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Abstract

The COVID-19 pandemic has spread globally for several
months. Because its transmissibility and high pathogenicity
seriously threaten people’s lives, it is crucial to accurately
and quickly detect COVID-19 infection. Many recent stud-
ies have shown that deep learning (DL) based solutions can
help detect COVID-19 based on chest CT scans. However,
most existing work focuses on 2D datasets, which may result
in low quality models as the real CT scans are 3D images.
Besides, the reported results span a broad spectrum on differ-
ent datasets with a relatively unfair comparison. In this paper,
we first use three state-of-the-art 3D models (ResNet3D101,
DenseNet3D121, and MC3 18) to establish the baseline per-
formance on three publicly available chest CT scan datasets.
Then we propose a differentiable neural architecture search
(DNAS) framework to automatically search the 3D DL mod-
els for 3D chest CT scans classification and use the Gum-
bel Softmax technique to improve the search efficiency. We
further exploit the Class Activation Mapping (CAM) tech-
nique on our models to provide the interpretability of the re-
sults. The experimental results show that our searched mod-
els (CovidNet3D) outperform the baseline human-designed
models on three datasets with tens of times smaller model
size and higher accuracy. Furthermore, the results also verify
that CAM can be well applied in CovidNet3D for COVID-
19 datasets to provide interpretability for medical diagnosis.
Code: https://github.com/HKBU-HPML/CovidNet3D.

Introduction
The Corona Virus Disease 2019 (COVID-19) pandemic is
an ongoing pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2
virus can be easily spread among people via small droplets
produced by coughing, sneezing, and talking. COVID-19 is
not only easily contagious but also a severe threat to hu-
man lives. The COVID-19 infected patients usually present
pneumonia-like symptoms, such as fever, dry cough and
dyspnea, and gastrointestinal symptoms, followed by a se-
vere acute respiratory infection. The usual incubation period
of COVID-19 ranges from one to 14 days. Many COVID-
19 patients do not even know that they have been infected
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without any symptoms, which would easily cause delayed
treatments and lead to a sudden exacerbation of the condi-
tion. Therefore, a fast and accurate method of diagnosing
COVID-19 infection is crucial.

Currently, there are two commonly used methods for
COVID-19 diagnosis. One is viral testing, which uses real-
time reverse transcription-prognosis chain reaction (rRT-
PCR) to detect viral RNA fragments. The other is making
diagnoses based on characteristic imaging features on chest
X-rays or computed tomography (CT) scan images. (Ai et al.
2020) conducted the effectiveness comparison between the
two diagnosis methods and concluded that chest CT has a
faster detection from the initial negative to positive than rRT-
PCR. However, the manual process of analyzing and diag-
nosing based on CT images highly relies on professional
knowledge and is time-consuming to analyze the features
of the CT images. Therefore, many recent studies have tried
to use deep learning (DL) methods to assist COVID-19 di-
agnosis with chest X-rays or CT scan images.

However, the reported accuracy of the existing DL-based
COVID-19 detection solutions spans a broad spectrum be-
cause they were evaluated on different datasets, making it
difficult to achieve a fair comparison. Besides, most studies
focus on 2D CT datasets (Singh et al. 2020; Ardakani et al.
2020; Alom et al. 2020). However, the real CT scan is usu-
ally the 3D data. Thus it is necessary to use 3D models to
classify 3D CT scan data. To this end, we use three state-of-
the-art (SOTA) 3D DL models to establish the baseline per-
formance on three open-source 3D chest CT scan datasets:
CC-CCII1 (Zhang et al. 2020b), MosMedData (Morozov
et al. 2020) and COVID-CTset (Rahimzadeh, Attar, and
Sakhaei 2020). The details are shown in Table 2.

