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Abstract
Forecasting influenza in a timely manner aids health orga-
nizations and policymakers in adequate preparation and de-
cision making. However, effective influenza forecasting still
remains a challenge despite increasing research interest. It is
even more challenging amidst the COVID pandemic, when
the influenza-like illness (ILI) counts are affected by various
factors such as symptomatic similarities with COVID-19 and
shift in healthcare seeking patterns of the general population.
Under the current pandemic, historical influenza models carry
valuable expertise about the disease dynamics but face diffi-
culties adapting. Therefore, we propose CALI-NET, a neural
transfer learning architecture which allows us to ’steer’ a his-
torical disease forecasting model to new scenarios where flu
and COVID co-exist. Our framework enables this adaptation
by automatically learning when it should emphasize learning
from COVID-related signals and when it should learn from
the historical model. Thus, we exploit representations learned
from historical ILI data as well as the limited COVID-related
signals. Our experiments demonstrate that our approach is
successful in adapting a historical forecasting model to the
current pandemic. In addition, we show that success in our
primary goal, adaptation, does not sacrifice overall perfor-
mance as compared with state-of-the-art influenza forecasting
approaches.

1 Introduction
Influenza is a seasonal virus which affects 9–45 million peo-
ple annually in the United States alone resulting in between
12,000–61,000 deaths. Forecasting flu outbreak progression
each year is an important and non-trivial task due to many
confounding social, biological, and demographic factors. Ac-
curate forecasts of the onset, peak and incidence can all aid
significantly toward informing personalized policy roll out to
minimize the effects of the flu season. To this end, the Centers
for Disease Control and Prevention (CDC) has been organiz-
ing the FluSight challenge for the past several years, where
the goal is to predict weighted influenza-like-illness counts
(wILI) throughout the flu season in the United States (Bigger-
staff et al. 2016). wILI measures the percentage of healthcare
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seekers who show influenza like symptoms. Estimating vari-
ous measures related to the progression of a flu season (such
as future incidence) gives policymakers valuable lead time to
plan interventions and optimize supply chain decisions.

Moreover, the world has also been experiencing the devas-
tating impacts of the COVID-19 pandemic which has sharply
illustrated our enormous vulnerability to emerging infectious
diseases. Hence in addition to being affected by various bio-
logical and demographic factors, wILI counts may now get
further ‘contaminated’ in the current (and possibly future) in-
fluenza seasons, in part due to symptomatic similarities with
COVID. Such miscounting manifests as significant changes
in wILI seasonal progression as observed in Fig. 1a. Here the
wILI curve for the current season 2019-2020 (contaminated
by COVID, bold black) clearly shows a very different pat-
tern compared to the previous seasons (in grey). To capture
the deviance of the current wILI season and to forecast it in
presence of COVID, we require a novel approach. Accurate
forecasts of these unexpected trends in the current season are
very helpful for resource allocation and healthcare worker
deployment. Additionally, predicting wILI can also be used
to help with indirect COVID surveillance (Castrofino et al.
2020; Boëlle et al. 2020) - especially useful at the early stages
of the pandemic, when there were no well-established surveil-
lance mechanisms for COVID. Finally, it is widely believed
that COVID may be in circulation for a long period of time.
Additionally, wILI itself models a mix of flu strains (CDC
2020). Hence, more generally, such a method can be used
to disambiguate trends between historical strains and new
emerging strains during a flu season.

There has been a recent spate of work on flu forecasting
using statistical approaches usually trained on historical wILI
data (Adhikari et al. 2019). However, this new forecasting
problem of adapting to a new emerging pandemic scenario
is complex and cannot be addressed by traditional historical
wILI methods alone. See Fig. 1b; current methods based on
historical wILI cannot predict the uptrend, while our method
(in red) can. The atypical nature of our ‘COVID-ILI’ season
may be caused by multiple co-occurring phenomena, e.g., the
actual COVID-19 infections, the corresponding shutdowns
and societal lock-downs and also changes in the healthcare-
seeking behaviors of the public. This leads to the peak in
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Figure 1: (a) A novel forecasting scenario due to an emerging pandemic. Note the difference between the current (2019-20) and
past seasons. (b) Established flu forecasting methods are not able to adapt to uptrend caused by COVID. (c) Exogenous COVID
related signals correlate better with wILI trend changes (due to contamination), which we exploit for more accurate forecasting.

