The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Interpretable Actions:
Controlling Experts with Understandable Commands

Shumeet Baluja, David Marwood, Michele Covell

Google Research, Google, Inc.
{shumeet,marwood,covell} @ google.com

Abstract

Despite the prevalence of deep neural networks, their single
most cited drawback is that, even when successful, their op-
erations are inscrutable. For many applications, the desired
outputs are the composition of externally-defined bases. For
such decomposable domains, we present a two-stage learn-
ing procedure producing combinations of the external bases
which are trivially extractable from the network. In the first
stage, the set of external bases that will form the solution are
modeled as differentiable generator modules, controlled by the
same parameters as the external bases. In the second stage, a
controller network is created that selects parameters for those
generators, either successively or in parallel, to compose the
final solution. Through three tasks, we concretely demonstrate
how our system yields readily understandable commands. In
one, we introduce a new form of artistic style transfer, learning
to draw and color with crayons, in which the transformation
of a photograph or painting occurs not as a single monolithic
computation, but by the composition of thousands of indi-
vidual, visualizable strokes. The other two tasks, single-pass
function approximation with arbitrary bases and shape-based
synthesis, show how our approach produces understandable
and extractable actions in two disparate domains.

1 Introduction

Perhaps the longest-standing drawback of neural networks
has been their lack of interpretability (Chakraborty et al.
2017; Fan, Xiong, and Wang 2020; Harnad 1990; Smolensky
1986). This work improves interpretability using a training
approach that naturally lends itself to understandable actions
and transformations. For many domains, the target solution is
the composition of externally-defined operations or external
bases. The bases can be complex, non-differentiable, or oth-
erwise ill-behaved. In our approach, these external bases are
individually approximated by differentiable deep neural net-
works (DNNs) called generator modules. The generators are
frozen and a controller DNN is trained to output interpretable
control commands to the generators. Under the guidance of
the controller, the system composes the output of the gener-
ators to create the final output. The control commands are
trivial to extract from the network and reveal how to construct
the output using solely the external bases.
We demonstrate this technique through three tasks:

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4912

Figure 1: A network recreates an image with individual
crayon strokes. A: Original. B: first 10 crayon strokes. C-E:
successive strokes. Clear representation of dominant image
features are created quickly. F: Final result. Top-Bottom: A
painting by Hokusai, a portrait and a landscape photograph.

* Function Approximator: Composes an arbitrarily com-
plex input function using simple external bases.

* Style Transfer: Thousands of individual crayon strokes
are composed to stylistically reproduce an image (see Fig-
ure 1). This introduces a novel approach to style transfer.

* Inverse Renderer: A target image is deconstructed into
simple geometric shapes.

In all the tasks, though simple, the external bases are not
well-suited to differentiation or classic optimization. Our ap-
proach is a novel framework for working with unconstrained,
interpretable bases to solve a variety of classic problems
using an O(1) one-shot process for each new input. Our ap-
proach is most akin to a behaviorist’s approach. We observe
the actions taken to accomplish a task rather than interpreting
the internal workings of the network.

Over the past four decades, a number of approaches to
extract meaning from neural processing have been pursued.
Early examples include (Ludermir 1970; Touretzky and Hin-
ton 1985). As explained by (Montavon, Samek, and Miiller
2018), the approaches broadly fall into two categories: (1)
interpreting the concepts learned - often involving examining
activations within the network and (2) explaining the net-
work’s decisions by techniques such as sensitivity analysis
on the input variables. Many interpretability studies attempt
to explain trained networks using visualizations, ranging from
examining the gradients with respect to individual layers to
reconstructions of inputs that maximize selected network
activations (Selvaraju et al. 2017; Yosinski et al. 2015; Ma-
hendran and Vedaldi 2016). Adversarial perturbations aid in
visualizing the strengths and weaknesses of a network (Good-
fellow, Shlens, and Szegedy 2014; Samangouei, Kabkab, and
Chellappa 2018; Tramer et al. 2017; Dong et al. 2017).

To achieve interpretability, an alternative to analyzing
trained networks is to create models that lend themselves to
understandable computations. This has been studied within
deep learning (Afchar and Hennequin 2020; Zhang, Nian Wu,
and Zhu 2018; Li et al. 2017) and other ML-models (Grosse
etal. 2012; Lloyd et al. 2014). Our work similarly imposes
structure, but allows us to find, without search, solutions
composed from externally defined, unconstrained bases.

In addition to the tasks presented here, interpretability tech-
niques have been used in numerous domains, including char-
acter recognition and inverse kinematics (Lake, Salakhut-
dinov, and Tenenbaum 2015; Andreas et al. 2015; Jacobs
and Jordan 1993; Devin et al. 2017; Oyama et al. 2001). In
real-world applications, the constraints on the bases are im-
posed from the outside: for example by the external software
systems to control or by physical constraints, such as the
articulation of robots. Domains in which it is important to ad-
here to these external constraints is where our system shines.
For each of our tasks, we model the bases in forward-mode
and achieve interpretable commands by controlling them.

2 Interpretable Control of Atomic Actions

An overview of our method is given in Figure 2, where the 5
high-level steps are listed. For clarity in exposition, we will
concurrently describe the algorithm while tackling our first
task: a non-search, non-optimization approach to function ap-
proximation. Given an arbitrary, potentially non-continuous,
non-monotonic, one-dimensional function, such as in Fig-
ure 3(top), how do we approximate it as a sum of fixed bases,
such as those shown in Figure 3(bottom)?

Step 1: Select the Bases/Actions and Train Generators
For this task, our external bases are defined as Bi“’i (1),

4913

Overview of 5 Step Procedure
1. Select the fundamental bases/actions relevant to
the task and train the

Generator models.
2. Set the number of generators and train a

Controller network, via back-propagation through

the Generator models, to direct the models.

3. Correct any residual error with repeated calls

to the controller.

4. Extract the interpretable commands that control

the original bases.

5. Fine tune the extracted commands.

Figure 2: High Level Description of Steps.

parameterized by the temporal scale, A, and the time offset,
¢, with a time index, ¢t. The specific set of n = 5 bases are
shown in Figure 3(bottom).! Notice the large impact of A and
¢; a wide variety of shapes can be created by varying the two
parameters. Given a predefined set of over-complete bases,
there are numerous methods to find good basis parameters
for arbitrary function approximation; usually they involve
search and/or iterative optimization. In contrast, after training
our system, every new function will be approximated using
using a one-shot, forward-propagation only (non-search, non-
iterative) technique that produces interpretable results.