In addition, designing a high-quality model for the spe-
cific medical image dataset is a time-consuming task and
requires much expertise, which hinders the development of
DL technology in the medical field. Recently, neural archi-
tecture search (NAS) has become a prevalent topic, as it can
efficiently discover high-quality DL models automatically.
Many studies have used the NAS technique to image classi-
fication and object detection tasks (Pham et al. 2018; Liu, Si-

1We find there are some errors and noises in the original dataset
(Version 1.0). Therefore we built our version based on it.
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Paper Type Open-
source?

Dataset Statistics Class Statistics (#slices) Size of
Test Set

Acc
(%)#patients/#scans/#slices NCP Non-NCP

CP Normal
(Ghoshal et al.(2020) X-ray(2D) Yes - / - / 5,941 68 4,290 1,583 1,188 88.39
(Zhang et al. 2020a) X-ray(2D) Yes - / - / 1,531 100 1,431 764 -
Narin et al.(2020) X-ray(2D) Yes - / - / 100 50 50 20 98.00
(Singh et al. 2020) CT(2D) No - / - / 133 68 65 26 93.20

(Ardakani et al. 2020) CT(2D) No 194 / - / 1,020 510 510 102 99.63
(Alom et al. 2020) CT(2D) Yes - / - / 425 178 247 45 98.78

(He et al. 2020) CT(2D) Yes 143 / - / 746 349 397 186 86.00
(Mobiny et al. 2020) CT(2D) Yes - / - / 746 349 397 105 87.60

(Rahimzadeh et al.(2020) CT(3D) Yes 377 / 526 / 12,058 244‡ 282‡ 124‡ -
(Zheng et al. 2020) CT(3D) No 542 / 630 / - 313* 229* 131* 90.10

(Li et al. 2020) CT(3D) No 3,322 / 4,356 / - 1,296‡ 1,735‡ 1,325‡ 427‡ -
(Morozov et al. 2020) CT(3D) Yes 1,110 / 1,110 / 46,411 856‡ 254‡ 331‡ -
(Zhang et al. 2020b) CT(3D) Yes 2,778 / 4,356 / 444,034 1,578‡ 1,614‡ 1,164‡ 389‡ 92.49

Table 1: Summary of the existing studies of DL-based methods for COVID-19 detection. NCP indicates the novel coronavirus
pneumonia, Non-NCP includes CP (common pneumonia) and Normal. ‡: the number of scans. *: the number of patients.

monyan, and Yang 2019; Zoph et al. 2018; Tan et al. 2019).
In this paper, we present a differentiable neural architecture
search (DNAS) method combined with the Gumbel Soft-
max (Jang, Gu, and Poole 2017) technique to search neu-
ral architectures on three chest CT datasets: Clean-CC-CCII
(Zhang et al. 2020b), MosMedData (Morozov et al. 2020),
and COVID-CTset (Rahimzadeh, Attar, and Sakhaei 2020).
We represent the search space by a supernet. Using the Gum-
bel Softmax technique, we can optimize only one subnet-
work of the supernet at a time; therefore, the searching ef-
ficiency can be significantly improved, and the search stage
can be finished in about 2 hours using 4 Nvidia Tesla V100
GPUs. We name the model searched by DNAS as Covid-
Net3D. The experimental results show that CovidNet3D can
achieve comparable results to human-designed SOTA mod-
els with a smaller size. Furthermore, medical diagnoses gen-
erally require interpretability of the decision, so we apply
Class Activation Mapping (CAM) (Zhou et al. 2016) tech-
niques to provide interpretability for our CovidNet3D mod-
els. In summary, our contributions are summarized as fol-
lows:
• We use three manually designed 3D models to establish

the baseline performance on three open-source COVID-
19 chest CT scan datasets.

• To the best of our knowledge, we are the first to apply the
differentiable NAS to search 3D DL models for COVID-
19 chest CT scan datasets. Our DNAS framework can effi-
ciently discover competitive neural architectures that out-
perform the baseline models on three CT datasets.

• We use the Class Activation Mapping (CAM) (Zhou et al.
2016) algorithm to add the interpretability of our DNAS-
designed models, which can help doctors quickly locate
the discriminative lesion areas on the CT scan images.

