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Abstract

Automated mathematical reasoning is a challenging problem
that requires an agent to learn algebraic patterns that contain
long-range dependencies. Two particular tasks that test this
type of reasoning are (1) mathematical equation verification,
which requires determining whether trigonometric and linear
algebraic statements are valid identities or not, and (2) equa-
tion completion, which entails filling in a blank within an ex-
pression to make it true. Solving these tasks with deep learn-
ing requires that the neural model learn how to manipulate
and compose various algebraic symbols, carrying this ability
over to previously unseen expressions. Artificial neural net-
works, including recurrent networks and transformers, strug-
gle to generalize on these kinds of difficult compositional
problems, often exhibiting poor extrapolation performance.
In contrast, recursive neural networks (recursive-NNs) are,
theoretically, capable of achieving better extrapolation due to
their tree-like design but are difficult to optimize as the depth
of their underlying tree structure increases. To overcome
this issue, we extend recursive-NNs to utilize multiplicative,
higher-order synaptic connections and, furthermore, to learn
to dynamically control and manipulate an external memory.
We argue that this key modification gives the neural system
the ability to capture powerful transition functions for each
possible input. We demonstrate the effectiveness of our pro-
posed higher-order, memory-augmented recursive-NN mod-
els on two challenging mathematical equation tasks, showing
improved extrapolation, stable performance, and faster con-
vergence. Our models achieve a 1.53% average improvement
over current state-of-the-art methods in equation verification
and achieve a 2.22% Top-1 average accuracy and 2.96% Top-
5 average accuracy for equation completion.

Introduction
Mathematical reasoning is one problem domain that cru-
cially requires understanding the composition between sym-
bols and arithmetic operators. In demonstrating that it has
an “understanding” of basic mathematical and logical con-
cepts, an agent must solve new equations or resolve expres-
sions that might become increasingly more complex with
time. This entails understanding the structure of equations,
as well as their underlying grammar, in order to properly
and effectively extrapolate to unseen examples. With respect
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to this kind of reasoning, artificial neural networks (ANNs)
have been shown to experience great difficulty achieving the
robustness, adaptability, and flexibility exhibited by human
agents (Fodor, Pylyshyn et al. 1988). Specifically, for tasks
requiring the ability to compose knowledge, where complex
expressions or structures are created by learning and manip-
ulating rules that permit combination and usage of atomic
elements of knowledge (such as the operations of addition
or multiplication), ANNs struggle to work correctly and re-
liably. Indeed, it is often argued that ANNs are incapable
of learning to perform the compositional actions needed to
mathematically reason (Fodor, Pylyshyn et al. 1988).

Nonetheless, in this paper, we argue that the limitations
in an ANN’s ability to learn compositionality is due (at least
in part) to several limitations in their current structural de-
sign. First, ANNs do not possess the right inductive bias (or
prior, in the form of structural constraints) that would allow
them to more readily and naturally extract the compostional-
ity in various symbolic languages. Second, standard ANNs,
even those that are stateful, e.g., recurrent neural networks
(RNNs), lack a proper (interpretable) memory structure that
would be allow them to properly handle the arrangements
of symbols that compose mathematical expressions of in-
creasing depth (complexity) and length. Since mathematical
equations are derived from context-free languages related
to mathematical identities (Arabshahi, Singh, and Anandku-
mar 2018), it would make sense to manipulate an external
memory when processing equations. For example, a model
trained on (

√
1×1×y)+x = (1×y)+x should be capable of

generally understanding structure that includes equality and
inequality. Furthermore, a memory structure would allow a
network to better generalize to unseen equations of different
depths, since memory can offload some of the memorization
that a network typically does using its short-term synapses
for (Arabshahi et al. 2019). For instance, a model augmented
with external memory should be capable of understanding
the following equation (without any need to train it directly
on it): y×

(
11×(3+(−1×40×1))+x1

)
= y×20×(2+x).

Ultimately, we aim to better understand the components
required to enhance an ANN’s ability to mathematically
reason and, therefore, we explore two important reasoning
tasks: mathematical equation verification (is a stated iden-
tity true?) and mathematical equation completion (fill in the
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blank to make the equation true). Both of these tasks are de-
signed such that an agent must learn how to combine and
arrange symbols and operators in order to properly parse
complex mathematical equations like the two provided in the
prior paragraph. However, most, if not all, modern-day neu-
ral architectures are ill-suited to properly tackle these prob-
lems, as evidenced by several recent studies in related tasks
that require memory acquisition and knowledge of compo-
sitionality. For example, in the domain of semantic pars-
ing, research indicates that as task complexity increases,
i.e., sequence length increases and relationships between to-
kens/items becomes complicated, RNNs fail to generalize to
unseen examples (Lake and Baroni 2018). Similarly, poor
generalization was observed when RNNs were trained to
grammatically infer complex Dyck languages (Mali, Oror-
bia, and Giles 2019; Mali et al. 2020; Suzgun et al. 2019a)
and when neural transformers (Vaswani et al. 2017) were
trained to do symbolic integration and solve differential
equations (Lample and Charton 2019; Saxton et al. 2019).

