming more decisive in
that area of its policy. The deeper actor would also grow with
a random set of new parameters, as shown in Figure 3.

5 Experimental Evaluation
We conduct two complementary evaluations of the PRO-
LONET as a framework for RL with human initialization.
The first is a controlled investigation with expert initializa-
tion in which an author designs heuristics for a set of domains
with varying complexity; this allows us to confirm that our ar-
chitecture is competitive with baseline learning frameworks.
We also perform an ablation of intelligent initialization and
dynamic growth in this set of experiments. The second evalu-
ation is a user study to support our claim that untrained users
can specify policies that serve to improve RL.

In our first evaluation, we assess our algorithm in StarCraft
II (SC2) for macro and micro battles as well as the OpenAI
Gym (Brockman et al. 2016) lunar lander and cart pole en-
vironments. All agents are updated using Proximal Policy
Optimization (PPO) (Schulman et al. 2017), with policy up-
dates after each episode. Additional implementation details
are available in the appendix.

To evaluate the impact of dynamic growth and intelligent
initialization, we perform an ablation study and include re-
sults from these experiments in Table 1. For each M -mistake
agent, weights, comparators, and leaves are randomly negated
according to M , up to a maximum of 2M for each category.

5.1 Agent Formulations

We compare several agents across our experimental domains.
The first is a PROLONET agent as described above and
with expert initialization. We also evaluate a multi-layer
perceptron (MLP) agent and a long short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997) agent, both us-
ing ReLU activations (Nair and Hinton 2010). We include
comparisons to a PROLONET with random initialization
(Random PROLONET) as well as the Heuristic used to ini-
tialize our agents. We compare to an IL agent trained with
the LOKI framework, in which the agent imitates for the
first K episodes (Cheng et al. 2018), where K is a tuned hy-
perparameter, and then transitions to RL. The LOKI agent
supervises with the same heuristic that is used to initialize
the PROLONET agent. Finally, although the original DJINN
framework (Humbird, Peterson, and McClarren 2018) re-
quires a decision tree learned over a labeled dataset, we ex-
tend the DJINN architecture to allow for initialization with a
hand-crafted decision tree in order to compare to a DJINN
agent that is initialized using the same heuristic as LOKI and
PROLONET, but built with the DJINN architecture.
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(a) Cart Pole (b) Lunar Lander (c) FindAndDefeatZerglings

Figure 4: A comparison of architectures on cart pole, lunar lander, and FindAndDefeatZerglings (Vinyals et al. 2017). As the
domain complexity increases, we see that intelligent initialization is increasingly important, and PROLONETS are the most
effective method for leveraging domain expertise, and perform well even when domain expertise is unnecessary, as in cart pole.

5.2 Environments
We consider four environments to empirically evaluate PRO-
LONETS: cart pole, lunar lander, the FindAndDefeatZer-
glings minigame from the SC2LE (Vinyals et al. 2017), and
a full game of SC2 against the in-game artificial intelligence
(AI). These environments provide us with a steady increase
in difficulty, from a toy problem to the challenging game
of full SC2. These evaluations also showcase the ability of
the PROLONET framework to compete with state-of-the-art
approaches in simple domains and excel in more complex
domains. For the SC2 and SC2LE problems, we use the SC2
API2 to manufacture 193D and 37D state spaces, respectively,
and 44D and 10D action spaces, respectively. In the full SC2
domain, making the right parameter update is a significant
challenge for RL agents. As such, we verify that the agent’s
parameter updates increase its probability of victory, and if a
new update has decreased the agent’s chances of success, then
the update is rolled back, and the agent gathers experience
for a different step, similar to the checkpointing approach in
Hosu and Rebedea (2016).

OpenAI Gym – As depicted in Figure 4a and 4b, PRO-
LONETS are able to either match or exceed performance
of standard reinforcement and imitation learning based RL
architectures. Furthermore, we find that the PROLONET
architecture–even without intelligent-initialization–is com-
petitive with baseline architectures in the OpenAI Gym. Run-
ning reward in these domains is averaged across five runs, as
recommended by Henderson et al. (2018). MLP and LSTM
agents use 1-layer architectures which maintain input dimen-
sion until the output layer. We find success with intelligent
initializations using as few as three nodes for the cart pole
domain and as few as 10 nodes for the lunar lander. These
results show that PROLONETS can leverage user knowledge
to achieve superior results, and our ablation study results
(Table 1) show that the architecture is robust to sub-optimal
initialization in these domains.