We train a set of n generator DNNs, {G7 ()}, to approx-

imate the bases {BZ)‘¢ (t) }+=1..500 where t = 1..500. Each
generator module is trained independently. Training exam-
ples for each generator are created by randomly selecting
values for A and ¢ and sampling the corresponding basis
function at 500 points. At completion, each of five generator
modules is specialized; it is proficient only at generating its
specific external basis given as input any A and ¢. In Fig-
ure 3(bottom), the true external basis values are in blue and
the generator outputs in orange. The generators are good,

though not perfect, approximators?.

Step 2: Set the Generators & Train a Controller
Once the generator modules are trained, their weights are
frozen — they can no longer change. Given the fully trained

generator modules, Gi\jfl, a controller DNN is then trained
to solve the actual approximation task. Succinctly, the goal
of the controller is to emit the appropriate parameters \, ¢
for each generator, such that when the generators’ outputs
are combined, they reveal a good approximation to the target.

The full target function (Figure 3(top)) is used as input into
the controller network. The controller outputs interpretable
control commands, real values that are fed as input into each
of the generators (), ¢). Additionally, the controller emits
two extra parameters (A, k) per generator: A and k are used
to scale and bias the amplitudes of the generator-network

!There is nothing special about this combination of bases. They
were chosen because they are commonly found in literature. Anec-
dotally, as long as one basis creates step-like edges and another
smooth transitions, other combinations worked equivalently.

2One monolithic generator could be used to model all the func-
tions. However, separate generators are simpler and more modular.

L
TN WA

af s |

Figure 3: (top) A difficult target function to approximate; it is
discontinuous and poorly behaved. We learn to approximate it
with the small set of externally defined bases, f1-f5. (bottom)
5 basis functions that are non-monotonic and discontinuous.
Two examples shown for each with random A and ¢ settings,
t = (1..500). Blue: the actual external basis values (1 <
t < 500). Orange: the generator’s approximation. f5 zoomed:
close, but not perfect, approximations.

outputs. The complete output is therefore: >
Vi=A; x Gf‘¢() + k;. See Figure 4.

This approach works because (1) when training the con-
troller, during the forward pass, the generator modules con-
strain the controller to produce only interpretable control
commands. (2) During back-prop, the generator modules are
differentiable, unlike the external bases B, and pass error-
gradients through them indicating how to change A and ¢
even though the generator modules’ weights do not change.

The controller network is trained to minimize the Lo er-
ror between » ., . V; and the input curve. The training
examples for the controller are randomly generated functions
employing arbitrary combinations of the 5 external bases, as
well as a number of other randomly chosen trigonometric
functions.

The training is done in Tensorflow; a full description of the
training regime and architectures is given in the Appendix.
As mentioned earlier, the only variation from standard train-
ing is that the weights of the generator modules (with blue
backgrounds in Figure 4) are not updated when the weights
of the controller network are trained.

Consider the similarities of this procedure and classic au-
toencoders (Jiang 1999; Kramer 1991; Theis et al. 2017;
Larsen, Sgnderby, and Winther 2015). Both are trained to
minimize the differences between the reconstruction and in-
puts. In autoencoder networks, the decoder manipulates an
internal representation of the inputs directly back into outputs

i—1..n Vi where

4914

ALk

p

Controller + Generator-Net, m /\/\/\/\
N7 |

Network -y
’,’/ ~ Generator-Net, - m

/
/ X
/\/V/\/\—‘ < — Generator-Net, - /_\‘7

N\ ™
™ Generator-Net, N

N\
A

Target
Curve N
" Generator-Net,

[

e

\/\I\/\/ — (;) Target Curve
Residual Error: o @
difference between
target & predicted
Predicted sum of generators

(500 points) (sum of generators)
Figure 4: The controller outputs the parameters to control
each of the generator modules. The outputs of the generator
modules are summed and the Ly error computed. Errors are
propagated back through entire system — including through
the frozen generator modules — to train the controller network.

that are in the same space as the inputs. Here, we require a
level of indirection; the decoder must control generator mod-
ules through which the mapping back into the correct space
occurs. An interesting related work is found in (Alet, Lozano-
Pérez, and Kaelbling 2018), in which a similar application
was addressed; however, their emphasis was on discovering
a larger set of reusable generators rather than finding the
parameters for pre-specified (e.g. externally given) bases.

We test the system on 1,000 randomly generated functions
that were not used in training; in general all are poorly be-
haved, e.g. non-monotonic, non-periodic, and discontinuous.
They include trigonometric functions other than the 5 bases.
See Table 1-Line 1. Since 5 generator modules are used, there
are 20 parameters that are output by the controller network.
(More accurately, note that the amplitude biases (k.) are
additive and can be grouped into A, reducing the parameters
to 16). The final error between the resultant waveform and
the input is 4.85 (v/Ls). This is the baseline.

Step 3: Correct the Residual Error
To improve the results, note that because the controller is
trained to approximate any input function, we can feed the
residual error back into the controller network and then ap-
proximate it as well, updating the combined reconstruction
accordingly. The addition of the residual approximation re-
duces the error by 19% (Table 1-Line 2). Lines 3,4 continue
this same process with subsequent residuals, yielding a 29%
error reduction. A visualization of the benefits of residual
correction are shown in Figure 5(first column).