This failure to generalize stems from the fact that mod-
els like the transformer are theoretically not capable of rec-
ognizing complex grammars (Hahn 2020) and, empirically,
only perform well when the test set largely comes from the
same distribution as the training set (Lample and Charton
2019). In essence, once a distributional shift occurs (test
samples begin to vary significantly from training samples),
models like the neural transformer break down and fail to
extract the functionality of symbols presented to it (let alone
learn how to actually compose them). In the realm of mathe-
matical reasoning, such a shift could occur by simply chang-
ing the location of an operator (changing its role), or con-
necting it to different symbols/arguments, or even switching
which side of equality it belongs. Modern-day ANNs fail to
operate in these kinds of out-of-distribution cases.

Therefore, having the ability to extract and learn re-
lationships between various operators and complex struc-
tures/entities/objects (that make up symbolic expressions)
would facilitate such out-of-sample generalization when
processing mathematical equations. One type of (data) struc-
ture that could serve as a useful inductive bias for the ANN
is the binary tree, which is a useful way of representing
equations. Such trees, upon construction, are interpretable
and often inspected when attempting to understand relation-
ships between symbols and operators. When data is avail-
able in tree form, recursive neural networks, e.g., tree RNNs,
have been shown to outperform standard RNNs (Tai, Socher,
and Manning 2015; Socher et al. 2011; Allamanis et al.
2017; Evans et al. 2018; Arabshahi, Singh, and Anandku-
mar 2018), generalizing well by exploiting their own nat-
ural tree-like design (making them suitable for processing
equations). However, as the depth of their underlying tree
increases, recursive networks struggle to generalize to un-
seen, longer strings, despite their suitable design. One rea-
son for this is that, as tree depth increases, the credit as-
signment problem becomes more challenging, hampering
the system’s learning ability. On the other hand, the lack of
a proper error-correction mechanism in the model itself (in
the event there is no learning) limits its ability to adapt to
novel pattern sequences. In the hopes of endowing recursive

networks with some form of error-correction, recent work
has attempted to combine differentiable memory with tree-
based Long Short Term Memory (LSTM) models (Arab-
shahi et al. 2019). However, this work is limited since it fo-
cuses on adding external memory to a standard neural con-
troller (hoping this alone will improve extrapolation ability),
assuming that the original network is already sufficiently
good at modeling compositionality instead of addressing the
network’s potential weaknesses. Our work will challenge
this assumption by making the controller more powerful.

To fundamentally resolve the limitations described above,
in this work we look to creating more powerful recursive net-
works by generalizing them to utilize higher-order synaptic
weight parameters. Higher-order (or tensor) synaptic con-
nections have been shown, both classically and in recent
efforts, to be provably capable of encoding complex gram-
mars, especially in the context of temporal neural models
that tackle the challenging task of processing and infer-
ring complex context-free grammars (Omlin and Giles 1996;
Mali, Ororbia, and Giles 2019; Stogin et al. 2020). With ten-
sor parameters, there is a straight forward mapping of a state
machine into a set of transition rules that can be programmed
into an ANN’s representations, something which is currently
not possible for first-order models (which is what most mod-
ern networks actually are). This, we argue, makes higher-
order synapses a potentially useful inductive bias for re-
cursive networks, especially since mathematical equations
are a kind of context-free grammar. Furthermore, we ac-
count for the higher computational cost imposed by using
higher-order parameters in an ANN (which has prevented
their widespread use in modern-day deep learning) by de-
veloping several approximations based on multiplicative in-
teractions. These approximations are used in tandem with a
differentiable stack memory, which prior work has shown is
important in allowing RNNs to recognize certain classes of
grammars (Suzgun et al. 2019b,a; Mali et al. 2020).

The primary contributions of this paper are as follows:

• We introduce the first higher-order recursive recurrent
neural network, known as the second-order Tree-RNN.

• We introduce new variant models that approximate
second-order Tree-RNNs.

• We introduce new stack-augmented variants of these
higher-order recursive recurrent models, beating out state-
of-the-art results for two mathematical reasoning tasks.

Background and Notation
In this section, we define the notation to be used in this pa-
per. We denote scalars with non-bold letters (e.g., c), vec-
tors with bold lowercase letters (e.g., x), and matrices with
bold uppercase letters (e.g., W). A recursive neural network
(recursive-NN) is a kind of tree-structured neural architec-
ture in which each node is represented by an ANN (see Fig-
ure 1). Such a design has been empirically shown to cap-
ture semantic relationships in symbolic data, allowing the
model to better generalize to harder problems in natural lan-
guage processing (Tai, Socher, and Manning 2015; Arab-
shahi, Singh, and Anandkumar 2018; Socher et al. 2013b;
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Figure 1: Architecture of the recursive neural network
with nodes augmented with external memory. The network
shown is operating on the equation c ∗ (a + b) and has ar-
ranged its nodes to process the underlying symbol sequence.

