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Abstract

Labeling training examples at scale is a perennial challenge
in machine learning. Self-supervision methods compensate
for the lack of direct supervision by leveraging prior knowl-
edge to automatically generate noisy labeled examples. Deep
probabilistic logic (DPL) is a unifying framework for self-
supervised learning that represents unknown labels as la-
tent variables and incorporates diverse self-supervision us-
ing probabilistic logic to train a deep neural network end-to-
end using variational EM. While DPL is successful at com-
bining pre-specified self-supervision, manually crafting self-
supervision to attain high accuracy may still be tedious and
challenging. In this paper, we propose Self-Supervised Self-
Supervision (S4), which adds to DPL the capability to learn
new self-supervision automatically. Starting from an initial
“seed,” S4 iteratively uses the deep neural network to pro-
pose new self supervision. These are either added directly (a
form of structured self-training) or verified by a human expert
(as in feature-based active learning). Experiments show that
S4 is able to automatically propose accurate self-supervision
and can often nearly match the accuracy of supervised meth-
ods with a tiny fraction of the human effort.

Introduction

Machine learning has made great strides in enhancing model
sophistication and learning efficacy, as exemplified by re-
cent advances in deep learning (LeCun, Bengio, and Hin-
ton 2015). However, contemporary supervised learning tech-
niques require a large amount of labeled data, which is ex-
pensive and time-consuming to produce. This problem is
particularly acute in specialized domains like biomedicine,
where crowdsourcing is difficult to apply. Self-supervision
has emerged as a promising paradigm to overcome the
annotation bottleneck by automatically generating noisy
training examples from unlabeled data. In particular, rask-
specific self-supervision converts prior knowledge into self-
supervision templates for label generation, as in distant su-
pervision (Mintz et al. 2009), data programming (Ratner
et al. 2016), and joint inference (Poon and Domingos 2008).

Deep probabilistic logic (DPL) is a unifying framework
for self-supervision that combines deep learning with prob-
abilistic logic (Wang and Poon 2018). It represents unknown
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labels as latent variables, and incorporates prior beliefs over
labels and their dependencies as virtual evidence in a graph-
ical model. The marginal beliefs over the latent variables are
used as probabilistic labels to train a deep neural network for
the end prediction task. The trained neural network in turn
provides belief updates to refine the graphical model param-
eters, and the process continues, using variational EM.

Wang and Poon (2018) show that DPL can effectively
combine diverse sources of self-supervision in a coherent
probabilistic framework and subsume supervised and semi-
supervised learning as special cases. While promising, DPL
and related approaches still require human experts to manu-
ally specify self-supervision. This is particularly challenging
for self-supervision such as data programming and joint in-
ference, which require domain expertise and extensive effort
to identify the many relevant virtual evidences for attaining
high accuracy in the end task.

In this paper, we propose Self-Supervised Self-
Supervision (S4) as a general framework for learning
to add new self-supervision. In particular, we extend deep
probabilistic logic (DPL) with structure learning and active
learning capabilities (see Figure 1). After running DPL
using the pre-specified seed self-supervision, S4 iteratively
proposes new virtual evidence using the trained deep neural
network and graphical model, and determines whether to
add this evidence directly to the graphical model or ask
a human expert to vet it. The former can be viewed as
structured self-training, which generalizes self-training
(e.g., McClosky, Charniak, and Johnson 2006) by adding
not only individual labels but also arbitrary probabilistic
factors over them. The latter subsumes feature-based
active learning (Druck, Settles, and McCallum 2009) with
arbitrary features expressible using probabilistic logic. By
combining the two in a unified framework, S4 can leverage
both paradigms for generating new self-supervision and
subsume many related approaches as special cases.

We use transformer-based models for the deep neural net-
work in DPL and explore various self-supervision proposal
mechanisms based on neural attention and label entropy.
Our method can learn to propose both unary potential fac-
tors over individual labels and joint-inference factors over
multiple labels. We conducted experiments on various nat-
ural language processing (NLP) tasks to explore the poten-
tial of our method. We held out gold labels for evaluation
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Figure 1: Self-Supervised Self-Supervision (S4): S4 builds on deep probabilistic logic and uses probabilistic logic to represent
self-supervision for learning a deep neural network for the end prediction task. Starting from pre-specified self-supervision, S4
interleaves structure learning and active learning steps to introduce new self-supervision for training the neural network and
refining the graphical model parameters. Self-supervision factors from initialization, structure learning, and active learning are

shown in blue, red, and black, respectively.

only, and used them to simulate oracle self-supervision for
initial self-supervision and active learning. We find that S4
can substantially improve over the seed self-supervision by
proposing new virtual evidence, and can match the accuracy
of fully supervised systems with a fraction of human effort.