To summarize the procedure to this point, see the equa-
tions below defined for n generators: C'(I) is the controller
network applied to the input, I(t), that is trained to produce

Experiment #Gen Params | /L, % relative
Description Nets (w/ A) | error to base

1 baseline 5 20 (16) | 4.85 -

2+ residualy 10 40 (31) | 3.94 81.2%
3 + residuals 15 60 (46) | 3.59 74.0%
4 + residuals 20 80 (61) | 3.44 70.9%

5 w/extracted cmds 0 80 (61) | 4.2 87.0%
6 +rescaled A, A 0 61 3.4 70.7%

Table 1: Function Approximation Results on the Test-Set

the generator controls, A and ¢, and the generator ampli-
tudes scales and offsets, A and k. The iterative application
of the controller network is achieved by applying it to the
original target I = I as the first pass and to the residual

Liyi=1- Z:n:O R,, for subsequent passes.
At 1)\t,n
C(It) RN ¢t 1 t,n
t 1 t,n
k‘m tn

Rt = Z AtviG?t"i@t’i (t) + ktﬂ;

Step 4: Extract the Interpretable Commands

The primary goal of this paper is to obtain understandable
control commands. Thus far, we have used the controller net-
work to “send commands” to each of the 5 generators. Within
the system, the generator modules serve as differentiable
proxies for the external bases. Assuming that the generator
modules are good approximators, we can swap the proxies,
G1..n, with the actual bases, B;_,,. For the replacement, the
controller’s outputs, \;, ¢;, A;, ki, i = 1..20, initially used
as the inputs to generator modules, are now the parameters to
the externally defined bases. As before, the output amplitudes
of B?(t) are scaled and biased by A;, k;.

As shown in Table 1-Line 5, the error actually increases
when using the controller network to specify B;_,, directly
instead of approximating them through G; ,. See Fig-
ure 5(second column). Initially, this appears counter-intuitive
as the original waveforms, and not their approximations, are
used to create the input-functions that we are reconstructing.
However, this occurs because G was not a perfect estimator
of B. The controller network, which has only been trained
with G, has learned to operate with the generators’ inaccura-
cies. When the external basis functions, B, are used, there is
a mismatch in the training and operating regimes.

One solution is to train better generators. In this task, there
are an infinite number of training samples, so this will work.
However, in more complex applications, further training may
not be feasible. A simpler approach is possible (Step 5).

Step 5: Fine Tune the Extracted Commands

Recall that in addition to the control parameters, the con-
troller also emitted the amplitude-scale and -bias parameters,
Aj. 20 and k1. 29. Let us only recompute these scaling values

and the combined bias parameter A = 2?21 k;. Modifying

4915

Network Rendered Fine Tuned
Predictions from Extracted Extracted
(step 3) Commands (step 4) Commands (step 5)
J /Al / / /1 / / /‘ /
2NN NN A
Ay ORI Y URINE Y
g) / A / N\ A /
: NN NSNS
A A /1
§ /' /l " /| /‘ A /‘ /‘ /
é: /'\/’ _,// \\// l\ /‘\// A _// t\ //'L\‘// \\//, \/ {\
2 i / /’1 / ! /1| 1
9 \ / l\ \ /) /
é / ‘\Jl / _/ ‘v/ I\ - A N / }\\ / L_\/ / W N\ {\

Figure 5: Visualizing the residual corrections. Top (5-bases).
Column 1: the result (orange) of using 5 bases for fitting the
target (blue) — this is the result of steps 1-3. Column 2: the
fit of the actual extracted commands (step 4). Column 3: the
fit after the fine tuning (step 5). Subsequent rows show effect
of adding bases via residual corrections.

these parameters does not reshape the curves or intrinsically
change the external bases. The least-squares-error (LSE) so-
lution to this reweighting can be solved algebraically. After
reweighting, the loss incurred by removing the network ap-
proximators is recovered. See Table 1-Line 6, and Figure 5.

A visualization of the results, based solely on the extracted
commands fed into the external bases, is shown in Figure 6.
Despite the ill-behaved, non-differentiable nature of both the
target functions and the externally defined bases, good ap-
proximations are found without search or fitting, through a
single forward pass of the network. Most importantly, the
set of external bases is fully specified, extractable and un-
derstandable. We do not need to trust that the network has
approximated the function well; we can see it by using the
extracted commands directly on the external bases.

It is interesting to consider these processes in the context
of basis selection and importance weighting. The non-zero
A weights indicate which bases are most important. Further,
with the controller’s ability to set A to 0.0 or by moving
A to 0.0 during fine tuning, a basis can also be effectively
deselected such that it does not contribute to the final solution.

Non-Approximation (non-DNN) Based Methods

Though we do not expect this one-shot, single forward-pass,
neural network approximation approach to perform as well
as an iterative search based method, we briefly examine one
here for background. Recall that our approximations must
not only determine the offsets for the curves, A and k, but
also its shape, A and ¢. A more traditional method is to

T f

s k/\/\\/ i/f//\/f J
A

Y

— 7 —————l

iU

il

|

S JI |
D.

Figure 6: In each pair, top: 500 point input to the controller
network. Bottom: the approximation (orange) and the target
(blue). No generator modules are used; these are all created
based on the extracted commands. Note the severe discon-
tinuities and non-linearities throughout. (D) an example of
poor performance from a noisy approximation.

C.

use orthogonal matching pursuit (OMP) (Mallate and Zhang
1993). OMP uses greedy selection of bases and readjusts all
of the weighting coefficients after each step. This requires
that we generate every shape of the curves to be considered.
We sample the 5 basis families 2000 times each by varying A
and ¢, yielding a 10000-element dictionary to search.

Note that, unlike OMP, our method’s computation is inde-
pendent of the size of the equivalent OMP dictionary. OMP
computation grows linearly with the size of the dictionary.
That search is possible (although slow) for this task but, in
the next two tasks (Sections 3 and 4), the analogous OMP
dictionary would be too prohibitively large to use.

In our approach, the controller effectively subdivides the
dictionary and selects 5 entries at a time, in parallel. Mod-
ifying OMP to operate under those same constraints gives
us /Lo errors of 5.9 (after the first round of 5 selections),
4.0 (after the second round), 3.2 (3"% round), and 2.8 (4"
round).? It is interesting to note that the performance of our
approach is better than the greedy search of OMP for the first
half of the reconstruction process. A possible explanation
is that our controller net has learned to differentially match

3Better OMP results are possible by pure sequential search (by
removing the simultaneous basis selection and the basis-family
constraints). However, this further increases OMP’s computation.

4916

Bezier Basis Function Approximator:
The Generator Network

Hi;-iff

Inputs (9 values)

ptA: (91,
ptB: (29,
ptC: (74,
color: (160, 159,

Targets Outputs

51)
123)
90)
15)

pthA: (46,
ptB: (95,
ptC: (100,
color: (13, 58,

127)
28)
14)

5)

54)
97)
59)

199)

ptA: (66,
ptB: (107,
ptC: (57,
color: (o0, 27,

Figure 7: Top: Generator DNN to model Bezier curves given
3 points and a color onto a 128 x 128 canvas. After the FC-
layers, the image is successively upscaled from 32x32 to
128 128. It takes in 9 inputs (3 X,y coordinates and 3 RGB
values). Bottom: examples of training samples. 9 input values
and the target and actual output images are shown.

the available generator shapes to the inputs. In the next two
sections, where the search spaces are much larger and less
constrained, the brute-force search of OMP is not possible.