Bowman, Potts, and Manning 2015). All the nodes of a rec-
RNN have a state denoted by zj ∈ Rn and an input denoted
by xj ∈ Rkn where n is the hidden dimension, k is num-
ber of children nodes, N is the number of nodes in the tree,
and j ∈ [0, N − 1]. The children of node j are denoted as
cjk, where k is number of children for nodej. The hidden
representation zj depends on the network architecture, act-
ing as memory for the model. For instance, in a simple Tree
RNN, state zj is computed by passing an input xj through
a feedforward network. However, since recurrence is absent
in this memory node, we believe that the model is limited in
its ability to transfer knowledge across time steps. Further-
more, other factors we argue hinder model performance are:
1) the absence of a better input encoding, and 2) the fact that
neurons in the Tree RNN are trying to both model compo-
sitionality and extrapolate across large sequences, creating
a harder learning problem than needed. To address these is-
sues, we will develop several novel variations of the Tree
RNN that integrate recurrent second order synapses (or ap-
proximations thereof) and external (stack) memory.

Second-Order Tree Recurrent Networks
In this section, we describe our second (2nd)-order Tree
RNN architecture. This is a tree structure where every node
j contains a 2nd-order RNN. In a 1st-order RNN, includ-
ing popular variants such as the Long Short-Term Memory
LSTM (Hochreiter and Schmidhuber 1997), the hidden state
zt−1j of node j at time t− 1 is combined with its input ~xj to
produce the hidden state at time t: ztj = f(W1z

t−1
j +W2xj),

where f is an activation function. In contrast, a 2nd-order
RNN uses a third-order weight tensor W to update the state
(Giles et al. 1990; Omlin and Giles 1996) as follows:

ztj [`] = f

∑
i1,i2

W[`, i1, i2]z
t−1
j [i1]xj [i2] + bj [`]

 . (1)

This tensor operation can also be written as ztj =

f
(
W(zt−1j ,xj) + bj

)
. The benefit of this update style is

that it concisely captures the state transitions of a determinis-
tic finite automata (DFA). For example, if xj is a one-hot en-
coding of an input symbol (say i1, with a vocabulary size V )

and zj is a one-hot encoding of an automaton state (say i2),
then W[:, i1, i2] can be set to be the one-hot encoding of the
state that the DFA should transition to. Thus, the 2nd-order
RNN architecture represents a differentiable transition func-
tion over a distributed state and input representation (Giles
et al. 1990; Mali, Ororbia, and Giles 2019). Tensor opera-
tions have also been experimented with ANNs containing
feedforward tensor weights (Socher et al. 2013a), yielding
promising results on logical reasoning data, outperforming
first-order networks (Bowman 2013; Socher et al. 2013a).
In contrast to these related efforts, our work explores tensor
recurrent weights combined with recursive connections.

To get a 2nd-order Tree RNN, we set each node j to be a
2nd-order RNN which takes in as input xj a concatenation
of its k children. Hence, the tensor weight matrix W has
dimensions n × n × kn. Note that we also set activation f
to be the hyperbolic tangent. To the best of our knowledge,
this work is the first to propose a recursive-NN (tree) model
built with higher order weights, which, as we will show, is
more powerful than a simple Tree-RNN (particularly given
the fact that a Tree-RNN uses feedforward ANNs to parame-
terize its nodes and hence does not exploit recurrence well).

To effectively handle the processing of equations, we fur-
ther incorporate hidden-to-output weight transition matrices.
One can either share weights or have node-specific weight
parameters in the architectures. In the case of equations, we
assign a separate set of parameters to each unique operator
that could be used to define an equation, allowing the rec-
RNN to learn relationships across these operators. When an
operator or variable is duplicated, i.e., it occurs more than
once in an equation symbol stream, we share the parameters
across the occurrences.

Multiplicative Tree LSTM
Despite having theoretical justification and better expres-
sivity, 2nd order networks are computationally expensive,
scaling poorly to large datasets due to their higher-order
synapses, which create a challenging optimization problem
over a large computation graph. To overcome this limitation
, we take inspiration from recent success in approximating
higher order synaptic connections. Specifically, we look to
RNNs that use multiplicative weights, which shown promise
in tasks such as grammatical inference (Mali et al. 2020)
and sequence modeling (Wu et al. 2016; Krause et al. 2016).
Multiplicative synapses are inspired by 2nd order connec-
tions (Giles et al. 1990; Giles and Omlin 1993; Sun, Giles,
and Chen 1998; Rabusseau, Li, and Precup 2019) and aim
to approximate their computation, having also been shown
to provably encode complex grammatical structure (Om-
lin and Giles 1996; Mali, Ororbia, and Giles 2019) (yield-
ing more interpretable RNNs that generalize well). A multi-
plicative network introduces an intermediate state (m) that
creates a flexible input-output transition that also endows the
RNN with implicit error handling and improved generative
ability (Wu et al. 2016).Based on this, we design a novel
recursive-NN that employs multiplicative synapses instead
of second-order tensor weights as a form of memory. Specif-
ically, we propose the multiplicative Tree Long Short-Term
Memory (MTree-LSTM) (generalizing the tree-LSTM (Tai,
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Socher, and Manning 2015)), a type of recursive-NN with
nodes made up of multiplicative weights that allow for dif-
ferent transition matrices for each possible input (much like
second-order synapses do).

