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Abstract

A major challenge in scene graph classification is that the ap-
pearance of objects and relations can be significantly different
from one image to another. Previous works have addressed
this by relational reasoning over all objects in an image or
incorporating prior knowledge into classification. Unlike pre-
vious works, we do not consider separate models for per-
ception and prior knowledge. Instead, we take a multi-task
learning approach by introducing schema representations and
implementing the classification as an attention layer between
image-based representations and the schemata. This allows
for the prior knowledge to emerge and propagate within the
perception model. By enforcing the model also to represent
the prior, we achieve a strong inductive bias. We show that
our model can accurately generate commonsense knowledge
and that the iterative injection of this knowledge to scene rep-
resentations, as a top-down mechanism, leads to significantly
higher classification performance. Additionally, our model can
be fine-tuned on external knowledge given as triples. When
combined with self-supervised learning and with 1% of anno-
tated images only, this gives more than 3% improvement in
object classification, 26% in scene graph classification, and
36% in predicate prediction accuracy.

Introduction
Classifying objects and their relations in images, also known
as scene graph classification, is a fundamental task in scene
understanding and can play an essential role in applications
such as recommender systems, visual question answering and
decision making. Scene graph (SG) classification methods
typically have a perception model that takes an image as input
and generates a graph that describes the given image as a col-
lection of (head, predicate, tail). One of the main
challenges that current models face is diverse appearances
of objects and relations across different images. This can be
due to variations in lighting conditions, viewpoints, object
poses, occlusions, etc. For example, the Bowl in Figure 1
is highly occluded and has very few image-based features.
Therefore, a typical perception model fails to classify it. One
approach to tackle this problem is to collect supportive evi-
dence from the neighbors before classifying an entity. This

*S.M. Baharlou contributed to this project while he was a visiting
researcher at the Ludwig Maximilian University of Munich.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

''

''

Contextualize Classify (Assign to Schemata)Input Image

Near

Classify (Assign to Schemata)

Fruits

Orange

''

NearFruits

Orange

Bowl

In

In

Unknown ?

Contextualize Prior Knowledge

Image-based Representations
''

 Schema Representations

Figure 1: An example of scene graph classification where
the Bowl lacks sufficient visual input. The top right is the
initially predicted graph from the visual inputs only. The
bottom left is the prediction of our model after considering
both image-based representations and the prior knowledge
about Fruits and Oranges (schemata). The long arrow near
the bottom indicates recursion.

can be done, for example, by message passing between all the
image-based object representations in an image, using graph
convolutional neural networks (GCN) (Kipf and Welling
2016) or LSTMs (Hochreiter and Schmidhuber 1997). The
main issue with this approach is the combinatorial explosion
of all possible image-based neighbor representations1.

A current theory in cognitive psychology states that hu-
mans solve this challenge by reasoning over the pre-existing
representations of neighboring objects instead of relying on
the perceptual inputs only (Piaget 1923); philosophers often
argue that humans have a form of mental representation for
objects and concepts (Kant 1787). These representations do
not depend on a given image but are rather symbol-based.
There are different opinions on how these representations
come to be. Piaget called these representations schema (plu-

1For a more detailed probabilistic analysis of this issue, refer to
the section GCN vs. Prior Model: A matter of inductive biases.
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ral schemata) and suggested that we acquire them in our
earlier perceptions. When an object is being perceived, the
mind assigns it to a schema in a process called assimilation.
By relational reasoning over schemata, assimilation helps to
predict the facts surrounding the observation (Arbib 1992)2.

Nevertheless, learning and utilizing prior knowledge is still
a significant challenge in AI research. Recently, Zellers et al.
(2018) and Chen et al. (2019c,b) proposed to correct the SG
prediction errors by comparing them to the co-occurrence
statistics of triples in the training dataset or an external source.
The statistics can, for example, suggest that it is common to
see (Fruits, in, Bowls). Furthermore, instead of re-
lying on simple co-occurrence statistics, one can create a prior
model with knowledge graph embeddings (KGE) (Nickel
et al. 2016) that can generalize beyond the given triples (Baier,
Ma, and Tresp 2017, 2018; Hou et al. 2019). KGEs typically
consist of an embedding matrix, that assigns a vector rep-
resentation to each entity, and an interaction function that
predicts the probability of a triple given the embeddings of
its head, predicate, and tail. This allows KGE models to gen-
eralize to unseen relations. For example, Man and Woman
will be given similar embeddings since they appear in sim-
ilar relations during the training. As a result, if the model
observes (Woman, rides, Horse), it can generalize,
for example, to (Man, rides, Camel).