Even where intelligent initialization is not always neces-
sary or where high-level instruction is difficult to provide,

2https://github.com/Blizzard/s2client-api

as in cart pole, it does not hinder RL from finding solutions
to the problem. Further, while baselines appear unstable in
these domains, potentially owing to missing implementation
hacks and tricks (Engstrom et al. 2019), we observe that the
PROLONET approaches are able to succeed with the same
PPO implementation and learning environment.

StarCraft II: FindAndDefeatZerglings – For this prob-
lem, we assign an agent to each individual allied unit. The
best-performing initialization in this domain has 6 decision
nodes and 7 leaves. Running reward is depicted in Figure
4c, again averaged over 5 runs. Intelligent initialization is
crucial in this more complex domain, and the Random PRO-
LONET fails to find much success despite having the same
architecture as the PROLONET. LOKI performs on par with
the Heuristic used to supervise actions, but LOKI is unable
to generalize beyond the Heuristic. MLP and LSTM agents
use a 7-layer architecture after a hyperparameter search, and
we extend this to the full game of SC2. Importantly, this
result (Figure 4c) shows user-initialized PROLONETS can
outperform our baselines and that this initialization is key
to efficient exploration and learning. The importance of the
initialization policy is again shown in Table 1, where even
negating 10% of the agent’s parameters results in a signifi-
cantly lower average reward.

StarCraft II: Full Game – After 5,000 episodes, no agent
other than the PROLONET is able to win a single game
against the in-game AI at the easiest setting. Even the LOKI
and DJINN agents, which have access to the same heuristics
used by the PROLONET, are unable to win one game. The
PROLONET, on the other hand, is able to progress to the
“hard” in-game AI, achieving 100% win rates against easier
opponents as it progresses. Even against the “hard” in-game
AI, the PROLONET agent is able to double its win rate from
initialization. This result demonstrates the importance of an
intelligent initialization in complex domains, where only a
very narrow and specific set of actions yield successful re-
sults. Access to oracle labeling (LOKI) or a knowledge-based
architecture (DJINN) does not suffice; the agent requires the
actual warm start of having intelligent rules built-in. Thus, we
believe these results demonstrate that our novel formulation
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RANDOM. SHALLOW
DOMAIN PROLONET PROLONET PROLONET M = 0.05 M = 0.1 M = 0.15

CART POLE 449±15 401±26 415± 27 426± 30 369± 28 424± 29
LUNAR 86 ± 33 55±19 49± 20 50± 22 45± 22 45± 22
ZERGLINGS 8.9±1.5 -1.3±0.6 8.8±1.5 5.1±1.1 5.9±1.2 4.1±1.1

Table 1: PROLONET ablation study of average cumulative reward. Units are in thousands.

PROLONET PROLONET AT ALL
AI DIFFICULTY (OURS) INITIALIZATION OTHERS

VERYEASY 100% 14. % 0%
EASY 100% 10.9% 0%
MEDIUM 82.2% 11.3% 0%
HARD 26% 10.7% 0%

Table 2: Win rates against the StarCraft II in-game AI. “All
Others” includes all agents in Section 5.1.

is singularly capable of harnessing domain knowledge.

6 User Study With Non-Experts
Our second evaluation investigates the utility of our frame-
work with untrained humans providing the expert initializa-
tion for PROLONETS. As presented in Section 6.2, our user
study shows that untrained users can leverage PROLONETS
to train RL policies with superior performance. These results
provide evidence that our approach can help democratize RL.

Hypotheses – We seek to investigate whether an untrained
user can provide a useful initial policy for PROLONETS. Hy-
pothesis 1 (H1): Expert initializations may be solicited from
average users, requiring no particular training of the user,
and these initializations are superior to random initializations.
Hypothesis 2 (H2): RL can improve significantly upon these
initializations, yielding superior policies after training.

Metrics – To test H1, we measure the reward over time for
our best participant, all participants, and baseline methods.
Testing H2, we measure the average reward for the first 50
and final 50 episodes for all agents specified by participants
and our strongest baseline. Our metrics allow us to effectively
examine our hypotheses in the context of expert initialization
in our study domain.