COVID-ILI cases to be “out of step” with traditional wILI
seasonal trends. As this feature is exclusive to this season,
capturing the new trend is a major challenge.

Note that using only the historical wILI seasons is not
sufficient to overcome it. Hence for this novel problem, we
propose to leverage external COVID-related signals such as
confirmed cases, hospitalizations, and emergency room visits
as well. This leads us to the second challenge, viz. how to
effectively model the COVID-ILI curve with new COVID-
related signals, while also leveraging past prior knowledge
present in the previous wILI seasons? However, note that
these external signals are not available for historical wILI
seasons. How do we address the imbalance in data to lever-
age both of these data sources? Further, as the contaminated
COVID-ILI is a very new phenomenon which has suddenly
emerged, there is limited data regarding the same from exter-
nal signals and hence, a significant challenge is also to learn
to model it effectively under data paucity.

To address these challenges, we propose CALI-NET
(COVID Augmented ILI deep Network), a principled way to
‘steer’ flu-forecasting models to adapt to new scenarios where
flu and COVID co-exist. We employ transfer learning and
knowledge distillation approaches to ensure effective transfer
of knowledge of the historical wILI trends. We incorporate
multiple COVID-related data signals all of which help cap-
ture the complex data contamination process showcased by
COVID-ILI. As shown in Fig. 1c, these exogenous signals
correlate better with the anomalous trends caused by COVID.
Finally, in order to alleviate the data paucity issue, we train a
single global architecture with explicit spatial constraints to
model COVID-ILI trends of all regions as opposed to previ-
ous approaches which have modeled each region separately
leading to a superior forecasting performance (See Sec. 5).
Our contributions are as follows:
• We develop CALI-NET, a novel heterogeneous transfer
learning framework to adapt a flu forecasting historical model
into the new scenario of COVID-ILI forecasting.
• We embed CALI-NET with a recurrent neural network
including domain-informed spatial constraints to capture the
spatiotemporal dynamics across different wILI regions.
•We also employ a Knowledge Distillation scheme to explic-
itly transfer historical wILI knowledge to our target model

in CALI-NET, thereby alleviating the effect of paucity of
COVID-ILI data.
• Finally, we show how CALI-NET succeeds in adapta-
tion, and also perform a rigorous performance comparison
of CALI-NET with several state-of-the-art wILI forecasting
baselines. In addition, we perform several quantitative and
qualitative experiments to understand the effects of various
components of CALI-NET.

Overall, more broadly, our work is geared towards adapting
a historical model to an emerging disease scenario, and we
specifically demonstrate the effectiveness of our approach in
the context of wILI forecasting in the COVID-19 emerging
disease scenario. Appendix, code, and other resources can be
found online1.

2 Related Work
To summarize, we are the first to address the problem of
adapting to shifting trends using transfer learning and knowl-
edge distillation in an epidemic forecasting setting, lever-
aging exogenous signals as well as historical models. Our
research draws from multiple lines of work.
Epidemic Forecasting: Several approaches for epidemic
forecasting have been proposed including statistical (Tizzoni
et al. 2012; Adhikari et al. 2019; Osthus et al. 2019; Brooks
et al. 2018), mechanistic (Shaman and Karspeck 2012; Zhang
et al. 2017), and ensemble (Reich et al. 2019b) approaches.
Several approaches rely on external signals such as envi-
ronmental conditions and weather reports (Shaman, Gold-
stein, and Lipsitch 2010; Tamerius et al. 2013; Volkova et al.
2017), social media (Chen et al. 2016; Lee, Agrawal, and
Choudhary 2013), search engine data (Ginsberg et al. 2009;
Yuan et al. 2013), and a combination of multiple sources
(Chakraborty et al. 2014). Recently, there has been increasing
interest in deep learning for epidemic forecasting (Adhikari
et al. 2019; Wang, Chen, and Marathe 2019; Rodríguez et al.
2020). These methods typically exploit intra and inter sea-
sonal trends. Other approaches like (Venna et al. 2018) are
limited to specific situations, e.g., for military populations.
However, to the best of our knowledge, there has been no