However, in the described approaches, unlike Piaget’s
schemata, the perception and the prior are treated naively
as independent components; they are trained separately and
from different inputs (either from images or from triples), and
their predictions are typically fused in the probability space,
e.g., by multiplication. Other than requiring redundant param-
eters and computations, this makes the prior model agnostic
to the image-based knowledge and the perception model ag-
nostic to the prior knowledge. For example, the collection
of triples might contain (Woman, rides, Horse) but
have no triples regarding a Donkey. While the images can
represent the visual similarities of a Horse to a Donkey,
the triples lack this information. If we train a prior model
purely based on the triples, the model fails to generalize. We
can avoid this by training the prior model from a combination
of triples and images. As for another example, in Figure 1, the
prior model might suggest (Fruits, in, Bowl) but it
might also suggest (Fruits, areOn, Trees). To de-
cide between the two, one should still consider the visual
cues from the given image.

To address these shortcomings, we entangle the perception
and prior in a single model with shared parameters trained
by multi-task learning. Therefore, instead of training a sep-
arate embedding matrix for a prior model, we exploit the
perception model’s classification layer; when we train a clas-
sification layer on top of contextualized image-based repre-
sentations, the classification weights capture both relational
and image-based class embeddings (Refer to Figure 2). Un-
fortunately, the classification’s common realization as a fully
connected layer does not allow us to feed these network
weights to an interaction function. To this end, we employ
a more general formulation of classification as an attention

2We leave out the discussion on the schemata in Kant’s view.

Figure 2: t-SNE visualization of the object classification
weights that have been trained on top of contextualized image-
based representations. Entities that appear similar to each
other, or participate in similar relations, have a closer seman-
tic affinity. This enables link prediction similar to Knowledge
Graph Embeddings, and leads to generalization.

layer instead. In this layer, the extracted image-based and con-
textually enriched representations attend to trainable schema
embeddings of all classes such that (a) the attention coeffi-
cients are the classification scores (we enforce this by apply-
ing a classification loss on the attention outputs), and (b) the
attention values carry the prior knowledge that is injected into
the image-based representations (a top-down mechanism).

Furthermore, instead of training a separate interaction func-
tion for the prior model, we exploit the message passing
function that we already have available in the perception
model; after fusing the schemata and the image-based object-
representations, we contextualize and classify the representa-
tions again. Other than computational efficiency, this has the
advantage that the image-based object representations and
the schemata are combined in the embedding space rather
than the probability space.

We train the schemata using the Visual Genome (Krishna
et al. 2017) dataset. We show that our model can accurately
generate the captured commonsense knowledge and that iter-
ative injection of this knowledge, as a top-down signal, leads
to significantly higher classification accuracy. Additionally,
we draw from the recent advancements in self-supervised
learning and show that the schemata can be trained with only
a fraction of labeled images. This allows us to fine-tune the
perception model without any additional images; instead, we
can use a knowledge base of hand-crafted or external triples
and train with their mental images (schemata). As a result,
compared to the self-supervised baseline, and with 1% of the
training data, our model achieves more than 3% improvement
in object classification, 26% in scene graph classification, and
36% in predicate prediction; an accuracy that is almost equal
to when using 100% of the labeled images.