3 Images from Individual Crayon Strokes

Perhaps one of the most creative uses of deep neural networks
in the past few years has been in artistic style transfer (Gatys,
Ecker, and Bethge 2015; Johnson, Alahi, and Fei-Fei 2016;
Kotovenko et al. 2019; Isola et al. 2017; Zhang, Zhang, and
Cai 2020). We present a novel approach to non-photo-realistic
rendering of images. Imagine that instead of transferring the
style of an artist, we wish to describe each individual action
an artist made to create the image.

Our Style Transfer task recreates paintings and pho-
tographs with crayon strokes. In addition to the end result, it
yields the specifics of each of the 10® — 10° crayon strokes
that can be fed into any commercial external rendering en-
gine. Recently, several studies have also tackled crayon-like
drawing (Das et al. 2020; Ha and Eck 2017) but have devel-
oped neural-programmatic descriptions of sketch-like figures
rather than the recreation of complex images. Next, we follow
the same 5 steps from the previous section to tackle this task.

Step 1. The selection of the basis function is simple: an
individual crayon stroke is the sole externally defined basis
function and the final result is composed only of these. We
describe each stroke by a Bezier curve specified with 3 con-
trol points (Barnhill and Riesenfeld 2014). Each stroke is
considered a single pen-down, move, pen-up, atomic action.
Therefore, we require only a single generator module — one
which takes in the parameters of the stroke and outputs an
image of the stroke. See Figure 7. The generator has 9 inputs:
3 (x,y) coordinates (the control points) and 3 RGB values

o COCCOO000000000
© C00e00000000000

Figure 8: Full architecture. A. The input image. B&C. 2D
convolution + FC layers. The controller emits 9 values and
an alpha value to each generator. (D) The generators emit a
canvas that is multiplied by alpha (E) and the summed result
is shown in F. The networks in light blue do not change their
weights in this stage. Nonetheless, loss-gradients from the
reconstruction are passed through to the controller.

for color. The output is the stroke displayed on a 128x 128
gray-background. Training the generator module in forward-
mode is simple: we just generated training examples using
integer-valued locations for the Bezier control points.

Recall that in the previous task, the controller network
directed a set of 5 basis functions 1-4 times (depending on
the number of residuals). For this task, the controller network
will direct a single generator 103 — 10° times to specify each
stroke required to create the entire image.

Step 2. The controller network reconstructs the input im-
age by producing commands instructing the generator to
place crayon strokes on an initially empty canvas. The recon-
structed image, I’ is specified as I’ = >_" | G;(C;) - A; for
n > 0 generators, where {C;} and {4;} are the n sets of
control commands and scalars, respectively, output from the
controller. Each generated canvas, G;(C;), is multiplied by a
scalar weighting, an alpha value A;, from the controller, then
summed to produce the final image.

Following the same procedures as described earlier, the
controller takes as input only the target — in this case the orig-
inal image. It simultaneously sends commands to multiple
copies of the generator module as well as the alpha value
(similar to A, k in the previous section) to each of the gen-
erators. See Figure 8. We experimented with the number of
generators simultaneously controlled by the controller (10,
50, 100, 200). 100 and 200 yielded pleasing results; 100 is
used here. The 100 canvases are combined in precisely the
same manner as the 1-D functions in the previous section.

The loss, £, propagates through the generator modules, G,
to the controller network and is based directly on the pixels
of all of the training examples: £ = Zjval I11; — I |2 where
{I;} are the Ny training images. As before, the generator
module’s weights do not change during controller training.
Training details are given in the Appendix.

Step 3. The system can also be improved in the similar
manner: by passing back the residual error to be approx-

4917

imated again by the controller. To be consistent with the
previous experiments, it was passed back 4 times, and 400
strokes were combined to yield I’.

Step 4. Most importantly, the control commands are ex-
tractable, interpretable instructions for constructing the image.
The controller outputs 10 parameters for each generator: the
curve control points and colors C, and the alpha value A.
Once extracted, these parameters can be used to draw Bezier
curves in any commercial drawing system.

We take this opportunity to illustrate how to create higher
resolution images than the initial 128 pixels the system is
trained upon. In the first step, we reduce the target image
to 128x 128 pixels and run the system to obtain I’. Next,
the target image is resized to 256256 and the 128x 128 I’
up-sampled to the same. The residual for the entire image
is computed. Each 128 x 128 residual sub-image (stride 64)
is, in turn, sent to the controller and the set of 400 strokes
collected from each. Together, these are composited to create
I" of size 256x256. Larger images can be created similarly.
As before, the commands are extracted and rendered in an
external renderer (Clark and Contributors 2021).

Step 5. Finally, to rectify the differences between the net-
work outputs and the actual rendering, only the alpha values
of I" are fine-tuned after the strokes are completely specified
(using the exact same procedure described in Section 2).

Results. Results are shown in Figure 9. Several points
should be noted about the results. First, the rendered images
appear similar to the originals, while having the characteristic
strokes of a crayon upon closer inspection. Second, we ex-
plicitly tested dark straight lines against a bright background
to see if the network learns to “color within the lines” and
whether it can render sharp boundaries (see first zoomed in-
set, Figure 9). It appears to be able to do so. Third, remember
that the defining parameters to every stroke are maintained.
Each stroke can be recovered and individually visualized.
Lastly, note that these images are not approximations from
the neural system, they are entirely created from the extracted
commands to create Bezier curves.

In the process of training the controller, we found an unan-
ticipated source of error. Not only did the controller adapt
to the training inaccuracies of the generators (as described
previously), it learned to exploit holes in training. The con-
troller network used the non-integer bits in the control-point—
location and color parameters to the generator to exploit parts
of the generator’s operations that diverged from the intended
rendering process. Only when the generator networks were
replaced with an external rendering engine were the inaccura-
cies uncovered as the exploitable gaps were no longer present
in the external renderer.