1Resources website: https://github.com/AdityaLab/CALI-Net
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work on developing deep architectures for adapting to trend
shifts using exogenous data.
Time Series Analysis: There are several data driven, statis-
tical and model-based approaches that have been developed
for time series forecasting such as auto-regression, Kalman-
filters and groups/panels (Box et al. 2015; Sapankevych and
Sankar 2009). Recently, deep recurrent architectures (Hochre-
iter and Schmidhuber 1997) have shown great promise in
learning good representations of temporal evolution (Fu,
Zhang, and Li 2016; Muralidhar, Muthiah, and Ramakrishnan
2019; Connor, Martin, and Atlas 1994).
Transfer Learning within heterogeneous domains: This
challenging setting of transfer learning with heterogeneous
domains (different feature spaces) aims to leverage knowl-
edge extracted from a source domain to a different but related
target domain. (Moon and Carbonell 2017) proposed to learn
feature mappings in a common-subspace, and then apply
shared neural layers where the transfer would occur. (Li et al.
2019) proposed transfer learning via deep matrix comple-
tion. (Yan et al. 2018) formulated this problem as an optimal
transport problem using the entropic Gromov-Wasserstein
discrepancy. We adapt the classification method in (Moon
and Carbonell 2017) to our regression setting, for effectively
transferring knowledge from the source to the target model
in our COVID-ILI forecasting task. Knowledge Distillation
(KD) is also a popular transfer learning method, to develop
shallow neural networks capable of yielding performance
similar to deeper models by learning to "mimic" their behav-
ior (Ba and Caruana 2014; Hinton, Vinyals, and Dean 2015).
(Saputra et al. 2019) inspects KD for deep pose regression.
The authors propose two regression specific losses, namely
the hint loss and the imitation loss which we adapt in this
work for COVID-ILI forecasting. Unlike our paper, most
KD work has been applied to classification and efforts for
adapting KD for regression have been sparse (Saputra et al.
2019; Takamoto, Morishita, and Imaoka 2020).

3 Background
COVID-ILI forecasting task: Here we consider a short term
forecasting task of predicting the next k wILI incidence given
the data till week t− 1 for each US HHS region and the na-
tional region. This corresponds to predicting the wILI values
for week {t, t+ 1, . . . , t+ k} at week t (matching the exact
real-time setting of the CDC tasks) for each region.

We are given a set of historical annual wILI time-series,
Yi = {y1

i , y
2
i , . . . , y

t−1
i } for each region i. The wILI values

have been contaminated by COVID-19 for all weeks t ≥ w.
We also have various COVID-related exogenous data signals
Xi = {xwi ,x

w+1
i , . . . ,xt−1

i }, where each feature vector xji
is constructed using various signals such as COVID line list
data, test availability, crowd-sourced symptomatic data, and
social media. Our task is to forecast the next k wILI incidence
for all regions i ∈ I. Specifically, our novel problem is:

Problem 1 COVID-ILI Forecasting Problem
Given: a set of historical annual wILI time-series Yi =
{y1
i , y

2
i , . . . , y

t−1
i } for regions i ∈ I and the set of COVID-

related exogenous signals Xi = {xwi ,x
w+1
i , . . . ,xt−1

i } for

the current season and regions i ∈ I.
Predict: next k wILI incidences ∀t+kj=ty

j
i for each region i ∈ I.

Epideep for wILI forecasting. EPIDEEP (Adhikari et al.
2019) is a deep neural architecture designed specifically for
wILI forecasting. The core idea behind EPIDEEP is to lever-
age the seasonal similarity between the current season and
historical seasons to forecast various metrics of interest such
as next incidence values, onset of current season, the seasonal
peak value and peak time. To infer the seasonal similarity
between current and the historical season, it employs a deep
clustering module which learns latent low dimensional em-
beddings of the seasons.