The above multiplicative memory structure is coupled
with LSTM gates to actively process sequences containing
long-range dependencies. For an N -ary MTree-LSTM , the
branching factor of the model’s underlying structure is at
most N , assuming that children nodes are ordered, i.e., we
can index them from 1 toN . For any node j, the hidden state
and memory cell of the nth child would then be represented
as zjn and cjn respectively.

The resulting N -ary MTree-LSTM transition equations,
following the description above, would then be:

ẑn =W (m)xn +Rzz
t−1
n ) (2)

mn = (W (m)xn) + (Rmẑn) (3)

ij = σ

(
W (i)xj +

N∑
n=1

U (i)
n mn + b(i)

)
, (4)

fjn = σ

(
W (f)xj +

N∑
n=1

U (f)
n mn + b(f)

)
, (5)

oj = σ

(
W (o)xj +

N∑
n=1

U (o)
n mn + b(o)

)
, (6)

uj = tanh

(
W (u)xj +

N∑
n=1

U (u)
n mn + b(u)

)
, (7)

cj = ij � uj +

N∑
n=1

fjn � cjn, (8)

zj = oj � tanh(cj), (9)

where all input-to-hidden synapses W are matrices of shape
Rn×2n and hidden-to-hidden synapses U are matrices of
shape R2n×2n. In our experiments, note that m = z. In-
tuitively, we can interpret each parameter matrix as higher-
order synapses that encode the correlation between compo-
nent vectors of the multiplicative unit, the input xj , and the
hidden state zk (obtained from children nodes).

Multiplicative-Integration Tree LSTMs
Much in the same spirit as the MTree-LSTM, in the effort
to overcome limitations of 2nd order RNNs, we design a
multiplicative-integration Tree-LSTM (MI Tree-LSTM), ex-
tending the Tree-LSTM (Tai, Socher, and Manning 2015)
with nodes that are a first-order approximation of 2nd or-
der connections (integrated with LSTM cells). This gener-
ally amounts to replacing the addition operation (+) with a
Hadamard product (�) in the standard Elman-RNN equa-
tion. This element-wise multiplication has been argued to
perform a rank-1 approximation of the operation carried by
a 2nd order connection. These have been shown to be useful
in several sequence modeling settings (Krause et al. 2016).

For an N -ary MI Tree-LSTM, the branching factor is at
most N (again, children nodes are ordered). For any node j,

the hidden state and memory cell of the nth child is repre-
sented as zjn and cjn respectively. Formally, the N -ary MI
Tree-LSTM transition equations are:

ij = σ

(
W (i)xj �

N∑
n=1

U (i)
n zjn + b(i)

)
, (10)

fjn = σ

(
W (f)xj �

N∑
n=1

U (f)
n zjn + b(f)

)
, (11)

oj = σ

(
W (o)xj �

N∑
n=1

U (o)
n zjn + b(o)

)
, (12)

uj = tanh

(
W (u)xj �

N∑
n=1

U (u)
n zjn + b(u)

)
, (13)

cj = ij � uj +
N∑

n=1

fjn � cjn, (14)

zj = oj � tanh(cj), (15)

where all the input-to-hidden weights W and hidden-to-
hidden weights U are matrices in Rn×2n.

Note that for both the MTree-LSTM and MITree-LSTM
models, the memory cell cj is a one-dimensional vector.
This cell vector could alternatively be enhanced by instead
substituting it with an entire differentiable data/memory
structure such as a stack. It is this special situation that we
will explore in the next section, where we explicate how to
augment our recursive networks with external memory to
further increase capacity and improve generalization.

Stack-Augmented Tree-RNNs
All of the previously proposed rec-RNN models can be ex-
tended to make use of an external, differentiable stack as a
means to increase memory capacity. This extension follows
in the same spirit as prior research in integrating data struc-
tures that improve the generalization ability of RNN models
for various sequence processing tasks (Joulin and Mikolov
2015; Mali et al. 2020; Suzgun et al. 2019b) (though this
focused on traditional, first-order RNNs). In our rec-RNN
models, each node j is augmented with an external stack
Sj ∈ Rp×n, where p is the stack size/length.

A stack is a last-in-first-out (LIFO) data structure that
an ANN can only interact with by manipulating the struc-
ture’s top data storage slot. Stacks are often claimed to be
more interpretable in nature but, more importantly, they cru-
cially align with formal language theory. Specifically, one
key result from theory is that models that make use of two
stacks are Turing complete (Hopcroft, Motwani, and Ullman
2006), meaning that a stack is indispensable when learning
context-free languages. When working with mathematical
equations, we wish to exploit the computational learning ca-
pability that comes with allowing an ANN to control a stack
memory, especially given the fact that long-range dependen-
cies are created when extracting structure from equations.