Deep Probabilistic Logic

Given a prediction task, let X and ) denote the sets of pos-
sible inputs and outputs, respectively. The goal is to train a
prediction module ¥ (x, y) that scores output y given input
2. We assume that U(z, y) represents the conditional proba-
bility P(y|x).Let X = (X1, -+, Xn) denote a sequence of
inputs and Y = (Y7, - -, Yi) the corresponding outputs. If
Y is observed, ¥(z, y) can be learned using standard super-
vised learning. In this paper, we consider the setting where Y’
is unobserved, and ¥ (z, y) is learned using self-supervision.

The key idea of deep probabilistic logic (DPL) is to repre-
sent self-supervision as prior belief over the latent label vari-
ables Y and their interdependencies by combining proba-
bilistic logic and deep learning (Wang and Poon 2018). Pearl
(1988) first introduced virtual evidence to represent prior be-
lief on the value of a random variable. Specifically, the prior
belief on Y can be represented by introducing a binary vari-
able v as a dependent of Y such that P(v = 1|Y = y) is
proportional to the belief of Y = y. The virtual evidence
v = 1 can be viewed as a reified variable representing the
unary potential function ®(y) o< P(v = 1|y). More gener-
ally, this can represent arbitrary potential functions ®(X,Y")
over the inputs and outputs, so as to model prior beliefs
over arbitrary high-order factors. DPL uses Markov logic
(Richardson and Domingos 2006) to represent virtual ev-
idences and uses a deep neural network as the prediction
module ¥(z,y). Let V.= {vy,---, v} be a set of pre-
specified virtual evidences, with the corresponding potential
functions being (®q, - - - , ). We will use K as shorthand
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for theevent V=1 (i.e.,v;1 = 1,...,vr = 1). DPL defines
a probability distribution over K, X, Y by combining a fac-
tor graph with potentials ® representing P(K|Y, X) and the
prediction module P(Y|X):

P(K,Y[X) o [[ @u(x,7)-J] (X0 v)) (D)

Here, the potential functions ®,(X,Y) are represented
by weighted first-order logic formulas (i.e., ®,(X,Y)
exp(wy fo(X,Y)), with f,(X,Y) being a binary feature
represented by a first-order logical formula). DPL consid-
ers a Bayesian setting where each w,, is drawn from a pre-
specified prior distribution w, ~ P(w,|a,). Fixed w,
amounts to the special case when the prior is concentrated
on the preset value. For uncertain w,’s, DPL computes their
maximum a posteriori (MAP) estimates.

Parameter learning in DPL maximizes the conditional log
likelihood of virtual evidences log P(K|X ), which can be
done using variational EM. In the E-step, DPL computes a
variational approximation ¢(Y") for P(Y'| K, X) using loopy
belief propagation (Murphy, Weiss, and Jordan 1999) with
current parameters ®, U, by conducting message passing
in P(K,Y|X) iteratively. In the M-step, DPL treats ¢(Y")
as the probabilistic label distribution to train ® and ¥ via
standard supervised learning. For the prediction module ¥,
this reduces to standard deep learning, with the marginals
qi(Y;) = Eq(y)(Y;) serving as probabilistic labels for X;.
For the supervision module, this reduces to standard pa-
rameter learning for log-linear models (i.e., learning non-
fixed w,’s), and can be solved using gradient descent, with
the partial derivative for w, being Eq v, x) [fo(X,Y)] —
Eqvy [fo(X,Y)]. The second expectation can be done by
simple counting. The first expectation, on the other hand, re-
quires probabilistic inference in the graphical model. But it
can be computed using belief propagation, similar to the E-



Algorithm 1 Self-Supervised Self-Supervision (S4)

Input: Seed virtual evidences I, deep neural network W,
inputs X = (Xy,...,Xxn), unobserved outputs Y
(Y1,...,Yy), human query budget T
Output: Learned prediction module ¥ and virtual evi-
dences K = {(f,(X,Y),w,) : v}.
Initialize: K =1, Q =0;i = 0.
fori=1...M do
while Structured Self-Training not converged do
U, K < DPL-Learn(K, VU, X,Y)
v =PropSST(K,¥,X,Y);
K+ K Uv;
end while
if |Q] < T then
v =PropFAL(K, ¥, X|Y,Q);Q + Q Uu;
if Human-Accept(v) then K + K Uwv
end if
end for

step, except that the messages are limited to factors in the su-
pervision module (i.e., messages from U are not included)’.