Related Work
In recent years, DL techniques have been proven to be effec-
tive in diagnosing diseases with X-ray and CT images (Lit-
jens et al. 2017). To enable DL techniques to be applied in

helping the detection of COVID-19, an increasing number of
publicly available COVID-19 datasets have been proposed,
as shown in Table 1.

Publicly-available Datasets of COVID-19
We separate the publicly available datasets into two different
categories: the pre-pandemic datasets and the post-pandemic
datasets which mainly differ in quality and quantity.

Pre-pandemic Datasets In the pre-pandemic period, the
datasets for COVID-19 is very limited and low-quality. (Co-
hen, Morrison, and Dao 2020) provided a dataset by collect-
ing chest X-ray and CT images of COVID-19 cases from
public. But its quality has no guarantee since the images are
not verified by medical experts. (Yang et al. 2020) is another
CT dataset of COVID-19, which comprises CT images ex-
tracted from COVID-19 research papers. This dataset only
contains 2D CT images because each patient has only one to
several CT images instead of a complete 3D scan volume.

Post-pandemic Datasets With the rapid increase in the
number of confirmed cases of COVID-19, many high-
quality COVID-19 chest CT scan datasets have been pro-
vided, such as CC-CCII (Zhang et al. 2020b) and COVID-
CTset (Rahimzadeh, Attar, and Sakhaei 2020). Some of
them have annotations by doctors, e.g., COVID-19-CT-Seg-
Dataset (Jun et al. 2020) and MosMedData (Morozov et al.
2020).

DL-based Methods for COVID-19 Detection
Many studies are conducted on CT images, but the 3D in-
formation of CT images is under-explored. In these studies
(He et al. 2020; Mobiny et al. 2020; Singh et al. 2020), the
authors only proposed 2D DL models for COVID-19 detec-
tion. (Ardakani et al. 2020) benchmarked ten 2D models on
their private dataset with 102 testing images. On the other
hand, the studies based on 3D CT images are relatively rare,
mainly due to the lack of 3D COVID-19 CT scan datasets.
(Li et al. 2020; Zheng et al. 2020) proposed 3D models with
their private 3D CT datasets. There are also some studies
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conducted on X-ray images. For example, (Narin, Kaya, and
Pamuk 2020) proposed three 2D DL models for COVID-19
detection. (Zhang et al. 2020a) introduced a deep anomaly
detection model for fast and reliable screening. (Ghoshal and
Tucker 2020) investigated the estimation of uncertainty and
interpretability by Bayesian DL model on the X-ray images.
(Alom et al. 2020) used both X-ray images and CT images
to do segmentation and detection.

Neural Architecture Search
Recently, NAS has been applied into many tasks and
achieved remarkable results (He, Zhao, and Chu 2021;
Elsken, Metzen, and Hutter 2018). (Zoph and Le 2017; Zoph
et al. 2018) used recurrent neural network (RNN) to gen-
erate neural architectures by using reinforcement learning
(RL). Since then, several types of NAS methods have been
proposed, such as evolutionary algorithm (EA) (Real et al.
2019), surrogate model-based optimization (SMBO) (Liu
et al. 2018), and gradient descent (GD) based methods (Liu,
Simonyan, and Yang 2019; Dong and Yang 2019). In (Dong
and Yang 2019; Wu et al. 2019), the Gumbel Softmax (Jang,
Gu, and Poole 2017) technique is incorporated to GD-based
NAS, which significantly improve the searching efficiency.

Due to the success of NAS in natural image recognition
(such as ImageNet (Deng et al. 2009)), researchers also ap-
ply it to the medical datasets. (Kim et al. 2019) applied
NAS to segmentation task on Magnetic Resonance Imag-
ing (MRI). (Faes et al. 2019) used Google Cloud AutoML
platform to search and train models on five different med-
ical datasets, and demonstrate that AutoML can generate
competitive models comparable to human-designed models.
However, there is no study applying the NAS technique to
search 3D models for COVID-19 chest CT scan datasets. To
this end, we exploit the NAS technique to three open-source
COVID-19 CT datasets and discover high-quality 3D mod-
els outperforming human-designed 3D models.