4 Our Approach
In this section, we describe our method CALI-NET, which
models COVID-ILI by incorporating historical wILI knowl-
edge as well as the limited new COVID-related exogenous
signals. Next we give an overview of how our approach
uses heterogeneous transfer learning (HTL), overcomes data
paucity issues, and controls the transfer of only useful knowl-
edge and avoids negative transfer.

4.1 Exploiting Learned Representations from
Historical wILI via HTL

We leverage recent advances in HTL to incorporate the rich
historical wILI data. To that end, we use the EPIDEEP model
as our base model. EPIDEEP was designed to learn representa-
tions from historical wILI that embed seasonal and temporal
patterns. Here, we adapt the CTHL framework (Moon and
Carbonell 2017) to transfer knowledge from EPIDEEP.

In our HTL setting, a modified version of the EPIDEEP
model is the source model and we design a feature module
(discussed in Sec. 4.2) to be the target model. As depicted
in Fig. 2, the embeddings of the source and target are each
transformed by modules s and t respectively, such that the
latent embeddings of the source and target model are placed
into a common feature space. In this way, we are projecting
knowledge extracted from both heterogeneous feature spaces
into a shared latent space. Formally, the transformations may
be expressed as s : RMS → RMJ and t : RMT → RMJ ,
where MS and MT are the dimensions of the source and
target embeddings, respectively, and MJ is the dimension
of the joint latent feature space. After projecting represen-
tations from the source and the target models into a joint
latent feature space, a sequence of shared transformations
f1 : RMJ → RMA and f2 : RMJ → R is applied on them,
thereby transporting them both into the same latent space. On
top of this architecture, we employ a denoising autoencoder
to reconstruct the input data as we find it improves our latent
representations. These modules are depicted as s′ and t′.

4.2 COVID-Augmented Exogenous Model
(CAEM)

Our target model from Sec. 4.1 could be a simple feedforward
network. Instead, to alleviate the data paucity that exists for
the COVID-related exogenous data, we develop the COVID-
Augmented Exogenous Model (CAEM) which jointly models
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Figure 2: Our proposed model CALI-NET. Our heterogeneous transfer learning architecture is designed to transfer knowledge
from EPIDEEP-CN about historical wILI trends to the CAEM module (using exogenous signals) for COVID-ILI forecasting
while addressing the challenges of negative transfer, spatial consistency and data paucity.

all regions exploiting regional interplay characteristics. Such
an approach allows us to extract the most out of our limited
training data enabling us to employ more sophisticated se-
quential architectures. To enable model awareness of multiple
regional patterns, we explicitly encode each region embed-
ding r ∈ R1×hr , and pass to CAEM along with the exogenous
input data of the region for a particular week. The region em-
beddings are produced by an autoencoder whose task is to
reconstruct one-hot encodings of each region.

The data we consider exhibit sequential dependencies. In
order to model these dependencies, we employ the popular
GRU recurrent neural architecture (Cho et al. 2014). The
GRU is trained to encode temporal dependencies using data
from week t − W to week t − 1 and predict values for
week t+ k. At each step of recurrence, the GRU receives as
input, exogenous data signals xt−λi ∈ R1×l (for week t− λ
with λ ∈ {W,W − 1, . . . , 1} and region i) and the region
embedding ri, both concatenated to form the full GRU input.
For simplicity, henceforth, we consider xt−λi ∈ R1×l+hr to
represent this concatenated input to the GRU (l is the number
of different data signals we employ and hr is the dimension
of the latent region embedding obtained from the CAEM
Region Embedding autoencoder).