Self-Supervised Self-Supervision

In this section, we present the Self-Supervised Self-
Supervision (S4) framework, which extends deep proba-
bilistic logic (DPL) with the capability to learn new self-
supervision. Let V = {(fy,, wy, ) : v} be the set of all
candidate virtual evidences, where f,(X,Y) is a first-order
logical formula, w, is the weight, and «,, is the weight prior
(for non-fixed w,). Let K be the set of virtual evidences
maintained by the algorithm, initialized by the seed I. The
key idea of S4 is to interleave structure learning and active
learning to iteratively propose new virtual evidence v € V to
augment K (Figure 1). Self-training is a special case where
candidate virtual evidences are individual label assignments
(i.e., fy = I[y, = l,]). S4 can thus be viewed as conducting
structured self-training (SST) by generalizing self-training
to admit arbitrary Markov logic formulas as virtual evidence.

S4 can also be viewed as conducting structure learning in
the factor graph that specifies the virtual evidence. Structure
learning has been studied intensively in the graphical model
literature (Friedman and Koller 2003). It is also known as
feature selection or feature induction in general machine
learning literature (Hall 1999). Here, we are introducing
structured factors for self-supervision, rather than as feature
templates to be used during training. Another key difference
from standard structure learning is the deep neural network,
which provides an alternative view from the virtual evidence
space and enables multi-view learning in DPL. The neural
network can also help identify candidate virtual evidences,
e.g., via neural attention.

In data programming and many other prior methods, hu-
man experts need to pre-specify all self-supervision upfront.

'In theory, to optimize a lower bound on the conditional log
likelihood as in standard EM, E-steps and M-steps need to use dif-
ferent approximate inference algorithms (Domke 2013). However,
using the same approximation for both has been shown to work
well in practice (Verbeek and Triggs 2008).
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While it is easy to generate a small seed by identifying the
most salient self-supervision, this effort can quickly become
tedious and more challenging as the experts are required
to enumerate the less salient templates. On the other hand,
given a candidate, it’s generally much easier for experts to
validate it. This suggests that for the best utilization of hu-
man bandwidth, we should focus on leveraging them to pro-
duce the initial self-supervision and verify candidate self-
supervision. Consequently, in addition to structured self-
training (SST), S4 incorporates feature-based active learn-
ing (FAL) (i.e., active learning of self-supervision). When
SST converges, S4 will switch to the active learning mode
by proposing a candidate virtual evidence for human verifi-
cation (i.e., labeling a feature rather than an instance in stan-
dard active learning). Intuitively, in FAL we are proposing
virtual evidences for which the labels of the corresponding
instances are still uncertain. If the human expert can provide
definitive supervision on the label, the information gain will
be large. By contrast, in SST, we favor virtual evidences with
skewed posterior label assignments for their corresponding
instances, as they can potentially amplify the signal.

Algorithm 1 describes the S4 algorithm. S4 first con-
ducts DPL using the initial self-supervision I, then inter-
leaves structured self-training (SST) with feature-based ac-
tive learning (FAL). SST steps are repeated until there is lit-
tle change in the probabilistic labels (less than 1% in our
experiments). DPL learning updates the deep neural network
and the graphical model parameters with warm start (i.e., the
parameters are initialized with the previous parameters). All
proposed queries are stored and won’t be proposed again.
The total amount of human effort consists of generating the
seed I and validating T" queries in active learning.

S4 is a general algorithm framework that can combine
various strategies for designing V, PropSST, and PropFAL.
In standard structure learning, PropSST would attempt to
maximize the learning objective (e.g., conditional likelihood
of seed virtual evidences) by iteratively conducting greedy
structure changes. However, this is very expensive to com-
pute, since it requires a full DPL run just to score each candi-
date. Instead, we take inspiration from the feature-induction
and relational learning literature and use heuristic approxi-
mations that are much faster to evaluate. In the most gen-
eral setting, V contains all possible potential functions. In
practice, we can restrict it to a tractable subset to obtain a
good trade-off between expressiveness and computation for
the problem domain. Interestingly, as we will see in the ex-
periment section, even with relatively simple classes of self-
supervision, S4 can dramatically improve over DPL through
structure learning and active learning.