The controller used this exploit in every trial conducted.
To prevent this exploit, the outputs of the controller were
forced to only one of d (128 for coordinates, 256 for colors)
values between [—1.0, 1.0] during the forward pass (training
and testing). In training, the backward-pass used a straight-
through estimator (Hinton, Srivastava, and Swersky 2012).
With this change, the only avenue the controller had to reduce
the error was through the correct manipulation of the genera-
tors. Therefore, when the generators were replaced with an
external renderer, the system worked as designed.

Figure 9: Eight images reproduced with the crayon-like
strokes specified by the controller network, extracted from
the system, and rendered entirely in an external graphics
package. Three zoomed in regions shown to visualize the
individual crayon strokes. Additional results in Figure 1.

4 Image Composing with Basic Shapes

For the final task, we show how an Inverse Renderer can
easily fit into our framework.

4.1 Context and Background Work

This task has a wealth of related work. The most closely
applies learning-based approaches to inverse-graphics, which
can be found in early computer vision as well as recent studies
(Baumgart 1974; Loper and Black 2014; Wu, Tenenbaum,
and Kohli 2017; Romaszko et al. 2017; Patow and Pueyo

4918

Ellipse: Rectangle: Triangle:

Inputs: ; : N
(64,23) Predict Target Predict Target Predict Target

! e
(21,49) ’
(104,83,10)

Figure 10: Basis shape generators for third task: shape-based
image composition. Inputs shown for the ellipse generator.

2003; Tian et al. 2019). Most commonly, the problem is
tackled by first creating a probabilistic model of the types
of images to be generated with latent parameters and then
creating an inference algorithm to find their most likely set-
ting for the parameters (Mansinghka et al. 2013; Kulkarni
et al. 2014; Jampani et al. 2015). The ongoing work in using
visual entities as a representation of images (Hinton et al.
2012; Hinton, Krizhevsky, and Wang 2011; Sabour, Frosst,
and Hinton 2017; Jaiswal et al. 2018) is also closely related.
(Tieleman 2014) has nice extensions using domain-specific
decoders to approximate rendering functions. Recently, Spa-
tial Transformers Networks (Jaderberg et al. 2015; Lin et al.
2018; Lin and Lucey 2017) provide a method to incorporate
image-warpings within a deep network, which can be a pow-
erful tool for both image registration and image generation.
Explicitly handling occlusions with basic shapes has also
been tackled using a deep learning approach in the above
studies and also in constructive solid geometry (Sharma et al.
2019). As we are working only with 2D general shapes, oc-
clusions are handled implicitly in our system by the order in
which the shapes are drawn and the alpha channel.

Exciting new directions towards making inverse-rendering
interpretable have been proposed. Representative approaches
are briefly described here. The first utilized DNNs for pro-
gram induction, specifically outputting programs that can
render sketches and for inverse-CAD(Ellis et al. 2018, 2019).
This was extended by (Liu and Wu 2019; Tian et al. 2019); the
latter in which programs are developed via back-propagation
to inverse-procedural graphics of 3-d voxel representations -
such as those in ShapeNet. Other work forced interpretable
outputs by requiring the commands to be fed into a graphics
engine (Wu, Tenenbaum, and Kohli 2017; Ganin et al. 2018).
This presented a very important distinct path of research — the
fundamental difficulty of a non-differentiable actions in a ren-
dering engine, which we tackled with creating differentiable
approximate models of the actions, was instead handled by
using a reinforcement learning scheme around the renderer.

We do not attempt to supplant this rendering work; this
section demonstrates the ease of adapting to a new domain.

4.2 Following the Steps

Step 1. As before, we first select the external bases to control
and train the generators. Based purely on aesthetic/simplicity
considerations, we chose the most common geometric shapes,
see Figure 10. In other experiments (not reported here), a va-
riety of other, more complex, shapes have been used with
no modifications to the procedure. The rectangle and ellipse
bases have 7 inputs specifying the color and bounding box of
the shape: (1,y1), (x2,y2), (,g,b). The triangle basis genera-

shape | bounding box | color

rect 3063516 245 253 252
rect 006323 204 218 217
rect 0321935 246 246 240
rect 36164328 131104 73
rect 3806331 130 151 151
ellipse 26275149 238 244 244
ellipse 848 58 63 2722
ellipse 10332752 115114 110
ellipse 4820 63 43 760
ellipse 0122733 140 160 200

Figure 11: Deconstruction of American Gothic, Grant Wood
(1930). First 50 shapes shown and 10 extracted commands.

tor has 9 inputs, employing an additional (x3,ys3) for the third
vertex. The generator modules employ the same inputs as the
external bases; they map the coordinate and color inputs to
a filled colored shape on a 64 x64 canvas. These generator
modules train quickly; details are in the Appendix.

Step 2. After training the generator modules, their weights
are frozen and the controller network is trained. The con-
troller network emits the bounding box for each shape (or
vertices for triangles) and alpha channel parameters, { A;}, as
done in the previous section. The most impactful parameter
that we determine empirically is how many generator mod-
ules to simultaneously control by the controller; we tried 10,
50, 100 & 500 shape generators (uniformly distributed among
the shapes). The generators’ output canvases are summed to
recreate the input image, and the Ly difference computed. As
expected, the more shapes that are used, the lower the error.

The controller training used 64 x 64 ImageNet (Deng et al.
2009) photos as inputs and targets. Testing was conducted
on a held-out set of 1000 ImageNet photographs. In these
experiments, 500 total shape generators were used. Ablative
testing, including with fewer generators, as well as complete
training details, are given in the Appendix.

Step 3. Next, the same extensions as in the previous tasks
are applied. First, we feed back the residual error to the
controller. To make the system more tractable, instead of
initially generating 500 canvases simultaneously, we generate
50 canvases, composite the results, and compute the residual.
Exactly as before, the residual is passed through the controller
network and another image generated. The resulting images
are summed and the process repeated. This error rectification
is iterated 10 times, yielding a total of 500 shapes from 10
iterations of the controller (9 residuals).

Step 4. Command extraction is trivially accomplished by
examining the outputs of the controller (e.g. Figure 11) as
they fully specify the shape to draw, its color and its weight.
With this information, the command can be given, without
any modification, directly to any external renderer.