Method
In this section, we first describe our search space for 3D CT
scans classification models. Then, we introduce the differen-
tiable neural architecture search (DNAS) method combined
with the Gumbel Softmax technique (Jang et al. (2017).

Search Space
There are two critical points to be considered before design-
ing the search space. One is that all datasets we use are
composed of 3D CT scans; therefore, the searched model
should be good at extracting the information from three-
dimensional spatial data. The other is that the model should
be lightweight, as the time required to process 3D data is
much longer than 2D image data.

Although the cell-based search space (Pham et al. 2018;
Liu, Simonyan, and Yang 2019) is one of the most com-
monly used search space, it has several problems: 1) the final
model is built by stacking the same cells, which precludes
the layer diversity; 2) many searched cells are very com-
plicated and fragmented and are therefore inefficient for in-
ference. MobileNetV2 (Sandler et al. 2018) is a lightweight
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Figure 1: The overview of our search space. The model is
generated by stacking a predefined number of cells. Each
cell contains different number of blocks, and the block of
different cells is different and needs to be searched. Conv3d
1×1×1 denotes 3D convolution with 1×1×1 kernel size,
Dwise3d denotes 3D depthwise convolution, BN3d denotes
3D batch norm, D × H × W × F denotes tensor shape
(depth, height, width, channel), and MBConv denotes mo-
bile inverted bottleneck convolution.

model manually designed for mobile and embedded devices
for efficient inference. Several NAS studies (Tan et al. 2019;
Wu et al. 2019) have successfully used the layer modules
(Sandler et al. 2018) including inverted residuals and lin-
ear bottlenecks to search neural architectures and achieved
SOTA results on the 2D image datasets. Therefore, we use
MobileNetV2 as a reference to design our 3D search space.

As shown in Fig. 1, we represent the search space by a
supernet, which consists of the stem layer, a fixed number
of cells, and a linear layer. The stem layer performs convo-
lutional operations, and the last linear layer follows behind
a 3D global average pooling operation (Zhou et al. 2016).
Each cell is composed of several blocks. The structures of
all blocks need to be searched. In different cells, the num-
ber of channels and the number of blocks are different and
hand-picked empirically. By default, all blocks have a stride
of 1. However, if a cell’s input/output resolutions are differ-
ent, then its first block has a stride of 2. The blocks within
the same cell have the same number of input/output chan-
nels. Inspired by MobileNetV2 (Sandler et al. 2018), each
block is a MBConv-similar module (see Fig. 1). It consists
of three sub-modules: 1) a point-wise (1×1×1) convolution;
2) a 3D depthwise convolution withK×K×K kernel size,
where K is a searchable parameter; 3) another point-wise
(1×1×1) convolution. All convolutional operations are fol-
lowed by a 3D batch normalization and a ReLU6 activation
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function (Howard et al. 2017), which is denoted by Conv3D-
BN3D-ReLU6, and the last convolution has no ReLU6 acti-
vation. Another searchable parameter is the expansion ratio
e, which controls the ratio between the size of the input bot-
tleneck and the inner size. For example, 5× 5× 5 MBConv6
denotes that the kernel size of MBConv is 5× 5× 5, and the
expansion ratio is 6.

In our experiments, the search space is a fixed macro-
architecture supernet consisting of 6 cells, where each has
4 blocks, but the last cell only has 1 block. We empirically
collect the following set of candidate operations:

• 3× 3× 3 MBConv3

• 3× 3× 3 MBConv4

• 3× 3× 3 MBConv6

• 5× 5× 5 MBConv3

• 5× 5× 5 MBConv4

• 7× 7× 7 MBConv3

• 7× 7× 7 MBConv4

• Skip connection

Therefore, it contains 821 ≈ 9.2 × 1018 possible archi-
tectures. Finding an optimal architecture from such a huge
search space is a stupendous task. We will introduce our
search strategy in the following.