We use text classification from natural language process-
ing (NLP) as a running example to illustrate how to apply S4
in practice. Here, the input X; = (¢1,...,1s,) is a sequence
of tokens and the output Y; is the classification label (e.g.,
pos or neg in sentiment analysis).

Candidate Self-Supervision

For V, the simplest choice is to use tokens. Namely,
fru(X,,Y;) =1t € X; AY; = []. For simplicity, we can use
a fixed weight and prior for all initial virtual evidence, i.e.,



V = {(fey,w, @) : t,1}. Take sentiment analysis as an ex-
ample. X; may represent a movie review and Y; € {0, 1} the
sentiment. A virtual evidence for self-supervision may stip-
ulate that if the review contains the word “good”, the senti-
ment is more likely to be positive. This can be represented
by the formula feood.1(X;, Y;) = I[“good” € X; AY; = 1]
with a positive weight. A more advanced choice for V may
include high-order factors, such as f;;(Y;,Y;) = 1[Y; = Yj].
If we add this factor for similar pairs X;, X, it stipulates
that instances with similar input are likely to share the same
label. Here we define similar pairs with a similarity function
Sim(X;, X;) between X; and X, such as the cosine simi-
larity between the sentence (or document) embeddings of X;
and X;, based on the current deep neural network. Note that
this is different from graph-based semi-supervised learning
or other kernel-based methods in that the similarity metric
is not pre-specified and fixed, but rather evolving along with
the deep neural network for the end task.

Structured Self-Training (PropSST)

From DPL learning, we obtain the current marginal esti-
mate of the latent label variables ¢;(Y;), which we would
treat as probabilistic labels in assessing candidate virtual
evidence. There are many sensible strategies for proposing
candidates in structured self-training (i.e., PropSST). For
token-based self-supervision, a common technique from the
feature-selection literature is to choose a token highly corre-
lated with a label. For example, we can choose the token ¢
that occurs much more frequently in instances for a given la-
bel [ than others using our noisy label estimates. We find that
this often leads to very noisy proposals and semantic drift. A
simple refinement is to restrict our scoring to instances con-
taining some initial self-supervised tokens. However, this
still has the drawback that a word may occur more often
in instances of a class for reasons other than contributing to
the label classification. We therefore consider a more sophis-
ticated strategy based on neural attention. Namely, we will
credit occurrences using the normalized attention weight for
the given token in each instance.

Formally, let Ay (X, j) represent the normalized atten-
tion weight the neural network W assigns to the j-th to-
ken in X; for the final classification. We define average
weighted attention for token t and label [ as Attn(¢, 1) =
& Digixe =t 6(Ye = 1) - Au(Xi, ), where C is the
number of occurrences of ¢ in X. Then PropSST would
simply score token-based self-supervision f;; using rela-
tive average weighted attention: Syoken(t,{) = Attn(t, 1) —
21 Attn(t,1'). In each iteration, PropSST picks the top
scoring f; that has not been proposed yet as the new virtual
evidence to add to K.

We also consider an entropy-based score function that
works for arbitrary input-based features. It treats the predic-
tion module W as a black box, and only uses the posterior la-
bel assignments ¢;(Y;). Consider candidate virtual evidence
fo.u(X5,Y;) = Ib(X;) AY; = 1], where b is a binary func-
tion over input X;. This clearly generalizes token-based vir-

tual evidence. Define Ent(b) = H (C% Doib(Xi)=1 qi(Yi)>,
where H is the Shannon entropy and Cj, is the number of
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instances for which the feature b holds true. This function
represents the entropy of the average posterior among all in-
stances with b(X;) = 1. PropSST will then use Sentropy (D) =
1/Ent(b) to choose the b* with the lowest average entropy
and then pick label [* with the highest average posterior
probability for b*. In our experiments, this performs simi-
larly to attention-based scores.