The top of the stack is denoted by Sj [0] ∈ Rn. The stack
has two primary operations – pop and push. Integrating a
stack means we are integrating a push-down automation into

5009



our network. Specifically, the network will use a 2D action
vector aj ∈ R2 whose elements represent the push and pop
operations for interacting with the stack. These two actions
are controlled by the network’s state at each node:

aj = φ(Ajzj + b
(a)
j ) (16)

where Aj ∈ R2×2n and φ is the softmax function. We
denote the probability of the action “push” with the label
actionPush = aj [0] ∈ [0, 1] and “pop” with actionPop =
aj [1] ∈ [0, 1]. Note that since the softmax nonlinearity has
been used – these two probabilities must sum to 1 to create
a valid distribution over stack actions.

In order to calculate the next hidden state of our model,
we employ the following set of equations:

ẑj = zt−1j +
N∑

n=1

PS0,t−1
n , zj = f1(Wjxj �Rẑt−1j )

(17)

where we see that a state update for node j is a summation
of the top slots of each child node’s corresponding stack.
We assume that the top of a stack is located at index 0. with
value Sn[0], via the following:

Sn[0] = aj [PUSH]σ(Dzj) + aj [POP ]S
t−1
n [1]

+ aj [NoOP ]S
t−1
n [0] (18)

where the symbols PUSH, POP, and NoOP correspond to
the unique integer indices 0, 1, and 2 that access the spe-
cific action value in their respective slot. D is a 1 ×m ma-
trix and σ(v) = 1/(1 + exp(−v) is the logistic sigmoid. If
aj [PUSH] = 1, we add the element to the top of the stack
and if aj [POP ] = 1, we remove the element at top of the
stack (and shift/move the stack upwards). Similarly, for the
elements stored at depth i > 0 in the stack, the following
rule must be followed:

Scj [i] = at[PUSH]St−1
cj [i− 1] + at[POP ]S

t−1
cj [i+ 1].

(19)

Note that for more complex hidden state functions, the state
calculation and stack integration is identical to the descrip-
tion in this section. When the above stack is integrated into
our previous two models, we obtain the novel variants we
call the M-Tree-LSTM+stack and the MITree-LSTM+stack.

Mathematical Reasoning over Equations
In this section, we discuss the tasks investigated, present-
ing the datasets used for evaluation. Model performance was
measured on two challenging benchmark tasks, i.e., mathe-
matical equation verification and equation completion, in-
troduced in (Arabshahi, Singh, and Anandkumar 2018).

For both tasks investigated, we generated 41, 894
equations of various depths. To create the train-
ing/validation/testing splits for this problem, we generate
new mathematical identities by performing local random
changes to known identities, starting with the 140 axioms
provided by (Arabshahi, Singh, and Anandkumar 2018).
These changes resulted in identities of similar or higher

complexity (equal or larger depth), which may be correct
or incorrect and are valid expressions within the grammar
(CFGs). Models were trained on equations of depths 1
through 7 and then tested on equations of depths 8 through
13. The data creation process was identical to the one
proposed in (Arabshahi et al. 2019). Table ?? provides the
statistics of the generated samples, showing the number of
equations available at each parse tree depth.
Data Creation: For the equation completion task, we eval-
uate each model’s ability to predict the missing pieces of an
equation such that the overall mathematical expression con-
dition holds true. For this experiment, we utilize the same
model(s) and baselines used for the mathematical comple-
tion task. To create evaluation data, we take all of the gen-
erated test equations and randomly choose a node at depth
k (k is between 1 to 13) in each and every equation. Next,
we replace this with all possible configurations for (prob-
lem) depth 1 through 13 generated using context-free gram-
mars (CFGs) or related generative grammars as suggested
by (Arabshahi, Singh, and Anandkumar 2018).

Once created, we present this new set of equations to each
model/baseline and measure its Top−1 and Top-5 accuracy
(these are reported in the plots found in the main paper).
Top−1 and Top-5 rankings serve as a proxy for each model’s
confidence when predicting the blank in the mathematical
expression (helping us to observe further if the model en-
sures the correctness of a target expression/equation). Sam-
ple equations/expressions from the generated datasets are
shown in Table 6 along with the truth label (the gold stan-
dard) and accompanying problem (recursion) depth (which,
in turn, serves as a proxy measure of problem difficulty).
Mathematical Equation Verification: In this task, the
agent is to process symbolic and numerical mathematical
equations from trigonometry and linear algebra. The goal
of an agent should be to successfully learn the relationships
between these equations and, ultimately, verify their correct-
ness. Verification can be likened to a binary classification
problem. Note that we take the equation’s parse tree depth
as a metric to evaluate hardness of the math problem.
Mathematical Equation Completion: The goal of this task
is to predict the missing pieces in a given mathematical
equation such that the final outcome holds true (and is math-
ematically valid). Models trained for equation verification
are used to conduct equation completion.