Differentiable NAS with Gumbel Softmax
According to (He, Zhao, and Chu 2021), gradient descent
(GD) based NAS is an efficient method, and many studies
use it to find competitive models with much shorter time
and less computational resources (Dong and Yang 2019; Wu
et al. 2019) than other NAS methods. Hence, in this paper,
we use the GD-based method and combine it with the Gum-
bel Softmax (Jang, Gu, and Poole 2017) technique to dis-
cover models for COVID-19 detection.

Preliminary: DARTS DARTS (Liu, Simonyan, and Yang
2019) was one of the first studies to use GD-based method
to search neural architectures. Each cell is defined as a di-
rected acyclic graph (DAG) of N nodes, where each node is
a network layer, and each edge between node i and node j
indicates a candidate operation (i.e., block structure) that is
selected from the predefined operation spaceO. To make the
search space continuous, DARTS (Liu, Simonyan, and Yang
2019) uses Softmax over all possible operations to relax the
categorical choice of a particular operation, i.e.,

oi,j(x) =
∑K
k=0 Pko

k(x)

s.t. Pk =
exp(αki,j)∑K
l=0 exp(αli,j)

, (1)

where ok indicates the k-th candidate operation performed
on input x, αki,j indicates the weight for the operation ok

between a pair of nodes (i, j), and K is the number of pre-
defined candidate operations. The training and the validation
loss are denoted byLtrain andLval, respectively. Therefore,
the task of searching for architectures is transformed into a
bilevel optimization problem of neural architecture α and
the weights ωα of the architecture:

minα Lval (ω∗α, α)
s.t. ω∗α = argminωα Ltrain(ωα, α)

(2)

Differentiable Model Sampling by Gumbel Softmax In
DARTS, as Fig. 2 (left) shows, the output of each node is the
weighted average of the mixed operation during the whole
search stage. It causes a linear increase in the requirements
of computational resources with the number of candidate
operations. To alleviate this problem, we follow the same
idea as (Dong and Yang 2019). Specifically, for each layer,
only one operation is sampled and executed with the sam-
pling probability distribution Pα defined in Equation 1. For
example, the probability of being sampled for three opera-
tions in Fig. 2 (left) is 0.1, 0.2, and 0.7, respectively, but only
one operation will be sampled at a time. Therefore, the sam-
pling distribution Pα of all layers is encoded into a one-hot
random distribution Z, e.g., Pα = [0.1, 0.2, 0.7] → Z =
[0, 0, 1].

i

0.1 0.2 0.7

mixed	operation

j

single	operation

unsampled

i

0 0 1

j

sampled

Figure 2: The comparison between two GD-based methods.
(Left) Applying a mixture of all candidate operations, each
with different weight. (Right) Only one operation is sampled
at a time. Best viewed in color.

However, each operation is sampled from a discrete prob-
ability distribution Z, so we cannot back-propagate gradi-
ents through Z to α. To enable back-propagation, we use a
reparameterization trick named Gumbel Softmax (Jang, Gu,
and Poole 2017), which can be formulated by

Zk =
exp((logαki,j+G

k
i,j)/τ)∑K

l=0 exp((logαli,j+Gli,j)/τ)
, (3)

where Gki,j = −log(−log(uki,j)) is the k-th Gumbel sam-
ple, uki,j is a uniform random variable, and τ is the softmax
temperature. When τ → ∞, the possibility distribution of
all operations between each pair of nodes approximates to
the one-hot distribution. To be noticed, we perform argmax
function on Equation 3 during the forward process but re-
turn the gradients according to the Equation 3 during the
backward process.