Related Works
While the concept of schemata can be applied to any form
of perceptual processing, and there are recent deep learning
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models of action schemata (Kansky et al. 2017), we focus
on the figurative schemata in the visual scene understanding
domain. There has also been a body of related research on
relational reasoning outside the scene graph domain (Wu,
Lenz, and Saxena 2014; Deng et al. 2014; Hu et al. 2016,
2017; Santoro et al. 2017; Sabour, Frosst, and Hinton 2017).
Nevertheless, research in this field was largely accelerated
after the release of Visual Relation Detection (VRD) (Lu et al.
2016) and the Visual Genome (Krishna et al. 2017) datasets.
Baier, Ma, and Tresp (2017, 2018) proposed the first KG-
based model of prior knowledge that improves SG classi-
fication. VTransE (Zhang et al. 2017) proposed to capture
relations by applying the KGE model of TransE (Bordes et al.
2013) on the visual embeddings. Yu et al. (2017) employed
a teacher-student model to distill external language knowl-
edge. Iterative Message Passing (Xu et al. 2017), Neural
Motifs (Zellers et al. 2018) (NM), and Graph R-CNN (Yang
et al. 2018) used RNNs and graph convolutions to propagate
image context. Tang et al. (2019) exploited dynamic tree
structures and Chen et al. (2019a) proposed a method based
on multi-agent policy gradients. Sharifzadeh et al. (2019)
employed the predicted pseudo depth maps in addition to
the 2D information. In general, scene graph classification
methods are closely related to KGE models (Nickel, Tresp,
and Kriegel 2011; Nickel et al. 2016). For an extensive dis-
cussion on the connection between perception, KGEs, and
cognition, refer to (Tresp, Sharifzadeh, and Konopatzki 2019;
Tresp et al. 2020). The link prediction in KGEs arises from
the compositionality of the trained embeddings. Some other
forms of compositionality in neural networks are discussed
in (Montufar et al. 2014). In this work, we introduce as-
similation, which strengthens the representations within the
neural network’s causal structure, addressing an issue raised
by Fodor, Pylyshyn et al. (1988). Some of the issues that
we address in this work have also been recently discussed
by Bengio (2017); Goyal et al. (2019); Mittal et al. (2020).

Methods
In summary, after an initial classification step, we combine
the image-based representations with the schemata of pre-
dicted classes. We then collect supportive evidence from the
neighbors before re-classifying each entity (Ref. Figure 1). In
what follows, bold lower case letters denote vectors, bold up-
per case letters denote matrices, and the letters denote scalar
quantities or random variables. Subscripts and superscripts
denote variables and calligraphic upper case letters for sets.

Definitions
Let us consider a given image I and a set of n bounding
boxes B = {bi}ni=1, bi = [bxi , b

y
i , b

w
i , b

h
i ], such that [bxi , b

y
i ]

are the coordinates of bi and [bwi , b
h
i ] are its width and height.

We build a Scene Representation Graph, SRG = {V, E}
as a structured presentation of the objects and predicates
in I. X o = {xoi }ni=1, xoi ∈ Rd denote the features of ob-
ject nodes and X p = {xpi }mi=1, xpi ∈ Rd denote the fea-
tures of predicate nodes3. Each xoi is initialized by a pooled

3Similar to (Yang et al. 2018; Koncel-Kedziorski et al. 2019),
we consider each object node as direct neighbors with its predicate

image-based object representation, extracted by applying
VGG16 (Simonyan and Zisserman 2014) or ResNet-50 (He
et al. 2016) on the image contents of bi. Each xpi is ini-
tialized by applying a two layered fully connected network
on the relational position vector t between a head i and a
tail j where t = [tx, ty, tw, th], tx = (bxi − bxj )/bwi j , ty =

(byi − b
y
j )/b

h
j , tw = log(bwi /b

w
j ), th = log(bhi /b

h
j ). The im-

plementation details of the networks are provided in the Sup-
plementary.

Scene graph classification is the mapping of each node in
scene representation graph to a label where each object node
is from the label set Co and each predicate node from Cp. The
resulting labeled graph is a set of triples referred to as the
Scene Graph. We also define a Probabilistic Knowledge
Graph (PKG) as a graph where the weight of a triple is the
expected value of observing that relation given the head and
tail classes and regardless of any given images4. Later we will
show that our model can accurately generate the PKG, i.e.,
the commonsense that is captured from perceptions during
training.

In what comes next, xoi and xpi are treated identically ex-
cept for classification with respect to Co or Cp. Therefore, for
a better readability, we only write xi.