Step 5. To further improve the results, as before, simply
recompute {A;}, the N multiplicative weighting scalars (e.g.
the alpha channel). Recall that this can be solved algebraically.
Though not meaningful by itself, we note that on the objective
metric of Ly error, the fine-tuning dropped the error by 5.3%
from 15.1 to 14.3. Final samples are shown in Figure 12.
The reconstructions, done with only ellipses and rectangles,
reveal high fidelity to the originals. The harder examples

4919

Lowest
Recon.
Error Original
Reconstructed
Average
Recon.
Error Original
Reconstructed
Largest
Recon. | A% |
Error Original FESINE 58
Reconstructed

Figure 12: Reconstructions with 500 shapes, 2 ellipses and
5 rectangles on test-set images. Reconstructions with a vari-
ety of performances shown. These are created by extracting
the commands and alpha parameters from our system and
sending them to an external rendering engine.

(bottom) occur when the target image contains many edges
or high-frequency features. More results are in the Appendix.

5 Discussion

There are two primary contributions of this paper. First, we
presented a method to train networks to solve decomposable
tasks so that the actions/transformations made by the network
are extractable and interpretable combinations of externally
defined operations/bases. This was shown in three distinct
tasks. The second contribution is in the Style Transfer domain.
Unlike the majority of work in neurally transforming images,
our process did not operate as a monolithic black box. Instead,
each stroke can be extracted and its contribution to the result
visualized and understood.

Importantly, across all applications, we have found that the
decomposition of the end tasks into units that fit this approach
is natural — the generator modules, though potentially numer-
ous, are simple both in concept and to train. The controller
network emits directions to the generators in a straightfor-
ward manner that can then be extracted easily from the neural
system and analyzed and used externally.

A primary objective of this work was to allow a user to
fully specify the set of basis functions that comprise the final
solution. For example, in the two latter tasks, the bases were
chosen entirely based on aesthetic considerations. We have

successfully used this approach with a variety of different
bases sets, such as irregular shapes, space-filling with glyphs
from various fonts, varied hatching marks, etc. Our goal was
to demonstrate the ability to select arbitrary shapes/bases as
dictated by the needs of specific applications.

An interesting extension to this work would be to replace
the Lo error, used here in training, with a Generative Adver-
sarial Network framework. Another promising direction is in
finding a parsimonious set of bases to solve a task. Currently,
we specify how many generators (and residual iterations) are
used to create the output. By introducing a parsimony factor,
we can dynamically reduce the number of bases used. Two
successful methods of accomplishing this are by augmenting
the controller’s loss during training to include a penalty for us-
ing the full set of allowed generators. A post-training method
can be applied as well. During the final LSE-rescaling fine-
tuning, rather than solely minimizing the Ly reconstruction
error, a regularization penalty proportional to the magnitude
of the rescaled weight/alpha-channel can be applied. This has
been successfully utilized in all three of the tasks described
here. Extending this work to reveal more compact sets of
results is currently underway.

Appendix

Function Approximation The generator networks (Fig-
ure 13) were trained in parallel on a 56 processor Intel Xeon
E5-2690 V4 (non-gpu) machine. Networks with 5-7 hidden
layers were tried; they worked similarly. However, signifi-
cantly reducing the hidden units per layer hurt performance.
One generator is trained for each basis function. The con-
troller net was trained on a P100 GPU for 3+ days depending
on the number of generators used. Learning rate = 10~

Crayon Strokes / Style Transfer In this task, the generator
network maps the input of 3 control points (x,y coordinates)
of a Bezier curve to a full RGB 128x128 pixel canvas contain-
ing only the rendered curve. The network achieves acceptable
results in a few hours on a computer with 56 Intel Xeon ES-
2690 V4 processors. We trained it for 24 hours to improve
results. The output is a 128x128 RGB image where each pixel
is a float with 256 discretizations. The controller network was
trained on P100 GPU for 1-3 days. To avoid confusion, note
that after training, the same controller is used, unchanged,
across all images. A controller is not trained per image.

Inverse Rendering Earlier, we provided results on a stan-
dard set of photographs. To measure robustness, we applied
the system to logos, paintings, clip-art, and bw-photographs
— all outside the types of images the system was trained on.
Table 2 presents results on this harder set and ablative results.
The previous experiments are marked with “photo”.

A generator is trained for each basis shape. For example,
the rectangle generator takes as input (x1,y1)(22,y2)(1,g,b)
and outputs a filled rectangle specified by the bounding box
in the specified color. The same network as used with the
crayon generators could be used here. However, since we are
only estimating 64x64 images instead of 128x128, smaller
architectures also work. The controller network, was trained
on a P100 GPU. Acceptable performance was achieved in 2
days, but was allowed to train for 1 week.

4920

Generator Network for Function Approximation:

input (A, ¢ [from controller]) —

(5,6 or 7) x fully-connected-layers (1000 units, relu activation)—
— optional: include shortcuts from inputs

fully-connected-layer (500 units, no activation)—

scaled and biased by (A, k [from controller])

Controller Network for Function Approximation:

input (500 sampled points from the target function) —

10 x fully-connected-layers (1000 units, tanh activation)—

output ((\, ¢, A, k) X number-of-generators)—

—— (A, ¢) are used as direct inputs into the generator network to

specify the shape of the curve.
—— (A, k) are used as a scale and bias of the generator’s outputs

Generator Network for a Single Bezier Stroke:

input ((z1,y1)(@2,y2)(x3,y3)(1.g,b)) —

2x fully-conn-layer (50 units, relu)—fully-conn-layer (70 units, relu)—
fully-connected-layer (16*16*128 units, relu)—

reshape-to (16,16,128)—

2 x {depth-to-space(2) — conv2d(channels=32 kernel=2, stride=1, relu) } —
depth-to-space(2)—

conv2d(channels=3,kernel=2, stride=1, discretized-tanho5¢)

—— this is a 128 x 128 pixel image in 3 channels.