Laplacian Regularization: Infectious diseases like COVID
and flu naturally also show strong spatial correlations and to
capture this aspect of the wILI season evolution across differ-
ent regions effectively, we incorporate spatial constraints us-
ing Laplacian Regularization (Belkin, Matveeva, and Niyogi
2004) and predict COVID-ILI values for all regions jointly.
Let us consider the region graph G(V,E) where V (vertices)
indicates the number of regions (11 in our case including the
national region) and E indicates edges between the vertices.
Two regions are considered to have an edge between them
if they are bordering each other. We construct G based on
region demarcations provided by the HHS/CDC and connect

the national region to all other regions.
The optimization objective for CAEM is as follows:

minΘREΘF
||F (Xt−W :t−1; ΘF )− Y t||22+

RE(E; ΘRE) + Tr(hTLh)
(1)

In Eq. 1, ΘRE ,ΘF represent the model parameters for
region embedding (RE) function and the recurrent forecast-
ing (F) function respectively. The input to F, Xt−W :t−1 ∈
R|V |×l+hr , is the historical COVID-related exogenous data
for the past W weeks for all 11 regions (along with the re-
gional embedding for each). The output of F, Y t ∈ R|V |×1

for week t includes forecasts for all 11 regions. The region
embedding is generated using an autoencoder which accepts
the one-hot encoding for all regions E ∈ B|V |×|V |. Finally,
h ∈ R1×hr is the hidden representation of the input se-
quence generated by the forecasting model F at the end of the
recurrence which is used to enforce regional representation
similarity governed by the normalized Laplacian (L) of graph
G. Laplacian regularization has been shown to systematically
enforce regional similarity, effectively capturing spatial cor-
relations (Subbian and Banerjee 2013). Both the RE and F
modules of CAEM are jointly trained coupled with Laplacian
regularization. It must be noted that when integrated into
CALI-NET, the function F includes the GRU parameters and
the parameters for transformations t, f1, f2 employed to yield
the final k-week ahead predictions.

4.3 Attentive Knowledge Distillation Loss
A mechanism for the target model to exercise control over
knowledge transfer and prevent negative transfer is necessary
in our setting to avoid the transfer of possibly erroneous
predictions made by EPIDEEP for the atypical portions of the
current influenza season. To enable this, we employ attentive
knowledge distillation (KD) techniques. Recently, (Saputra
et al. 2019) has employed KD in deep pose estimation. We
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noticed that our modification to this method is capable of
not only transferring knowledge from EPIDEEP (our source
model) to CAEM (our target model) but also showcases how
to selectively transfer knowledge based on the quality of
source model predictions.
Adapting EPIDEEP: To achieve effective transfer of knowl-
edge from EPIDEEP to CAEM, we modify the existing EPI-
DEEP architecture. EPIDEEP, by design, requires a different
model to be trained for each week in the season which is not
ideal for effective knowledge transfer. Hence, to prevent this,
we modify EPIDEEP into EPIDEEP-CN (EpiDeep-CALI-
NET) which incrementally re-trains the same model for each
week in the season, thereby allowing the KD losses to be ap-
plied to the same set of EPIDEEP-CN parameters, enabling
more efficient knowledge transfer to CAEM. Specifics about
EPIDEEP-CN are in our appendix.

The training datasets for EPIDEEP-CN and CAEM are
not the same, however they share an overlapping subset of
data, from January 2020 onward when the COVID pandemic
started. Therefore, we enforce the KD loss only on this subset
of the training data. Our KD loss is composed of two terms:
imitation loss LIm and hint loss LHint, described mathemati-
cally as follows,

LKD = α
1

n

n∑
i=1

Φi ‖ŷs − ŷt‖2i︸ ︷︷ ︸
LIm

+ Φi ‖Ψs −Ψt‖2i︸ ︷︷ ︸
LHint

(2)

where Φi =
(

1− ‖ŷs−y‖
2
i

η

)
, and Ψs and Ψt are the out-

put embeddings of s and t, respectively; i ∈ {1, . . . , n}
is the index for each training observation, and n the
batch size; η = max (es)−min (es) is a normalizing fac-
tor (i.e range of squared error losses of source model) and
es =

{
‖y − ŷs‖2j : j = 1, . . . , N

}
, the actual set of squared

errors between the source predictions and ground truth. N is
the total number of observations in the overlap training data;
Φi is the attention weight assigned to the ith training observa-
tion. The attention is a function of how well the source model
is able to predict (ŷs) a particular ground truth target y. The
attention weights are applied over the imitation loss between
the source predictions (ŷs) and the ground truth (ŷt) as well
as over the hint loss between the latent output embeddings
Ψs and Ψt to ensure transfer of knowledge at multiple levels
in the architecture from the source EPIDEEP-CN to the target
CAEM. The goal of KD is to enforce a unidirectional transfer
from the source (EPIDEEP-CN) to the target (CAEM) model.
Hence KD losses do not affect the representations learned by
EPIDEEP-CN and module s.