For joint-inference self-supervision, we consider the
similarity-based factors defined earlier, and leave the ex-
ploration of more complex factors to future work. To dis-
tinguish task-specific similarity from pretrained similarity,
we use the difference between the similarity computed us-
ing the current fine-tuned BERT model and that using the
pretrained one. Formally, let Simpreirained (X5, X ;) be the co-
sine similarity between the embeddings of X; and X; gen-
erated by the pretrained BERT model, and Simg (X;, X;) be
that between the embeddings using the current learned net-
work U. PropSST would score the joint-inference factor us-
ing the relative similarity and choose the top scoring pairs to
add to self-supervision: Sjoin((X;i, X;) = Simg (X;, X;) —
Simpretrained(Xia Xj)

Feature-Based Active Learning (PropFAL)

For active learning, a common strategy is to pick the instance
with highest entropy in the label distribution based on the
current marginal estimate. In feature-based active learning,
we can similarly pick the feature b with the highest average
entropy Ent(b). Note that this is opposite to how we use the
entropy-based score function in PropSST, where we choose
the feature with the lowest average entropy. In PropFAL, we
will identify b* = arg max(Ent (b)), present fp- ;(X,Y) =
I[b*(X)AY =] for all possible labels /, and ask the human
expert to choose a label [* to accept or reject them all.

Experiments

We use the natural language processing (NLP) task of
text classification to explore the potential for S4 to im-
prove over DPL using structure learning and active learning.
We used three standard text classification datasets: IMDb
(Maas et al. 2011), Stanford Sentiment Treebank (Socher
et al. 2013), and Yahoo! Answers (Zhang, Zhao, and Le-
Cun 2015). IMDb contains movie reviews with polarity la-
bels (positive/negative). There are 25,000 training instances
with equal numbers of positive and negative labels, and
the same numbers for test. Stanford Sentiment Treebank
(StanSent) also contains movie reviews, but was annotated
with five labels ranging from very negative to very posi-
tive. We used the binarized version of StanSent, which col-
lapses the polarized categories and discards the neutral sen-
tences. It contains 6,920 training instances and 1,821 test
instances, with roughly equal split. Overall, the StanSent re-
views are shorter than IMDDb’s, and they often exhibit more
challenging linguistic phenomena (e.g., nested negations or
sarcasm). The Yahoo dataset contains 1.4 million training
questions and 60,000 test questions from Yahoo! Answers;
these are equally split into 10 classes. Due to space con-
straints, we report the Yahoo results in the appendix.

In all our experiments with S4, we withheld gold labels
from the system, used the training instances as unlabeled



data, and evaluated on the test set. We reported test accu-
racy, as all of the datasets are class-balanced. For our neu-
ral network prediction module ¥ (X, Y;), we used the stan-
dard BERT-base model pretrained using Wikipedia (Devlin
et al. 2018), along with a global-context attention layer as
in Yang et al. (2016), which we also used for attention-
based scoring. We truncated the input text to 512 tokens,
the maximum allowed by the standard BERT model. All
of our baselines (except supervised bag-of-words) use the
same BERT model. For all virtual evidences, we used ini-
tial weight w = 2.2 (the log-odds of 90% probability) and
used an « corresponding to an L2 penalty of 5 x 10~% on
w. Our results are not sensitive to these values. In all exper-
iments, we use the Adam optimizer with an initial learning
rate tuned over [0.1,0.01,0.001]. The optimizer’s history is
reset after each EM iteration to remove old gradient infor-
mation. We always performed 3 EM iterations and trained
W for 5 epochs per iteration.

For virtual evidence, we focus on token-based unary fac-
tors and similarity-based joint factors, as discussed in the
previous section, and leave the exploration of more com-
plex factors to future work. Even with these factors, our self-
supervised ¥ models often nearly match the accuracy of the
best supervised models. We also compare with Snorkel, a
popular self-supervision system (Ratner et al. 2016). We use
the latest Snorkel version (Ratner et al. 2019), which models
correlations among same-instance factors. Snorkel cannot
incorporate joint-inference factors across different instances.

To simulate human supervision for unary factors, we
trained a unigram model using the training data with L1
regularization and selected the 100 tokens with the high-
est weights for each class as the oracle self-supervision. By
default, we used the top tokens for each class in the initial
self-supervision /. We also experimented with using random
tokens from the oracle in I to simulate lower-quality initial
supervision and to quantify the variance of S4. For the set of
oracle joint factors, we fine-tuned the standard BERT model
on the training set, used the CLS embedding BERT produces
to compute input similarity, and picked the 100 input pairs
whose similarity changed the most between the fine-tuned
model and the initial model.