Experiments
Baseline Models: Below we list all of the baselines that
we compared to our proposed rec-RNN models, for both
of our experimental tasks. The baseline models we com-
pared against were: Majority Class: this baseline is a
classification approach that always predicts the majority
class. LSTM: this baseline is a Long Short-Term Mem-
ory network (Hochreiter and Schmidhuber 1997). Tree-
LSTM: this baseline is the original Tree-LSTM network
(Tai, Socher, and Manning 2015), where each node is a stan-
dard LSTM cell. Tree-SMU: this baseline is the standard
recursive neural network coupled with a stack (Arabshahi
et al. 2019). All of the recursive models (both baselines and
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proposed models) share parameters whenever the function-
ality of a given node is similar (in the context of an equa-
tion’s parse tree). For equation verification, all models op-
timize the Categorical log likelihood at the output (which
is the root node). The root of the model represents equality
and performs a dot product of the output embedding of the
right and left sub-trees/nodes. For equation completion, all
models are optimized to minimize the cross-entropy loss at
the output (the root or equality node). The input to the re-
cursive networks includes the terminal nodes (leaves) of the
equations – these terminals consist of symbols (representing
variables in the equation) and numbers. The leaves of the
recursive networks are embedding layers which encode the
symbols and numbers of the equation.
Evaluation Metrics: For the task of equation verification,
we report model performance after measuring accuracy, pre-
cision, and recall. We report each metric measurement as
a percentage in Table 2 and 3 and they are abbreviated as
“Acc”, “Prec”, and “Rcl” for accuracy, precision, and recall,
respectively. On the other hand, for equation completion, we
report Top-K accuracy (Arabshahi, Singh, and Anandkumar
2018). Measuring Top-K accuracy is often a useful perfor-
mance metric since it accounts for the percentage of samples
for which any given model predicts correctly on at least one
correct sample for any given blank.

Implementation Details
All of the models experimented with in this paper were
implemented using the PyTorch Python framework (Paszke
et al. 2019). Models were optimized using back-propagation
of errors to calculate parameter gradients and were updated
using the Adam (Kingma and Ba 2014) adaptive learning
rate, with β1 = 0.9, β2 = 0.999, and by starting its global
learning rate at λ = 0.1 and then employing a patience
scheduling that divided this rate by half whenever there was
no improvement observed on the validation set. We regular-
ized the models with a weight decay of 0.00002.

The number of neurons in each model’s hidden layer as
well as the drop-out rate were tuned using a coarse grid
search, i.e., hidden layer size was searched over the ar-
ray [8, 15, 25, 30, 40, 45, 50, 55, 60, 80, 100] and the drop-
out rate was searched over the array [0.1, 0.2, 0.3]. Parameter
gradients were estimated over mini-batches of size 50 for all
experiments. We ran all models using 10 different seeds and
report the 10-trial average and standard deviation of the re-
sults. Models were trained for a maximum of 500 epochs or
until convergence was reached, i.e., early stopping was used.
The best accuracy of the model is reported when it reaches
its best measured performance on the validation set.

Ablation Study
To complement our results, we provide a small ablation
study to demonstrate that the removal of the higher-order
synaptic connections leads to a degradation in model per-
formance of the model. This means that the complexity of
the synaptic parameters matters in order to achieve consis-
tent performance. As shown in Table 5, we compare recur-
sive neural models with and without higher order synapses.
For all the models trained without higher-order weights, the

Figure 2: Average accuracy metrics breakdown in terms of
performance on the test data depth for equation verification.

(a) Top 1 Accuracy

(b) Top 5 Accuracy

Figure 3: Top-K accuracy metrics breakdown in terms of the
test data depth for the equation completion task.

standard LSTM cell was used as memory. Again, we ob-
serve (in tandem with the results presented above) that uti-
lizing second-order weights help yield stable results across
problem recursion depths.

Second, it is important to test whether or not the higher-
order parameters offer any computational advantage. To test
this, we conducted an experimental analysis of each model’s
convergence performance (including baselines and proposed
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all 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of equations 41,894 21 355 2,542 7,508 9,442 7,957 6,146 3,634 1,999 1,124 677 300 189

Correct classes 0.56 0.52 0.57 0.62 0.61 0.58 0.56 0.54 0.52 0.52 0.49 0.50 0.50 0.50

Table 1: Dataset statistics for the equation sequence dataset (sorted by data depth).

Approach Train (Depths 1-7) validation (Depths 1-7)
Acc Prec Rcl Acc Prec Rcl

Majority Class 58.12 - - 56.67 - -

RNN (Arabshahi et al. 2019) 68.50 69.61 81.27 65.77±0.44 65.69±0.72 83.06±1.24
LSTM (Arabshahi et al. 2019) 90.03 87.02 97.37 85.47±0.27 81.97±0.38 95.32±0.17
Stack-RNN 92.03 86.42 98.43 83.47±0.35 84.58±0.32 95.00±0.27
Tree-RNN (Arabshahi et al. 2019) 94.98 94.25 97.29 89.27± 0.04 87.8± 0.39 94.16± 0.61
Tree-LSTM (Arabshahi et al. 2019) 98.51 97.67 99.83 93.77± 0.02 90.92± 0.08 98.88± 0.08

Tree-SMU 96.71 95.12 99.09 92.59± 0.03 90.55± 0.17 98.07± 0.18
Tree-SMU - no-op 98.02 97.07 98.99 93.58± 0.21 91.44± 0.23 98.11± 0.09
Tree-SMU - no-op - normalize 97.97 96.57 99.79 93.21± 0.20 90.29± 0.17 98.30± 0.12

2nd order Tree-RNN (ours) 95.62 94.58 98.25 90.28± 0.07 90.25± 0.35 98.08± 0.20
MI-Tree-LSTM (ours) 98.80 98.01 99.80 94.20± 0.02 91.50± 0.07 98.99± 0.06
MTree-LSTM (ours) 98.25 97.00 98.81 94.09± 0.02 91.00± 0.05 99.00± 0.06
MI-Tree-LSTM + stack (ours) 96.28 96.00 99.25 93.99± 0.04 91.55± 0.15 98.57± 0.09
M-Tree-LSTM + stack (ours) 97.35 97.15 99.20 94.29± 0.02 90.99± 0.04 98.28± 0.09

Table 2: Overall performance of the models on train and validation datasets for the equation verification task.