5 Experiments
Setup. All experiments are conducted using a 4 Xeon E7-
4850 CPU with 512GB of 1066 Mhz main memory. Our
method implemented in PyTorch (implementation details in
the appendix) is very fast, training for one predictive task in
about 3 mins. Here, we present our results for next incidence
prediction (i.e. k = 1). We present results for next-two inci-
dence predictions in the appendix, which are similar. Note
that we define T1 as the period of non-seasonal rise of wILI

due to contamination by COVID-19 related issues (EWs 9-
11), T2 as the time period when COVID-ILI trend is declining
more in tune with the wILI pattern (EWs 12-15), and T as
the entire course (EWs 9-15).
Data. We use the historical weighted Influenza-like Illness
(wILI) data released by the CDC which collects it through
the Outpatient Influenza-like Illness Surveillance Network
(ILINet). ILINet consists of more than 3,500 outpatient
healthcare providers all over the US. We refer to wILI from
June 2004 until Dec 2019 as historical wILI, and wILI from
January 2020 as COVID-wILI. Next, Table 1 details the var-
ious signal types we employ for COVID-related exogenous
data. A more detailed description of each data signal can be
found in the appendix. All datasets are publicly available and
were collected in May 2020.
Goals. In our experiments we aim to demonstrate that our
method CALI-NET can systematically steer a historical
model to the new COVID-ILI scenario by enabling it to
learn from Covid-related signals, when appropriate. We are
interested in determining whether our model can transfer
useful information from the historical model (i.e. EPIDEEP)
when required and if it can prevent transfer of detrimental
information. Specifically, our questions are:
Transfer Learning
Q1. Is CALI-NET able to achieve successful positive transfer
to model the contamination of wILI values?
Q2. Does CALI-NET prevent negative transfer by automati-
cally recognizing when wILI and COVID-19 trends deviate?
Forecasting Performance
Q3. Does CALI-NET’s emphasis on transfer learning sacrifice
overall performance with respect to state-of-the-art methods?
Ablation Studies
Q4. How does each facet of CALI-NET affect COVID-ILI
forecasting performance?
Q5. What data signals are most relevant to forecasting?
Q1 and Q2, which are about transfer learning, are aligned
with the main goal of this paper. In Q3, we are interested in de-
termining whether CALI-NET sacrifices any overall forecast-
ing performance, as compared to the state-of-the art (SOTA)
baselines, by being too focused on balancing the transfer of
knowledge? In Q4 and Q5, we analyze the importance of
different components and data signals to performance.
Training and Optimization. For training CALI-NET, we do
the following. We found that, for practical purposes, it is
convenient to pre-train EPIDEEP-CN, and then remove its
last feedforward layers (decoder). Hence the concatenated
output of RNN encoder and embedding mapper are input to
module s. During joint training, we do not modify EPIDEEP-
CN’s pre-trained parameters. As recommended in (Moon
and Carbonell 2017), we train the HTL architecture in an
alternating fashion.
Baselines. We use traditional historical wILI forecasting
methods used in literature (Reich et al. 2019a): EPIDEEP,
extended DELTA DENSITY from Delphi Group (Brooks et al.
2018) (which is SOTA as the top performing method in recent
CDC influenza forecasting challenges (Reich et al. 2019a)),
SARIMA from ReichLab (Ray et al. 2017) (seasonal autore-
gressive method, top performing in recent CDC challenges),
and EMPIRICAL BAYES (Brooks et al. 2015) (which lever-
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Type of signal Description Signals Source
(DS1) Line list They are a 1. Confirmed cases; 2. UCI beds; COVID Tracking Project2, CDC3

based direct function 3. Hospitalizations; 4. People on JHU CSSE4

of the disease spread ventilation; 5. Recovered; 6. Deaths;
7. Hospitalization rate;
8. ILI ER visits; 9. CLI ER visits