Domain: Wildfire Tracking – Inspired by Seraj and Gom-
bolay (2020), we develop a domain that is both suited to RL
and of relevance to a wider audience: wildfire tracking. We
randomly instantiate two fires and two drones in a 500x500
grid. The drones receive a 6D state as input, containing dis-
tances to fire centroids and Boolean flags for which a drone
is the closest to each fire. The action space for drones is a 4D
discrete decision of which cardinal direction to move into.
Pre-made state checks include statements such as “If I am the
closest drone to Fire 2” and “If Fire 1 is to my west.” The two
drones are controlled by separate agents without communica-
tion, and network weights are shared. The reward function
is the negative distance between drones and fire centroids,
encouraging drones to follow the fire as closely as possible.

6.1 Study Details
To solicit policy specifications from users, we designed a user
interface that enabled participants to select from a set of pre-
made state checks and actions. Participants were first briefed
on the domain and shown a visualization and then asked to
talk-through a strategy for monitoring the fires with two in-
dependent drones. After describing a solution and seeing the
domain, participants were presented with the UI to build out
their policies. As the participant selected options, those rules
were composed into a decision tree. Once participants com-
pleted the study, we leveraged their policy specifications to
initialize the structure and parameters of a PROLONET. The
PROLONET was then deployed to the wildfire domain, where
it further improved through RL. Our results are presented in
Figure 6 and described below. We present both the highest
performing participant (“Best”), as well as the median over
all participants (“Median”), and compare against the agents
presented in Section 5.1. LOKI and DJINN agents use the
“Best” participant policy specification as a heuristic.

6.2 Study Results
Our IRB-approved study involved 15 participants (nine male,
six female) between 21 and 29 years old (M = 24, SD = 2).
The study took approximately 45 minutes, and participants
were compensated for their time. Our pre-study survey re-
vealed varying degrees of experience with robots and games,
though we note that our participants were mostly computer
science students. Importantly, we found that their prior expe-
rience with robots, learning from demonstration, or strategy
games did not impact their ability to specify useful policies.

Nearly all participants provided policy specifications that
were superior to random exploration. After performing RL
over participant specifications, we can see in Figure 6 that
intelligent initialization yields the most successful RL
agents, even from non-experts. We compare to the best per-
forming baseline, Random PROLONET in Figure 5. We can
again see that the participants’ initializations are not only
better than random initialization, but are also better than the
trained RL agent. A Wilcoxon signed-rank test shows that our
participants’ initializations (Median = -23, IQR = 19) were
significantly better than a baseline initialization (Median =
-87, IQR = 26), W (15) = 1.0, p < 0.001. Our participants’
agents (Median = -7.9 , IQR = 29) were also significantly bet-
ter than a baseline (Median = -52, IQR = 7.9) after training,
W (15) = 15.0, p = 0.011. These results are significant after
applying a Bonferroni correction to test the relative perfor-
mance both before and after training. This result supports
hypothesis H1, showing that average users can specify use-
ful policies for RL agents to explore more efficiently than
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Figure 5: Initial and final distance between drones and wild-
fire centroids in our user study domain, where lower distance
is better. Participant initializations are significantly better at
tracking fires than random, showing that untrained users can
leverage our approach to provide useful warm starts.

random search and significantly outperform baselines.
Furthermore, our participants’ agents are significantly bet-

ter post-training than at initialization, as shown by a Wilcoxon
signed-rank test (W (15) = 4.0, p < 0.01). This finding sup-
ports hypothesis H2, showing that RL improves on human
specifications, not merely repeating what the humans have
demonstrated. By combining human intuition and expertise
with computation and optimization for long-term expected
reward, we are able to produce agents that outperform both
humans and traditional RL approaches.

Finally, we qualitatively demonstrate the utility of intel-
ligent initialization and the PROLONET architecture by de-
ploying the top performing agents from each method to two
drones with simulated fires to track. Videos of the top four
agents are included as supplementary material.