Class Activation Mapping Algorithm
As mentioned above, the last linear layer follows behind a
3D global average pooling layer, which enables us to utilize
class activation mapping (CAM) algorithm to generate 3D
activation maps for our model. CAM exploits the global av-
erage pooling layer to calculate get the activation map Mc

for class c, where each spacial element is given by
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3D Model
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(Under-sampling
or Up-sampling)

stack. . .
scan 1

scan n

Input size: bs×1×d×h×w

Resize
RandomFlip
CenterCrop
Normalization

Prediction

Figure 3: The pipeline of training 3D deep learning models. All CT scans need to be pre-processed by the slice sampling
strategy to make sure that each scan contains the same number of slices. The input size of network is bs×1×d×h×w, where
bs is batch size, d is the number of slices, h and w indicate the height and width, respectively.

Mc(x, y, z) =
∑
k

wckfk(x, y, z) (4)

where in a given image, fk(x, y, z) is the activation of unit k
at the last convolutional layer before global average pooling
layer at spatial location (x, y, z), wck is the corresponding
linear layer weight of class c for unit k. After getting the
class activation map, we can simply upsample it to the size
of the input scan images to visualize and identify the regions
most relevant to the specific class.

Experiments
Datasets and Pre-processing
In this paper, we use three publicly available datasets: CC-
CCII (Zhang et al. 2020b), MosMedData (Morozov et al.
2020) and COVID-CTset (Rahimzadeh, Attar, and Sakhaei
2020). Three datasets are all chest CT volumes. However,
since the data format varies from three datasets, it is nec-
essary to pre-process each dataset to make them follow a
unified way of reading data.

The original CC-CCII dataset contains a total number
617,775 slices of 6,752 CT scans from 4,154 patients, but it
has five main problems (i.e., damaged data, non-unified data
type, repeated and noisy slices, disordered slices, and non-
segmented slices) that would have high negative impacts on
the model performance. To solve these problems, we man-
ually remove the damaged, repeated and noisy data. Then
we segment the lung part for the unsegmented slice image
and convert the whole dataset to PNG format. After address-
ing the above problems, we build a clean CC-CCII dataset
named Clean-CC-CCII, which consists of 340,190 slices of
3,993 scans from 2,698 patients.

Scan Images Construction Each CT scan contains a dif-
ferent number of slices, but DL models require the same di-
mensional inputs. To this end, we propose two slice sam-
pling algorithms: random sampling and symmetrical sam-
pling. Specifically, the random sampling strategy is applied

Dataset
[Format] Classes #Patients #Scans

Train Test Train Test

Clean-
CC-CCII

[PNG]

NCP 726 190 1213 302
CP 778 186 1210 303

Normal 660 158 772 193
Total 2164 534 3195 798

MosMedData
[PNG]

NCP 601 255 601 255
Normal 178 76 178 76

Total 779 331 779 331

COVID-CTset
[16bit TIFF]

NCP 80 15 202 42
Normal 200 82 200 82

Total 280 97 402 124

Table 2: The statistics of three CT scan datasets.

to the training set, which can be regarded as the data aug-
mentation, while the symmetrical sampling strategy is per-
formed on the test set to avoid introducing randomness into
the testing results. The symmetrical sampling strategy refers
to sampling from the middle to both sides at equal intervals.
The relative order between slices remains the same before
and after sampling.

Benchmarking
We use three manually-designed 3D neural architectures as
the baseline methods: DenseNet3D121 (Diba et al. 2017),
ResNet3D101 (Tran et al. 2018), and MC3 18 (Tran et al.
2018). As shown in Fig. 3, after building the scan images by
the sampling algorithm, we further apply transformations to
scans, including resize, center-crop, and normalization. Be-
sides, for the training set, we also perform a random flip
operation in the horizontal or vertical direction. The other
implementation details are as follows: we use the Adam
(Kingma and Ba 2015) optimizer and the weight decay of
5e-4. We start the learning rate of 0.001 and anneal it down
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to 1e-5. All baseline models are trained for 200 epochs.