(DS2) Testing Related to social 10. People tested; 11. Negative cases; COVID Tracking Project2, CDC3

based policy and behavioral 12. Emergency facilities reporting;
considerations 13. No. of providers;

(DS3) Crowdsourced Crowdsourced symptomatic 14. Digital thermometer readings; (Miller et al. 2018)
symptoms based data from personal devices
(DS4) Social media Social media activity 15. Health Related Tweets (Dredze et al. 2014)

Table 1: Overview of COVID-Related Exogenous Data.

ages transformation of historical seasons to forecast the cur-
rent season), and HIST (common persistence baseline which
forecasts based on weekly average of the historical seasons).

5.1 Q1: Leveraging Positive Transfer for
Covid-contaminated wILI

The effect of contamination is most pronounced in T1, lead-
ing to the COVID-ILI curve exhibiting uncharacteristic non-
trivial progression dynamics. Therefore, to effectively steer
our historical model, CALI-NET automatically leverages pos-
itive transfer of Covid-related signals into EPIDEEP. The
effect of this automatic positive transfer is shown in Fig. 3a
where we see that CALI-NET significantly outperforms EPI-
DEEP across all regions, thanks to our architecture.

(a) Positive transfer stage (b) Negative transfer stage

Figure 3: (a) CALI-NET achieves good forecasts of the
uncharacteristic trend in period T1 by steering our in-
fluenza forecasting historical model EPIDEEP with knowl-
edge learned from Covid-related signals. (b) Shows forecast-
ing errors from period T2, when the COVID-ILI trend is
declining more in tune with the traditional wILI pattern. We
notice that CALI-NET is competitive with EPIDEEP, also
outperforming it in 6 out of 11 regions while remaining com-
petitive in the rest of the regions.

5.2 Q2: Does CALI-NET Prevent Negative
Transfer Automatically?

Having showcased the adaptation of CALI-NET in T1, we
now show in Fig. 3b that our method is effective at prevent-

2covidtracking.com 3cdc.gov/coronavirus/2019-ncov/ 4coronavirus.jhu.edu

ing negative transfer when wILI is no longer aligned with
the exogenous COVID signals (i.e., period T2). In the first
place, in some regions the wILI trajectory was never sig-
nificantly affected by COVID as confirmed COVID cases
started to increase significantly only once the influenza sea-
son ended. Second, COVID-affected wILI trajectories of
regions displayed a subsequent downtrend after a few weeks.
This may be due to the change in care-seeking behavior of
outpatients (Kou et al. 2020). In this stage, preventing neg-
ative transfer from COVID-related signals is needed, such
that our model displays more characteristics of traditional
influenza models. From Fig. 3b, we see that CALI-NET is
better than EPIDEEP in a majority of the regions indicating
that it is able to effectively stop knowledge from misaligned
COVID signals from adversely affecting forecasting accuracy
thereby effectively preventing negative transfer.

Figure 4: The number of regions in which each model yields
best performance (models performing within 1% of best
model per region are considered equivalent best performers).
CALI-NET outperforms other models in 5 out of 11 regions,
on par with DeltaDensity which also yields best performance
in 5 other regions; SARIMA is the best only in Region 9.

5.3 Q3: Does CALI-NET Sacrifice Overall
Performance?

Sec 5.1 and 5.2 show that CALI-NET successfully achieves
the main goal of the paper i.e. steering a historical model in a
novel scenario. We now study if we sacrifice any performance
in this process. To this end, we compare CALI-NET with
the traditional SOTA wILI forecasting approaches for the
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(a) (b) (c)

Figure 5: (a) RMSE in period T2 in Nat. (b) 1-week ahead RMSE ratio CALI-NET
CALI-NET-No KD . (c) Data bucket ablation.

entire course T . Specifically, we quantify the number of
regions (among all 11), where each method outperforms all
others. Fig. 4 showcases our findings. Overall, CALI-NET is
able to match the performance of the SOTA historical wILI
forecasting models in forecasts for the entire course T and is
the top performer in 5 of 11 regions and is one of top 2 best
models in 10 out of 11 regions. Note that the traditional wILI
baselines do not capture the non-seasonal rise of wILI due to
COVID contamination in T1 (see Fig. 1 and the appendix).
Hence, we note that CALI-NET is the best-suited approach
for real-time forecasting in a novel scenario as it captures the
non-seasonal patterns while maintaining overall performance.
Moreover, we also noticed that CALI-NET outperforms all
baselines in regions worst affected by COVID (see appendix).