Approach Train (Depths 1-7) Test (Depths 8-13)
Acc Prec Rcl Acc Prec Rcl

Majority Class 58.12 - - 51.71 - -

RNN (Arabshahi et al. 2019) 68.50 69.61 81.27 55.5±0.25 55.85±0.61 67.32±3.62
LSTM (Arabshahi et al. 2019) 90.03 87.02 97.37 73.09±0.64 73.92±1.48 74.34±1.53
Stack-RNN 92.03 86.42 98.43 73.09±0.64 73.92±1.48 74.34±1.53
Tree-RNN (Arabshahi et al. 2019) 94.98 94.25 97.29 81.82± 0.12 82.66± 0.55 82.08± 0.55
Tree-LSTM (Arabshahi et al. 2019) 98.51 97.67 99.83 86.8± 0.6 83.68± 0.63 92.54± 0.76

Tree-SMU 96.71 95.12 99.09 87.51± 0.49 84.00± 0.31 94.21± 0.62
Tree-SMU - no-op 98.02 97.07 98.99 87.08± 0.15 84.32± 0.52 92.51± 0.51
Tree-SMU - no-op - normalize 97.97 96.57 99.79 87.01± 0.50 83.01± 0.62 93.77± 0.49

2nd order Tree-RNN (ours) 95.62 94.58 98.25 86.05± 0.11 84.05± 0.30 88.99± 0.30
MI-Tree-LSTM (ours) 98.80 98.01 99.80 87.80± 0.7 84.08± 0.45 93.00± 0.40
MTree-LSTM (ours) 98.25 97.00 98.81 87.25± 0.5 84.29± 0.25 93.02± 0.35
MI-Tree-LSTM + stack (ours) 96.28 96.00 99.25 88.25± 0.81 84.41± 0.39 94.47± 0.61
M-Tree-LSTM + stack (ours) 97.35 97.15 99.20 89.04± 0.54 84.59± 0.47 94.39± 0.59

Table 3: Overall performance of the models on train and test datasets for the equation verification task.

architectures). Table 4 contains the results of this model
convergence analysis. All models/baselines were trained 10
times – we report the number of epochs that each model
required in order to reach best its measured validation accu-
racy. From the table, it is encouraging to see that the higher-

order synapses do indeed result in faster convergence with-
out affecting performance.

Finally, we present extended results in Table 2 and 3
where the performance of standard RNNs, with and without
an external stack memory, are compared to the various re-
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Models 2nd Order 1st Order
MTree-LSTM 87.25 84.59
MITree-LSTM 87.80 84.59
MI-Tree-LSTM+ stack 88.25 86.51
M-Tree-LSTM + stack 89.04 86.88

Table 4: Average number of epochs (& validation error
reached) required to reach convergence when optimized.

Models Average Epochs Valid Error
TreeLSTM 135 93.77± 0.02
Tree-SMU 99 93.58± 0.21
MTree-LSTM 102 94.09± 0.02
MI-Tree-LSTM+ stack 95 93.99± 0.04
M-Tree-LSTM + stack 91 94.29± 0.02
2nd order Tree-RNN 98 90.28± 0.07

Table 5: Model test performance (accuracy) with (2nd Or-
der) and without higher order (1st Order) synapses.

cursive networks experimented with earlier. This highlights
how difficult the mathematical reasoning task is in general.
As discussed before, a recursive structure is quite necessary
to solve such complex tasks/problems.

Results and Discussion
Equation Verification: In Figure 2, we compare our best
model with the recently proposed state-of-the-art model in
(Arabshahi et al. 2019). Of the five proposed models, as
shown in Figure 2, the M-Tree-LSTM+stack and the MI-
Tree-LSTM+stack reach the best performance and are sta-
ble across equation examples (as the depth of the test set is
increased). In Table 2 and 3, we provide a more extensive
performance comparison across all models, baselines, and
the proposed rec-RNNs on the equation verification task.

Equation Completion: To further test the generalization
ability of the various models studied in this paper, we next
turned our attention to the equation completion task. In Fig-
ures 3a and 3b, we report the top-1 and top-5 accuracy mea-
surements of various recursive models. Notably, observe that
the performance of the proposed higher-order rec-RNNs is
consistently better than that reported in prior work for both
models with and without differentiable memory. The perfor-
mance of standard RNN models on this task was quite poor
as evident in table 2 and 3. This strongly demonstrates that
just simple (first-order) recurrent architectures fail to cap-
ture much, if any, useful compositional knowledge underly-
ing mathematical equations.