Contextualized Scene Representation Graph
We obtain contextualized object representations zi by ap-
plying a graph convolutional neural network, on SRG. We
also refer to this module as our interaction function. We
use a Graph Transformer as a variant of the Graph Network
Block (Battaglia et al. 2018; Koncel-Kedziorski et al. 2019)
with multi-headed attentions as

m
N (i)
i =

1

K

K∑
k=1

∑
j∈N (i)

α
(l,k)
ij W(l,k)z

(l,t)
j (1)

z′
(l)
i = LN(z(l,t)i +m

Nin(i)
i +m

Nout(i)
i ) (2)

z
(l+1,t)
i = LN(z′(l)i + f(z′

(l)
i )), (3)

where z
(l,t)
i is the embedding of node i in the l-th graph

convolution layer and t-th assimilation. In the first layer
z
(0,t)
i = xi. LN is the layer norm (Ba, Kiros, and Hinton

2016), K is the number of attentional heads and W(l,k) is
the weight matrix of the k-th head in layer l. N (i) represent
the set of neighbors, which are either incoming Nin(i) or
outgoing Nout(i). f(.) is a two layered feed-forward neural
network with Leaky ReLU non-linearities between each layer.
α
(l,k)
ij denotes the attention coefficients in each head and is

defined as
e
(l,k)
ij = σ(h(l,k) · [z(l)i ||W

(l,k)z
(l)
j ]) (4)

α
(l,k)
ij =

exp(e
(l,k)
ij )∑

q∈N (i) exp(e
(l,k)
iq )

(5)

nodes and each predicate node as direct neighbors with its head and
tail object nodes.

4Note that while typical knowledge graphs such as Freebase are
based on object instances, given the nature of our image dataset, we
focus on classes.
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Figure 3: We formulate the classification as attention layer between object and schema representations. Contextualizing image-
based object representations before classification encourages the schemata to learn image-based relational prior knowledge. As a
result, the attention values that are injected from the schemata to scene representations and then propagated. In this way, they
enrich the image-based representations with prior knowledge. Additionally, the interactions between schemata can reconstruct
the probabilistic knowledge graph (right).

with h(l,k) as a learnable weight vector and || denoting con-
catenation. σ is the Leaky ReLU with the slope of 0.2.

Schemata
We define the schema of a class c as an embedding vec-
tor sc. We realize object and predicate classification by an
attention layer between the contextualized representations
and the schemata such that the classification outputs α′ic are
computed as the attention coefficients between zi and sc as

α′ic = softmax(a(z
(L,t)
i , sc)) (6)

where, a(.) is the attention function that we implement as
the dot-product between the input vectors, and z

(L,t)
i is the

output from the last (L-th) layer of the Graph Transformer.
The attention values δi capture the schemata messages as

δi =
∑
c∈C

α′icsc (7)

and we inject them back to update the scene representations
as

ui = LN(xi + δi) (8)

z
(0,t+1)
i = LN(ui + g(ui)) (9)

where g(.) is a two-layered feed-forward network with Leaky
ReLU non-linearities. Note that we compute ui by fusing the
attention values with the original image features xi. There-
fore, the outputs from previous Graph Transformer layers will
not be accumulated, and the original image-based features
will not vanish.

We define assimilation as the set of computations from
z
(L,t)
i to z

(L,t+1)
i . This includes the initial classification step

(Eq. 6), fusion of schemata with image-based vectors (Eq. 9)
and the application of the interaction function on the updated
embeddings (Eq. 3). We expect to get refined object repre-
sentations after the assimilation. Therefore, we assimilate
several times such that after each update of the classifica-
tion results, the priors are also updated accordingly. During
training, and for each step of assimilation, we employ a super-
vised attention loss, i.e. categorical cross entropy, between
the one-hot encoded ground truth labels and α′ic. This indi-
cates a multi-task learning strategy where one task (for the
first assimilation) is to optimize for P (yq|x1, ..., xθ), with xq
as a random variable representing the image-based features
of q, yq as the label, and θ = m+ n. The other set of tasks
is to optimize for P (yt+1

q |xt1, ..., xtθ, yt1, ..., ytθ). We refer to
the first task as IC, for Image-based Classification and to the
second set of tasks as ICP for Image-based Classification
with Prior knowledge. We train the second task using teacher
forcing and by setting the labels to their ground truth val-
ues. Therefore, in order to prevent collapse, we set the edge
schemata to zero. This resembles link prediction, such that
we denoise an incomplete input graph. Note that even when
no images are available, we can still train for the ICP from
a collection of external or hand-crafted triples by directly
assigning z

(0,t+1)
i = δi such that α′ic = onehot(ci).