5.4 Q4 and Q5: Module, Data and Parameter
Importance and Sensitivity

Justification for CAEM Architecture. We conducted an ab-
lation study testing the three components of CAEM: (a) re-
gional reconstruction, (b) Laplacian regularization, and (c)
the recurrent model. We found that removing each of them
degrades performance showing their individual effectiveness.
Module Performance Analysis. Fig. 5a shows RMSE evolu-
tion over period T2 for the national region for CALI-NET and
sub-models of CALI-NET that do not have transfer learning
capability. Both GRU (standard gated recurrent unit model)
and the standalone CAEM model use exogenous data as CALI-
NET does. CALI-NET is the only model able to adapt quickly
to downtrend in period T2, due to the effect of HTL frame-
work which prevents negative transfer of knowledge from
COVID related signals, while other models fail to adapt and,
in fact, predict rising or flat wILI forecasts. From Sec. 5.1
- 5.3, we see CALI-NET is the only method able to capture
both initial uptrend of COVID-ILI and subsequent decline
effectively, showing its usefulness for emerging diseases.
Effect of KD. We perform an ablation study to understand the
contribution of the proposed KD losses. Often the usefulness
of source (EPIDEEP-CN) and target (CAEM) modules vary
depending on the usefulness of the historical and exogenous
data sources. Our attentive KD distillation losses provide
structure and balance to the transferred knowledge.

We compare 1-week ahead forecasting performance
of CALI-NET and a variant of CALI-NET with KD losses
removed. See Fig. 5b; each box is colored by the ratio of

RMSE of CALI-NET and its variant (capped at -1 and 1 to
help visualization). Green cells indicate CALI-NET does bet-
ter while red cells indicate that CALI-NET w/o KD losses is
better. We notice for 1-week ahead forecasting, structuring
the knowledge transferred from EPIDEEP proves valuable for
most EWs. However, for long-term forecasting, KD losses
seem to downgrade guidance of EPIDEEP-CN (results in
appendix). This may be because the season reverts to typical
behavior in the timeframe predicted in long-term forecasts.
Contribution of Exogenous Signals. In Fig. 5c, we can see
the average overall RMSE obtained when a single data bucket
was removed during the training of CALI-NET. We noticed
that line list based data (DS1) is very helpful in COVID-
ILI forecasting while the effectiveness of testing (DS2) and
crowdsourced based (DS3) data is slightly more varied across
regions, an observation that resolves Q5. This also suggests
that data closer to the disease is more reliable. More detailed
results (regional breakdown) are in the appendix.
Hyper-Parameter Sensitivity. See appendix.

6 Discussion

We introduced the challenging COVID-ILI forecasting task
and proposed our novel approach CALI-NET. We show use-
fulness of a principled method to transfer relevant knowledge
from an existing deep flu forecasting model (based on rich
historical data) to one relying on relevant but limited recent
COVID-related exogenous signals. Our method is based on
carefully designed components to avoid negative transfer
(by attentive KD losses), promote spatial consistency (via
Laplacian losses in a novel recurrent architecture CAEM),
and also handle data paucity (via the global nature of CAEM
and other aspects). CALI-NET effectively captures non-trivial
atypical trends in COVID-ILI evolution whereas other mod-
els and baselines do not. We also demonstrate how each of
our components and data signals is important and useful for
performance. These results provide guidance for steering
forecasting models in an emerging disease scenario. In future,
we believe our techniques can be applied to other source
models (in addition to EPIDEEP-CN), as well as designing
more sophisticated architectures for the target CAEM model.
We can also explore adding interpretability to our forecasts
for additional insights.
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