Related Work
The mathematical reasoning problems considered in this
work are examples of neural programming, or a task family
that requires an ANN to learn (complex) structures such as
programs, mathematical equations, and logic from data (Al-
lamanis et al. 2017; Evans et al. 2018; Graves, Wayne, and
Danihelka 2014; Zaremba, Kurach, and Fergus 2014; Reed

and De Freitas 2015; Cai, Shin, and Song 2017; Saxton et al.
2019). Neural programming tasks are a key application for
testing an ANN’s ability to extrapolate and compose ele-
ments of knowledge. Grammatical inference has also often
served as another kind of neural programming problem that
challenges an RNN’s ability to extract useful hierarchical
representations over symbolic sequences, especially as the
grammar complexity increases (Suzgun et al. 2019b,a; Mali
et al. 2020).

Recursive networks, which theoretically could prove in-
valuable for neural programming, have been used to model
a wide of compositional data types across many applica-
tions (all of which contain an inherent hierarchy nested
in the data) (Hupkes, Veldhoen, and Zuidema 2018; Hup-
kes et al. 2020), e.g., natural scene classification (Socher
et al. 2011), sentiment classification, semantic related-
ness/syntactic parsing (Tai, Socher, and Manning 2015;
Socher et al. 2011, 2013a,b; Bowman 2013; Bowman, Potts,
and Manning 2015), and neural programming and logic (Al-
lamanis et al. 2017; Zaremba, Kurach, and Fergus 2014;
Evans et al. 2018). While a great deal of recent research
has strived to integrate differentiable memory into stan-
dard RNNs (Graves, Wayne, and Danihelka 2014; Weston,
Chopra, and Bordes 2014; Grefenstette et al. 2015; Joulin
and Mikolov 2015; Mali et al. 2020; Weston, Chopra, and
Bordes 2014; Sukhbaatar et al. 2015; Graves, Wayne, and
Danihelka 2014; Graves et al. 2016; Reed and De Freitas
2015; Cai, Shin, and Song 2017; Graves, Wayne, and Dani-
helka 2014; Das, Giles, and Sun 1992; Kumar et al. 2016;
Sun et al. 2017; Mali, Ororbia, and Giles 2019; Mali et al.
2020), even based on the theoretical grounding of formal
language (Hopcroft, Motwani, and Ullman 2006), far less
work exists on integrating external memory into recursive
networks. One notable effort was made in (Arabshahi et al.
2019), where a recursive network was combined with a stack
and LSTM gates.

Despite the amount of effort that has been spent on aug-
menting RNNs with memory, to the best of our knowledge,
there has been no attempt at designing and generalizing ex-
ternal memory as a means to increase the compositionality
abilities of ANNs, especially with the goal of design recur-
sive networks with recurrent weights that better extrapolate
to harder problem instances that are often out-of-sample.
Another different, yet related, line of work is that on graph
memory networks and tree memory networks (Pham, Tran,
and Venkatesh 2018; Fernando et al. 2018) – however, while
powerful models, this differs from our work given that these
studies do not investigate the value of higher order connec-
tions, approach memory construction differently, and ulti-
mately examine different applications.

Conclusion
In this paper, we proposed five novel types of recursive re-
current neural networks, which we have shown are useful
for modeling compositional data, specifically for processing
mathematical equations and expressions. We demonstrated
that the performance of most kinds of recurrent networks de-
grades significantly when the depth or complexity of an in-
put equation increases. By generalizing recursive neural net-
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Example Label Depth

(
√
1× 1× y) + x = (1× y) + x Correct 4

sec(x+ π) = (−1× sec(sec(x))) Incorrect 4

y ×
(
11 × (3 + (−1× 40×1)) + x1

)
= y × 20 × (2 + x) Correct 8√

1 + (−1× (cos(y + x))
√

csc(2))× (cos(y + x))−1 = tan(y1 + x) Incorrect 8

2−1 +
(
− 1

2 ×
(
− 1×

√
1 + (−1× sin2(

√
4× (π + (x×−1))))

))
+ cos

√
4(x) = 1 Correct 13(

cos(y1 + x) + z
)w

=
(
cos(x)× cos(0 + y) +

(
− 1×

√
1 +−1× cos2(y + 2π)

)
× sin(x) + z

)w
Correct 13

sin
(√

4 −1π + (−1× sec
(
csc2(x)−1 + sin2(1 + (−1× 1) + x+ 2−1π)

)
× x)

)
= cos(0 + x) Incorrect 13

Table 6: Examples of generated equations used in the paper’s experiments (Arabshahi et al. 2019).

works to use higher-order synaptic connections and to inter-
actively manipulate a stack memory, we designed agents that
are capable of acquiring rich, compositional representations
of mathematical equations, allowing for out-of-sample gen-
eralization. More importantly, our work demonstrates that
higher-order recursive models consistently achieve stable
and overall better performance compared to state-of-the-art
baselines for two important mathematical reasoning tasks.
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