GCN vs. Prior Model: A matter of inductive biases
Typical GCNs, such as the Graph Transformer, take the fea-
tures derived from each bounding box as input, apply non-
linear transformations and propagate them to the neighbors
in the following layers. Each GCN layer consists of fully
connected neural networks. Therefore, theoretically they can
also model and propagate prior knowledge that is not visible
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Figure 4: The results of our ablation studies. We study the
effect of each assimilation in scene graph classification. Note
that the model has been trained for only 4 assimilations yet it
can generalize.

in bounding boxes. However, experimental results of previ-
ous works (and also this work) confirm that explicit modeling
and propagation of prior knowledge (ICP) can still improve
the classification accuracy. Why is that the case?

Let us consider the following. According to the the uni-
versal approximation theorem (Csáji et al. 2001), when we
solve for IC as P (yk|x1, ..., xo), our model might learn to
capture a desired form of P (yk|x1, ..., xo, y1, ..., yo). How-
ever, in practice, the learning algorithm does not always find
the best function. Therefore, we require appropriate inductive
biases to guide us through the learning process. As Caruana
(1997) puts: “Multitask Learning is an approach to inductive
transfer that improves generalization by using the domain
information contained in the training signals of related tasks
as an inductive bias. It does this by learning tasks in parallel
while using a shared representation; what is learned for each
task can help other tasks be learned better”. For example,
in the encoder-decoder models for machine translation, e.g.
Transformers (Vaswani et al. 2017), the prediction is often
explicitly conditioned not just on the encoded inputs but also
on the decoded outputs from the previous tokens. Therefore,
the decoding in each step can be interpreted as computing
P (yk|x1, ..., xo, y1, ..., yk−1). Note that the previous predic-
tions such as y1, cannot benefit from the future predictions
{y2, ..., yo}. However, in our model, we provide an explicit
bias towards utilizing predictions in all indices. In fact, our
model can be interpreted as an encoder-decoder network,
where the decoder consists of multiple decoders. Therefore,
the decoding depends not just on the encoded image features
but also on the previously decoded outputs. In other words, by
injecting schema embeddings, as embeddings that are trained
over all images, we impose the bias to propagate what is not
visible in the bounding box. As will be shown later, we can
train for ICP and IC even with smaller splits of annotated
images, which can lead to competitive results with fewer
labels. Additionally, assimilation enables us to quantify the
propagated prior knowledge. This interpretability is another
advantage that GCNs alone do not have.

Settings We train our models on the common split of Vi-
sual Genome (Krishna et al. 2017) dataset containing images
labeled with their scene graphs (Xu et al. 2017). This split

Method SGCls PredCls Mean
@50 @100 @50 @100

U
nc

on
st

ra
in

ed IMP+ (Xu et al. 2017) 12.1 16.9 20.3 28.9 19.5
FREQ (Zellers et al. 2018) 13.5 19.6 24.8 37.3 23.8
SMN (Zellers et al. 2018) 15.4 20.6 27.5 37.9 25.3
KERN(Chen et al. 2019c) 19.8 26.2 36.3 49.0 32.8

Schemata 21.4 28.8 40.1 54.9 36.3

C
on

st
ra

in
ed

IMP (Xu et al. 2017) 3.1 3.8 6.1 8.0 5.2
IMP+ (Xu et al. 2017) 5.8 6.0 9.8 10.5 8.0

FREQ (Zellers et al. 2018) 6.8 7.8 13.3 15.8 10.9
SMN (Zellers et al. 2018) 7.1 7.6 13.3 14.4 10.6
KERN(Chen et al. 2019c) 9.4 10.0 17.7 19.2 14.0
VCTree(Tang et al. 2019) 10.1 10.8 17.9 19.4 14.5

Schemata 10.1 10.9 19.1 20.7 15.2
Schemata - PKG –.- –.- 8.2 9.4 –.-

Table 1: Comparison of the mR@50 and mR@100, with and
without graph constraints for SGCls and PredCls.

takes the most frequent 150 object and 50 predicate classes
in total, with an average of 11.5 objects and 6.2 predicates in
each image. We report the experimental results on the test set,
under two standard classification settings of predicate classifi-
cation (PredCls): predicting predicate labels given a ground
truth set of object boxes and object labels, and scene graph
classification (SGCls): predicting object and predicate labels,
given the set of object boxes. Another popular setting is the
scene graph detection (SGDet), where the network should
also detect the bounding boxes. Since the focus of our study
is not on improving the object detector backbone and our
improvements in SGDet were similar to the improvements in
SGCls, we do not report them here. For those results, please
refer to our official code repository. We report all the results
under constrained and unconstrained setups (Yu et al. 2017).
In the unconstrained setup, we allow for multiple predicate
labels, whereas in the constrained setup, we only take the
top-1 predicted predicate label.