We first investigate whether structure learning can help in
S4 by running without feature-based active learning. We set
the query budget 7' = 0 in Algorithm 1. Because we only
take structured self-training steps when 7' = 0, we denote
this version of S4 as S4-SST. Table 1 shows the results on
IMDb. With just six self-supervised tokens (three per class),
S4-SST already attained 86% test accuracy, which outper-
forms self-training with 100 labeled examples by 16 abso-
lute points, and is only slightly worse than self-training with
1000 labeled examples or supervised training with 25,000
labeled examples. By conducting structure learning, S4-SST
substantially outperformed DPL, gaining about 5 absolute
points in accuracy (a 25% relative reduction in error), and
also outperformed the Snorkel baseline by 8.9 points. Inter-
estingly, with more self-supervision at 20 tokens, DPL’s per-
formance drops slightly, which might stem from more noise
in the initial self-supervision. By contrast, S4-SST capital-
ized on the larger seed self-supervision and attained steady
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Algorithm Sup. size |I|  Test acc (%)
BowW 25k 87.1
DNN 25k 91.0
Self-training 100 69.9
Self-training 1k 88.5
Snorkel 6 76.6
DPL 6 80.7
S4-SST 6 85.5
S4 (T = 20) 6 85.6
Snorkel 20 82.4
DPL 20 78.9
S4-SST 20 86.4
S4 (T = 20) 20 86.9
Snorkel 40 84.6
DPL 40 85.2
S4-SST 40 86.6
S4 (T = 20) 40 86.8

Table 1: System comparison on IMDb

improvement. Even with substantially more self-supervision
at 40 tokens, S4-SST still attained similar accuracy gain,
demonstrating the power in structure learning. On average
across different initial amounts of supervision |I|, S4-SST
outperforms DPL by 5.6 points and Snorkel by 5.3 points.
Next, we consider the full S4 algorithm with a budget of
up to 7' = 20 human queries (S4 (I'" = 20)). Overall,
by automatically generating self-supervision from structure
learning, S4-SST already attained very high accuracy on this
dataset. However, active learning can still produce some ad-
ditional gain. The only randomness in Table 1 is the initial-
ization of the deep network W, which has a negligible effect.

Figure 2 (leftmost) shows how S4-SST iterations improve
the test accuracy of the learned neural network with differ-
ent amounts of initial virtual evidence. Not surprisingly, with
more initial self-supervision, the gain is less pronounced, but
still significant. Figure 2 (center left) compares the learn-
ing curves of S4-SST with those of self-training. Remark-
ably, with just six self-supervised tokens, S4-SST not only
attained substantial gain over the iterations, but also easily
outperformed self-training despite the latter using an order
of magnitude more label information (up to 200 labeled ex-
amples). This shows that S4 is much more effective in lever-
aging bounded human effort for supervision.

Figure 2 (center right) shows 10 runs of S4-SST when it
was initialized with 20 random oracle tokens (10 per class),
rather than the fop 20 tokens from the oracle. As expected,
DPL’s initial performance is worse than with the top oracle
tokens. However, over the iterations, S4-SST was able to re-
cover even from particularly poor initial state, gaining up to
20 absolute accuracy points over DPL in the process. The
final accuracy of S4-SST is 85.2 + 0.9, compared to 71.5 +
6.5 for DPL and 72.9 + 6.7 for Snorkel, a mean improve-
ment of more than 12 absolute accuracy points over both
baselines. S4-SST’s gains over DPL and Snorkel are statis-
tically significant using a paired ¢-test (samples are paired
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Figure 2: S4-SST learning in IMDb. Left-to-right: S4-SST learning curves with various numbers of initial self-supervised
tokens; comparison between the learning curves of S4-SST with just six self-supervised tokens and self-training with an order of
magnitude more direct supervision (100/200 labeled examples); multiple runs of S4-SST with 20 random oracle self-supervised
tokens (rather than the top oracle tokens); pre-specified self-supervised tokens and proposed tokens in the first few iterations.