7 Discussion
We proposed two complementary evaluations of our proposed
architecture, demonstrating the significance of our contribu-
tion. Through our first set of experiments on an array of RL
benchmarks with a domain expert building heuristics, we
empirically validated that PROLONETS are competitive with
baseline methods when initialized randomly and, with a hu-
man initialization, outperforms state-of-the-art imitation and
RL baselines. As we see in Figure 4, PROLONETS are as fast
or faster than baseline methods to learn an optimal policy
over the same environments and optimization frameworks.
In our more complex domains, we identify the importance of
an intelligent initialization. While the IL baseline performs
well in the FindAndDefeatZerglings minigame, LOKI cannot
improve on the imitated policy. In the full game of SC2, no
approach apart from our intelligently-initialized PROLONET
wins even a single game. The ability to leverage domain
knowledge to initialize rules as well as structure, rather than
simple architecture and routing information, as in DJINN, is
a key difference that enables the success of our approach.

Through our user study, we demonstrated the practicality
of our approach and shown that average participants, even

Figure 6: Wildfire tracking results, again demonstrating the
importance of direct intelligent initialization (PROLONET)
rather than IL or random initialization.

those with no prior experience in the given domain, can pro-
duce policy specifications which significantly exceed random
initialization (p < 0.05). Furthermore, we have demonstrated
that RL can significantly improve upon these policies, learn-
ing to refine “good enough” solutions into optimal ones for a
given domain. This result shows us that our participants did
not simply provide our agents with optimal solutions iterated
upon needlessly. Instead, our participants provided good but
sub-optimal starting points for optimization. These starting
policies were then refined into a solution that was more robust
than either the human’s solution or the best baseline solution.
Our study confirms that our approach can leverage readily
available human initializations for success in deep RL, and
moreover, that the combination of human initialization and
RL yields the best of both worlds.

8 Conclusion
We present a new architecture for deep RL agents, PRO-
LONETS, which permits intelligent initialization of agents.
PROLONETS grant agents the ability to grow their network
capacity as necessary, and are surprisingly capable even with
random initialization. We show that PROLONETS permit ini-
tialization from average users and achieve a high-performing
policy as a result of the blend of human instruction and RL.
We demonstrate, first, that our approach is superior to imita-
tion and reinforcement learning on traditional architectures
and, second, that intelligent initialization allows deep RL
agents to explore and learn in environments that are too
complex for randomly initialized agents. Further, we have
confirmed that we can solicit these useful warm starts from
average participants and still develop policies superior to
baseline approaches in the given domains, paving the way
for reinforcement learning to become a more collaborative
enterprise across a variety of complex domains.
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Ethical Considerations
Our work is a contribution targeted at democratizing rein-
forcement learning in complex domains. The current state of
the art in reinforcement learning in complex domains requires
compute time and power beyond the capacity of many labs,
hand-engineering which is rarely explained publicly, or large
labeled datasets which are not always shared. By providing
a means for intelligent initialization by practitioners and im-
proved exploration in many domains, we attempt to lower
the barrier to entry for research in reinforcement learning
and to broaden the number of potential applications of rein-
forcement learning to more grounded, real-world problems.
While there are risks with any technology being misused,
we believe the benefits of democratizing RL outweigh the
risks. We posit that giving everyone the ability to use RL
rather than just large corporations and select universities is a
positive contribution to society.

Beneficiaries – Our work seeks to improve and simplify
reinforcement learning research for all labs and to take steps
toward democratizing reinforcement learning for non-experts.
We feel that the computational and dataset savings of our
work stand to benefit all researchers within reinforcement
learning.

Negatively affected parties – We do not feel that any
group of people or research direction is negatively impacted
by this work. Our work is complementary to other explo-
rations within reinforcement learning, and insights from imi-
tation learning translate naturally into insights on the qualities
of useful or harmful intelligent initializations.

Implications of failure – While our method seeks to sim-
plify reinforcement learning, in the worst case the initializa-
tion falls back to random and the learning agent is again faced
with an intractable random exploration problem. Adversar-
ial agents using our approach would be able to instantiate
a worse-than-random agent, though our results imply that
it is possible to overcome such an initialization in simple
domains.

Bias and fairness – Our work does rely on the “bias” of its
initialization–that is, it is biased towards the actions which a
human has pre-specified. While this biased exploration may
fail to accurately explore or understand the intricacies of a
complex domain, the alternative (years of compute with ran-
dom exploration) is simply unavailable to many researchers.
This bias may be overcome through diversification of intel-
ligent initializations which may lead to a diversity of final
strategies. However, the unification of such diverse policies
into a single agent and the thorough study of diverse initial-
izations is left to future work.
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