Controller Network for Crayon Rendering

input (I, the image to reproduce, (128 X 128 X 3))—
3 x Conv2d(channels=200, kernel=2, stride=1, relu)—
3 x Conv2d(channels=100, kernel=1, stride=1, relu)—
flatten— 2 X fully-connected-layer (300 units, relu)—
fully-connected-layer (10 units * n generators, tanh)—

1:6) (z1,y1)(x2,y2)(x3,y3) are discretized to 128 values

7:9) (r,g,b) colors are discretized to 256 values

10) A: alpha channel remains a real-value float
Optional: After each residual pass, rescale new target image to [-1.0,1.0]

Controller Network for Image Composing

input (I, the image to reproduce, (64 X 64 X 3))—
2 x Conv2d(200, kernel=2, stride=1, relu)—
Conv2d(100, kernel=2, stride=1, relu)—
Conv2d(50, kernel=1, stride=1, relu)—

Conv2d(25, kernel=1, stride=1, relu)— flatten—

2 x fully-connected-layer (200 units, relu)—

fully-connected-layer (8 units * n generators, tanh)

Figure 13: Details of all network architectures.

Generators Pixel/ LSE

test | Residual per Channel Re- %

set used? controller Error weight? Improve
hard no 10 41.3 no -
hard no 50 333 no 19.4%
hard no 100 31.2 no 24.4%
hard no 500 29.0 no 30.0%
hard yes: 9 50 23.8 no 42.4%
hard yes: 9 50 19.6 yes 52.5%
photo | yes: 9 50 15.1 no n/a
photo | yes: 9 50 14.3 yes n/a

Table 2: Regressive Summary for the Image Composition
task (% improvement is measured relative to first row).

References

Afchar, D.; and Hennequin, R. 2020. Making Neural Net-
works Interpretable with Attribution: Application to Implicit
Signals Prediction. arXiv preprint arXiv:2008.11406.

Alet, F.; Lozano-Pérez, T.; and Kaelbling, L. P. 2018. Modu-
lar meta-learning. arXiv preprint arXiv:1806.10166.

Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2015.
Deep Compositional Question Answering with Neural Mod-
ule Networks. CoRR abs / 1511.02799. URL http://arxiv.org/
abs/1511.02799.

Barnhill, R. E.; and Riesenfeld, R. F. 2014. Computer aided
geometric design. Academic Press.

Baumgart, B. G. 1974. Geometric modeling for computer
vision. Technical report, Stanford, Computer Science.

Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne,
D.; et al. 2017. Interpretability of deep learning models: a
survey of results. In 2017 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, 1-6. IEEE.

Clark, A.; and Contributors. 2021. Pillow 8.12, Python Imag-
ing Library (Fork). https://pypi.org/project/Pillow/. URL
https://pypi.org/project/Pillow/.

Das, A.; Yang, Y.; Hospedales, T.; Xiang, T.; and Song, Y.-Z.
2020. BezierSketch: A generative model for scalable vector
sketches. arXiv preprint arXiv:2007.02190.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei,
L. 2009. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, 248-255. IEEE.

Devin, C.; Gupta, A.; Darrell, T.; Abbeel, P.; and Levine, S.
2017. Learning modular neural network policies for multi-
task and multi-robot transfer. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2169-2176.

Dong, Y.; Su, H.; Zhu, J.; and Bao, F. 2017. Towards in-
terpretable deep neural networks by leveraging adversarial
examples. arXiv preprint arXiv:1708.05493.

Ellis, K.; Nye, M. L; Pu, Y.; Sosa, F.; Tenenbaum, J.; and
Lezama, A. S. . 2019. Write, Execute, Assess: Program
Synthesis with a REPL. CoRR abs / 1906.04604. URL
http://arxiv.org/abs/1906.04604.

Ellis, K.; Ritchie, D.; Solar-Lezama, A.; and Tenenbaum,
J. 2018. Learning to infer graphics programs from hand-
drawn images. In Advances in Neural Information Processing
Systems, 6059-6068.

Fan, F; Xiong, J.; and Wang, G. 2020. On interpretability of
artificial neural networks. arXiv preprint arXiv:2001.02522.

Ganin, Y.; Kulkarni, T.; Babushkin, I.; Eslami, S. A.; and
Vinyals, O. 2018. Synthesizing Programs for Images using
Reinforced Adversarial Learning. CoRR abs / 1804.01118.
URL http://arxiv.org/abs/1804.01118.

Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2015. A Neural
Algorithm of Artistic Style. CoRR abs/1508.06576. URL
http://arxiv.org/abs/1508.06576.

4921

Goodfellow, 1. J.; Shlens, J.; and Szegedy, C. 2014. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.

Grosse, R.; Salakhutdinov, R. R.; Freeman, W. T.; and
Tenenbaum, J. B. 2012. Exploiting compositionality to
explore a large space of model structures. arXiv preprint
arXiv:1210.4856.

Ha, D.; and Eck, D. 2017. A Neural Representation of Sketch
Drawings. CoRR abs / 1704.03477. URL http://arxiv.org/
abs/1704.03477.

Harnad, S. 1990. The symbol grounding problem. Physica
D: Nonlinear Phenomena 42(1-3): 335-346.

Hinton, G.; Krizhevsky, A.; Jaitly, N.; Tieleman, T.; and Tang,
Y. 2012. Does the brain do inverse graphics? In Brain and
Cognitive Sciences Fall Colloquium, volume 2.

Hinton, G.; Srivastava, N.; and Swersky, K. 2012. Neural
networks for machine learning. Coursera, video lectures 264.

Hinton, G. E.; Krizhevsky, A.; and Wang, S. D. 2011. Trans-
forming auto-encoders. In International Conference on Arti-
ficial Neural Networks, 44-51. Springer.

Isola, P;; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1125-1134.

Jacobs, R. A.; and Jordan, M. 1. 1993. Learning piecewise
control strategies in a modular neural network architecture.
IEEE Transactions on Systems, Man, and Cybernetics 23(2):
337-345.

Jaderberg, M.; Simonyan, K.; Zisserman, A.; et al. 2015. Spa-
tial transformer networks. In Advances in neural information
processing systems, 2017-2025.

Jaiswal, A.; AbdAlmageed, W.; Wu, Y.; and Natarajan, P.
2018. CapsuleGAN: Generative Adversarial Capsule Net-
work. In The European Conference on Computer Vision
(ECCV) Workshops.

Jampani, V.; Nowozin, S.; Loper, M.; and Gehler, P. V. 2015.
The informed sampler: A discriminative approach to bayesian
inference in generative computer vision models. Computer
Vision and Image Understanding 136: 32—44.