Metrics We use Recall@K (R@K) as the standard metric.
R@K computes the mean prediction accuracy in each image
given the topK predictions. In VG, the distribution of labeled
relations is highly imbalanced. Therefore, we additionally
report Macro Recall (Sharifzadeh et al. 2019; Chen et al.
2019c) (mR@K) to reflect the improvements in the long
tail of the distribution. In this setting, the overall recall is
computed by taking the mean over recall per predicate.

Experiments The goal of our experiments is (A) to study
whether injecting prior knowledge into scene representations
can improve the classification and (B) to study the common-
sense knowledge that is captured in our model. In what fol-
lows, backbone refers to VGG16/ResNet-50 that generates
the SRG, and main model refers to part of the network that
applies contextualization and assimilation. The backbone can
be trained from a set of labeled images (in a supervised man-
ner), unlabeled images (in a self-supervised manner), or a
combination of the two. The main model can be trained from
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Figure 5: Qualitative examples of improved scene graph classification results (Recall@50) through assimilations of our model.
From left to right is after each assimilation. Green and gray colors indicate true positives and false negatives concluded by the
model. For example consider the middle image, where the sidewalk was initially misclassified as a street. After seeing a biker in
the image and a man sitting on a chair, a reasonable inference is that this should be a sidewalk.

Training SGCls R@100 PredCls R@100 Object Classification
1% 10% 100% 1% 10% 100% 1% 10% 100%

Sup - IC 1.84 ±0.26 13.90 ±0.97 33.6 40.61 ±0.84 52.51 ±1.19 62.0 14.38 ±0.57 38.45 ±1.21 64.2

Self-Sup - IC 12.12 ±0.47 26.14 ±0.77 36.8 48.10 ±0.54 58.14 ±0.35 63.4 40.75 ±0.48 56.97 ±0.76 68.0
Self-Sup - IC & ICP 15.36 ±0.38 27.37 ±0.47 37.1 65.68 ±0.12 65.42 ±0.19 65.7 42.09 ±0.65 58.60 ±0.56 68.4

Table 2: Comparison of R@100 for SGCls, PredCls and Object Classification tasks on smaller splits of the VG dataset.

a set of labeled images (the IC task), a prior knowledge base
(ICP) or a combination of the two. For (A), we conduct the
following studies:

1. We train both the backbone and the main model from all
the labeled images and for both tasks. We use the VGG-16
backbone as trained by Zellers et al. (2018). This allows
us to compare the results with the related works directly.
We evaluate the classification accuracy for 8 assimilations
(until the changes are not significant anymore). Table 1
compares the performance of our model to the state-of-
the-art under mR@K (for the R@K results refer to the
supplementary). As shown, our model exceeds the others
on average and under most settings. supplementary. Figure
4 shows our ablation study, indicating that the accuracy is
improved after each assimilation.

2. To qualitatively examine these results, we present some of
the images and their scene graphs after two assimilations,
in Figure 5. For example in the right image, while the
wheel is almost fully occluded, we can still classify it once
we classify other objects and employ commonsense (e.g.,
trucks have wheels). Another interesting example is the
middle image, where the sidewalk is initially misclassified
as a street. After seeing a biker in the image and a man
sitting on a chair, a reasonable inference is that this should
be a sidewalk! Similarly, in the left image, the man is
facing away from the camera, and his pose makes it hard
to classify him unless we utilize our prior knowledge about
the arm, pants, shirt, and skateboard.

3. Figure 7 shows the improvements per each predicate

class. The results indicate that most improvements oc-
cur in under-represented classes. This means that we have
achieved a generalization performance that is beyond the
simple reflection of the dataset’s statistical bias.