Algorithm Sup. size |I|  Test acc (%)
BoW 6.9k 78.9
DNN 6.9k 90.9
.. 50 78.0
Self-training 100 318
Snorkel 6 63.5
DPL 6 57.2
S4-SST 6 73.0
S4-SST +17 6 76.2
S4+1 (T = 20) 6 81.4
Snorkel 20 73.0
DPL 20 72.4
S4-SST 20 83.3
S4-SST +17J 20 85.1
S4+71 (T = 20) 20 84.4
Snorkel 40 73.6
DPL 40 77.0
S4-SST 40 84.9
S4-SST +1J 40 86.3
S4+J (T = 20) 40 85.4

Table 2: System comparison on Stanford

when the algorithms have the same initial factors I) with
p = 0.01. This indicates that S4-SST is robust to noise in the
initial self-supervision. Figure 2 (rightmost) shows the ini-
tial self-supervised tokens and the ones learned by S4-SST
in the first few iterations. We can see that S4-SST is able to
learn highly relevant self-supervision tokens.

S4 has similar gains over DPL, Snorkel, and self-training
on the Stanford dataset. See Table 2. The Stanford dataset
is much more challenging and for a long while, it was hard
to exceed 80% test accuracy (Socher et al. 2013). Interest-
ingly, S4-SST was able to surpass this milestone using just
20 initial self-supervision tokens. As in Table 1, the only
randomness is in the initialization of ¥, which is negligible.

For IMDb, as can be seen above, even with simple
token-based self-supervision, S4-SST already performed ex-
tremely well. So we focused our investigation of joint-
inference factors on the more challenging Stanford dataset
(S4-SST + J). While S4-SST already performed very well
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I|=6 [I|=10 [I|=20 |I|=40
T=5 790 83.8 84.0 85.9
T=10 795 83.7 85.0 86.0
T=20 827 84.5 85.8 86.4

Table 3: S4-FAL results on IMDDb (no SST steps)

I|=6 [I]=10 [I|=20 |I|=40
T=5 714 715 82.5 83.9
T=10 72.3 77.4 82.5 83.7
T=2 771 808 83.4 84.0

Table 4: S4-FAL results on Stanford (no SST steps)

with token-based self-supervision, by incorporating joint-
inference factors, it could still gain up to 3 absolute accuracy
points. An example learned joint-inference factor is between
the sentence pair: This is no “Waterboy!” and “It manages
to accomplish what few sequels can—it equals the original
and in some ways even better”. Note that Waterboy is widely
considered a bad movie, hence the first sentence expresses a
positive sentiment, just like the second. It is remarkable that
S4 can automatically induce such factors with complex and
subtle semantics from small initial self-supervision.

The Stanford results also demonstrated that active learn-
ing could play a bigger role in more challenging scenarios.
With limited initial self-supervision (|I| = 6), the full S4
system (S4+]J (T=20)) gained 8 absolute points over S4-SST
and 5 absolute points over S4-SST+J. With sufficient initial
self-supervision and joint-inference, however, active learn-
ing was actually slightly detrimental (|I| = 20, 40).

Finally, we evaluate S4-FAL, which conducts active learn-
ing but not structure learning. See Tables 3 and 4. As
expected, performance improved with larger initial self-
supervision (/) and human query budget (1"). Active learn-
ing helps the most when initial self-supervision is limited.
Compared to S4 with structure learning, however, active
learning alone is less effective. For example, without requir-
ing any human queries, S4-SST outperformed S4-FAL on
both IMDB and Stanford even when the latter was allowed
up to 7' = 20 human queries.



Related Work

Techniques to compensate for the lack of direct supervi-
sion come in many names and forms (Mintz et al. 2009;
Ratner et al. 2016; Bach et al. 2017; Roth 2017; Wang
and Poon 2018). Self-supervision has emerged as an en-
compassing paradigm that views these as instances of us-
ing self-specified templates to generate noisy labeled exam-
ples on unlabeled data. The name self-supervision is closely
related to self-training (McClosky, Charniak, and Johnson
2006), which bootstraps from a supervised classifier, uses
it to annotate unlabeled instances, and iteratively uses the
confident labels to retrain the classifier. Task-agnostic self-
supervision generalizes word embedding and language mod-
eling by learning to predict self-specified masked tokens, as
exemplified by recent pretraining methods such as BERT
(Devlin et al. 2018). In this paper, we focus on task-specific
self-supervision and use pretrained models as a building
block for task-specific learning.