Jiang, J. 1999. Image compression with neural networks—
a survey. Signal Processing: Image Communication 14(9):
737-760.

Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Perceptual losses
for real-time style transfer and super-resolution. In European
Conference on Computer Vision.

Kotovenko, D.; Sanakoyeu, A.; Lang, S.; and Ommer, B.
2019. Content and Style Disentanglement for Artistic Style
Transfer. In The IEEE International Conference on Computer
Vision (ICCV).

Kramer, M. A. 1991. Nonlinear principal component analysis
using autoassociative neural networks. AIChE journal 37(2):
233-243.

Kulkarni, T. D.; Mansinghka, V. K.; Kohli, P.; and Tenen-
baum, J. B. 2014. Inverse graphics with probabilistic cad
models. arXiv preprint arXiv:1407.1339.

Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic program
induction. Science 350(6266): 1332-1338.

Larsen, A. B. L.; Sgnderby, S. K.; and Winther, O. 2015.
Autoencoding beyond pixels using a learned similarity metric.
arXiv preprint arXiv:1512.09300 .

Li, O.; Liu, H.; Chen, C.; and Rudin, C. 2017. Deep learn-
ing for case-based reasoning through prototypes: A neu-
ral network that explains its predictions. arXiv preprint
arXiv:1710.04806.

Lin, C.-H.; and Lucey, S. 2017. Inverse compositional spatial
transformer networks. In /EE-CVPR, 2568-2576.

Lin, C.-H.; Yumer, E.; Wang, O.; Shechtman, E.; and Lucey,
S. 2018. ST-GAN: Spatial Transformer Generative Adversar-
ial Networks for Image Compositing. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

Liu, Y.; and Wu, Z. 2019. Learning to describe scenes with
programs. In International Conference on Learning Repre-
sentations.

Lloyd, J. R.; Duvenaud, D.; Grosse, R.; Tenenbaum, J. B.; and
Ghahramani, Z. 2014. Automatic construction and natural-
language description of nonparametric regression models.
arXiv preprint arXiv:1402.4304.

Loper, M. M.; and Black, M. J. 2014. OpenDR: An approx-
imate differentiable renderer. In European Conference on
Computer Vision, 154-169. Springer.

Ludermir, T. B. 1970. Extracting Rules From Neural Net-
works: A Data Mining Approach. WIT Transactions on
Information and Communication Technologies 22.

Mahendran, A.; and Vedaldi, A. 2016. Visualizing deep
convolutional neural networks using natural pre-images. In-
ternational Journal of Computer Vision 120(3): 233-255.

Mallate, S.; and Zhang, Z. 1993. Matching pursuit with
time-frequency dictionaries. IEEE Transactions on Signal
Processing 41(12).

Mansinghka, V. K.; Kulkarni, T. D.; Perov, Y. N.; and Tenen-
baum, J. 2013. Approximate bayesian image interpretation us-
ing generative probabilistic graphics programs. In Advances
in Neural Information Processing Systems, 1520-1528.

Montavon, G.; Samek, W.; and Miiller, K.-R. 2018. Meth-
ods for interpreting and understanding deep neural networks.
Digital Signal Processing 73: 1-15.

Oyama, E.; Agah, A.; MacDorman, K. F.; Maeda, T.; and
Tachi, S. 2001. A modular neural network architecture for
inverse kinematics model learning. Neurocomputing 38: 797—
805.

Patow, G.; and Pueyo, X. 2003. A survey of inverse rendering
problems. In Computer graphics forum, volume 22, 663—687.
Wiley Online Library.

4922

Romaszko, L.; Williams, C. K.; Moreno, P.; and Kohli, P.
2017. Vision-as-inverse-graphics: Obtaining a rich 3d ex-
planation of a scene from a single image. In /IEEE-CVPR,
851-859.

Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dy-
namic Routing Between Capsules. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems 30, 3856-3866. Curran Associates,
Inc. URL http://papers.nips.cc/paper/6975-dynamic-routing-
between-capsules.pdf.

Samangouei, P.; Kabkab, M.; and Chellappa, R. 2018.
Defense-gan: Protecting classifiers against adversarial attacks
using generative models. arXiv preprint arXiv:1805.06605.

Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-CAM: Visual Explana-
tions From Deep Networks via Gradient-Based Localization.
In Proceedings of the IEEE International Conference on
Computer Vision (ICCV).

Sharma, G.; Goyal, R.; Liu, D.; Kalogerakis, E.; and Maji, S.
2019. Neural Shape Parsers for Constructive Solid Geometry.
arXiv preprint arXiv:1912.11393.

Smolensky, P. 1986. Neural and conceptual interpretations
of parallel distributed processing models. Technical report,
Colorado Univ at Boulder.

Theis, L.; Shi, W.; Cunningham, A.; and Huszar, F. 2017.
Lossy Image Compression with Compressive Autoencoders.
In International Conference on Learning Representations.
URL https://openreview.net/pdf?id=rJiNwv9gg.

Tian, Y.; Luo, A.; Sun, X.; Ellis, K.; Freeman, W. T.; Tenen-
baum, J. B.; and Wu, J. 2019. Learning to Infer and Exe-
cute 3D Shape Programs. CoRR abs / 1901.02875. URL
http://arxiv.org/abs/1901.02875.

Tieleman, T. 2014. Optimizing neural networks that generate
images. University of Toronto (Canada).

Touretzky, D. S.; and Hinton, G. E. 1985. Symbols among
the neurons: Details of a connectionist inference architecture.
In IJCAI, volume 85, 238-243.

Tramer, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh,
D.; and McDaniel, P. 2017. Ensemble adversarial training:
Attacks and defenses. arXiv preprint arXiv:1705.07204.

Wu, J.; Tenenbaum, J. B.; and Kohli, P. 2017. Neural scene
de-rendering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 699-707.

Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; and Lipson, H.
2015. Understanding neural networks through deep visual-
ization. arXiv preprint arXiv:1506.06579.

Zhang, Q.; Nian Wu, Y.; and Zhu, S.-C. 2018. Interpretable
convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,

8827-8836.
Zhang, Y.; Zhang, Y.; and Cai, W. 2020. A Unified Frame-
work for Generalizable Style Transfer: Style and Content

Separation. [IEEE Transactions on Image Processing 29:
4085-4098.