4. To understand the importance of prior knowledge com-
pared to having a large set of labeled images, we conduct
the following study: we uniformly sample two splits with
1% and 10% of VG. The images in each split are con-
sidered as labeled. We ignore the labels of the remaining
images and consider them as unlabeled5. Instead, we treat
the set of ignored labels as a form of external/hand-crafted
knowledge in the form of triples. For each split, we train
the full model (I) with a backbone that has been trained in
a supervised fashion with the respective split and no pre-
training, and the main model that has been trained for IC
(without commonsense) with the respective split, (II) with
a backbone that has been pre-trained on ImageNet (Deng
et al. 2009) and fine-tuned on the Visual Genome (in a
self-supervised fashion with BYOL (Grill et al. 2020)) and
fine-tuned on the respective split of the visual genome (in
a supervised fashion) and the main model that has been
trained for IC with the respective split, and (III) Similar to
2, except that we include the ICP and train the main model
by assimilating the entire prior knowledge base including

5Note that these splits are different from the recently proposed
few-shot learning set by Chen et al. (2019d). In (Chen et al. 2019d),
the goal is to study the few-shot learning of predicates only. How-
ever, we explore a more competitive setting, where only a fraction
of both objects and predicates are labeled.
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Figure 6: t-SNE visualization of object representations.

the external triples. We discard their image-based features
(xi) for the triples outside a split. Also, to treat all triples
equally when injecting the prior knowledge, we discard all
image-based features and directly feed the δi to the graph
transformer. To prevent collapse, we randomly drop some
of the δis. Since BYOL is based on ResNet-50, for a fair
comparison, we train all models in this experiment with
ResNet-50 (including another model that we train with
100% of the data). In the Scene Graph Classification com-
munity, the results are often reported under an arbitrary
random seed, and previous works have not reported the
summary statistics over several runs before. To allow for a
fair comparison of our model to those works (on the 100%
set), we followed the same procedure in the study A1. How-
ever, to encourage a statistically more stable comparison
of future models in this experiment, we report the sum-
mary statistics (arithmetic mean and standard deviation)
over five random fractions (1% and 10%) of VG training
set6. As shown in Table 2, utilizing prior knowledge allows
to achieve almost the same predicate prediction accuracy
with 1% of the data only. Also, we largely improve object
classification and scene graph classification.

Evaluation
For B we consider the following studies:

1. We visualize the semantic affinity of schema representa-
tions by employing t-SNE (Maaten and Hinton 2008). As
we can see in Figure 2, the schema representations of enti-
ties that are visually or relationally similar are the closest
to each other.

2. We inspect the semantic affinity of object representations
by employing t-SNE (I) before contextualization, (II) after
contextualization and (III) after injecting prior knowledge.
The results are represented in Figure 6. Each color repre-
sents a different object class. This investigation confirms
that object representations will get into more separable
clusters after injecting prior knowledge.

3. Finally, we evaluate our model’s accuracy in link predic-
tion. The goal is to quantitatively evaluate our model’s
understanding of relational commonsense, i.e., relational
structure of the probabilistic knowledge graph. Similar to
a KGE link prediction, we predict the predicate given head
and tail of a relation. In other words, we feed our model
6The splits are available at: https://github.com/sharifza/schemata

Figure 7: The top shows the per-predicate classification accu-
racy improvement after injecting prior knowledge, in SGCls
R@100. The bottom shows the distribution of sample propor-
tion for the predicates in the VG.

with the schema of head and tail, together with a zero-
vector for the image-based representations. As we can see
in Table 1, in Schemata - PKG, even if we do not provide
any image-based information, our model can still guess
the expected predicates similar to a KGE model. While
this guess is not as accurate as when we present it with an
image, the accuracy is still remarkable.

Conclusion

We discussed schemata as mental representations that enable
compositionality and reasoning. To model schemata in a deep
learning framework, we introduced them as representations
that encode image-based and relational prior knowledge of
objects and predicates in each class. By defining classifica-
tion as an attention layer instead of a fully connected layer,
we introduced an inductive bias that enabled the propagation
of prior knowledge. Our experiments on the Visual Genome
dataset confirmed the effectiveness of assimilation through
qualitative and quantitative measures. Our model achieved
higher accuracy under most settings and could also accu-
rately predict the commonsense knowledge. Additionally, we
showed that our model could be fine-tuned from external
sources of knowledge in the form of triples. When combined
with pre-trained schemata in a self-supervised setting, this
leads to a predicate prediction accuracy that is almost equal
to the full model. Also, it gives significant improvements
in the scene graph and object classification tasks. We hope
that this work will open new research directions in utilizing
commonsense to learn from little annotations.
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