Existing self-supervision paradigms are typically special
cases of deep probabilistic logic (DPL). E.g., the popular
data programming methods (Ratner et al. 2016; Bach et al.
2017; Varma et al. 2017) admit only virtual evidences for in-
dividual instances (labeling functions or their correlations).
Anchor learning (Halpern et al. 2016) is an earlier form of
data programming that, while more restricted, allows for
stronger theoretical learning guarantees. Profotype learn-
ing is an even earlier special case with labeling functions
provided by “prototypes” (Haghighi and Klein 2006; Poon
2013). Using Markov logic to model self-supervision, DPL
can incorporate arbitrary prior beliefs on both individual la-
bels and their interdependencies, thereby unleashing the full
power of joint inference (Chang, Ratinov, and Roth 2007;
Druck, Mann, and McCallum 2008; Poon and Domingos
2008; Ganchev et al. 2010) to amplify and propagate self-
supervision signals.

Self-supervised self-supervision (S4) further extends DPL
with structure learning capability. Most structure learning
techniques are developed for the supervised setting, where
structure search is guided by labeled examples (Friedman
and Koller 2003; Kok and Domingos 2005). Moreover, tra-
ditional relational learning induces deterministic rules and
is susceptible to noise and uncertainty. Bootstrapping learn-
ing is one of the earliest and simplest self-supervision meth-
ods with some rule-learning capability, by alternating be-
tween inducing characteristic contextual patterns and clas-
sifying instances (Hearst 1992; Carlson et al. 2010). The
pattern classes are limited and only applicable to special
problems (e.g., “A such as B” to find ISA relations). Most
importantly, they lack a coherent probabilistic formulation
and may suffer catastrophic semantic drift due to ambiguous
patterns (e.g., “cookie” as food or compute use). Yarowsky
(1995) and Collins and Singer (1999) designed a more so-
phisticated rule induction approach, but their method uses
deterministic rules and may be sensitive to noise and am-
biguity. Recently, Snuba (Varma and Ré 2018) extends the
data programming framework by automatically adding new
labeling functions, but like prior data programming meth-
ods, their self-supervision framework is limited to modeling
prior beliefs on individual instances. Their method also re-
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quires access to a small number of labeled examples to score
new labeling functions.

Another significant advance in S4 is by extending DPL
with the capability to conduct structured active learning,
where human experts are asked to verify arbitrary virtual
evidences, rather than a label decision. Note that by admit-
ting joint inference factors, this is more general than prior
use of feature-based active learning, which focuses on per-
instance features (Druck, Settles, and McCallum 2009). As
our experiments show, interleaving structured self-training
learning and structured active learning results in substantial
gains, and provides the best use of precious human band-
width. Tong and Koller (2001) previously considered active
structure learning in the context of Bayesian networks. An-
chor learning (Halpern et al. 2016) can also suggest new
self-supervision for human review. Darwin (Galhotra, Gol-
shan, and Tan 2020) incorporates active learning for verify-
ing proposed rules, but it doesn’t conduct structure learning,
and like Snuba and other data programming methods, it only
models individual instances.

Neural-symbolic learning and reasoning has received in-
creasing attention (Besold et al. 2017). In particular, com-
bining deep learning with probabilistic models can lever-
age their complementary strengths in modeling complex pat-
terns and infusing rich prior knowledge. Prior work tends to
focus on deep generative models that aim to uncover latent
factors for generative modeling and semi-supervised learn-
ing (Kingma and Welling 2013; Kingma et al. 2014). They
admit limited forms of self-supervision (e.g., latent struc-
tures such as Markov chains (Johnson et al. 2016)). S4 and
DPL instead combine a discriminative neural network pre-
dictor with a generative self-supervision model based on
Markov logic, and can fully leverage their respective capa-
bilities to advance co-learning (Blum and Mitchell 1998;
Grechkin, Poon, and Howe 2017). Deep neural networks
also provide a powerful feature-induction engine to support
structure learning and active learning.

Conclusion

We present Self-Supervised Self-Supervision (S4), a gen-
eral self-supervision framework that can automatically in-
duce new self-supervision by extending deep probabilistic
logic (DPL) with structure learning and active learning ca-
pabilities. Our experiments on various natural language pro-
cessing (NLP) tasks show that compared to prior systems
for task-specific self-supervision, such as Snorkel and DPL,
S4 can obtain gain up to 20 absolute accuracy points with
the same amount of supervision. S4 only relies on humans
to identify the most salient self-supervision for initialization
and to verify proposed self-supervision, which tends to be
the most effective use of human bandwidth. While we focus
on NLP tasks in this paper, our methods are general and can
potentially be applied to other domains. Future directions
include: further investigation in combining structure learn-
ing and active learning; exploring more sophisticated self-
supervision classes and proposal algorithms; applications to
other domains.
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