DNAS for CT Scan Classification
We apply the DNAS method combined with the Gumbel
Softmax technique to search neural architectures on three
datasets. The pipeline contains two sequential stages: search
and evaluation, shown in Fig. 4.

1. update architecture parameter
2. record the performance

Top models Train from
scratch best model

Search 
space

Gumbel-softmax sample
Model

repeat n epochs

I. Search stage

II. Evaluation stage

Figure 4: The pipeline of DNAS consists of two stages: the
search and the evaluation stage.

Search Stage In our experiments, the supernet consists
of 6 cells with the number of blocks of [4, 4, 4, 4, 4, 1].
Besides, the blocks within the same cell have the same
number of channels. Here, we test two settings: small-
scale and large-scale, where the number of channels
of blocks in the 6 cells is [24, 40, 80, 96, 192, 320] and
[32, 64, 128, 256, 512, 1024], respectively. We name the
models searched under the two settings as CovidNet3D-
S and CovidNet3D-L, respectively. The stem block is a
Conv3D-BN3D-ReLU6 sequential module with the number
of output channels fixed to 32.

To improve searching efficiency, we set the input resolu-
tion to 64×64, and the number of slices in a scan to 16. We
implement three independent search experiments on three
datasets. During the search stage, we split the training set
into the training set DT and the validation set DV . In each
step, we first use DV to update the architecture parameters
α, and then use the training set to update the sampled archi-
tecture weights ωα. Besides, the architecture parameter α
is optimized by the Adam (Kingma and Ba 2015) optimizer,
and the architecture weights are optimized with the SGD op-
timizer with a momentum of 3e-4. The initial learning rate
for both optimizers is 0.001. Each experiment is conducted
on four Nvidia Tesla V100 GPUs (the 32GB PCIe version)
and it can be finished in about 2 hours. After each epoch,
we save the sampled architecture and its performance (e.g.,

accuracy). Therefore, we generate 100 neural architectures
for each experiment after the search stage.

Evaluation Stage As Fig. 4 shows, the search stages
records the performance of the sampled architectures. In the
evaluation stage, we select top-10 architectures and training
these architectures with the training set for several batches,
then the best-performing architecture will be retrained for
200 epochs with the full training set, and then evaluated
on the test set. We set different input resolutions for three
datasets to evaluate the generalization of searched architec-
tures. Besides, since the number of slices contained in CT
scans of different datasets is different, we set the intermedi-
ate value for each dataset, shown in Table 3. Each evalua-
tion experiment uses the same settings as follows: we use
the Adam (Kingma and Ba 2015) optimizer with an ini-
tial learning rate of 0.001. The cosine annealing scheduler
(Loshchilov and Hutter 2017) is applied to adjust the learn-
ing rate. We use Cross-entropy as the loss function.

Results and Analysis
Evaluation Metrics
We use four metrics to evaluate the model performance:

• Precision = TP
TP+FP

• Sensitivity (Recall) = TP
TP+FN

• F1− score = 2×(Precision×Recall)
Precision+Recall

• Accuracy = TN+TP
TN+TP+FN+FP

The positive and negative cases are the COVID-19 class
and the non-COVID-19 class, respectively. Specifically, TP
and TN indicate the number of correctly classified COVID-
19 and non-COVID-19 scans, respectively. FP and FN
indicate the number of wrongly classified COVID-19 and
non-COVID-19 scans, respectively. For the Clean-CC-CCII
dataset, the non-COVID-19 class includes both normal and
common pneumonia. The accuracy is the micro-averaging
value for all test data to evaluate the overall performance of
the model. Besides, we also take the model size as an evalu-
ation metric to compare the model efficiency.

Results on Three CT Datasets
Table 3 divides the results according to the datasets. We
can see that our searched CovidNet3D models outperform
all baseline models on three datasets in terms of accuracy.
Specifically, CovidNet3D-L models achieve the highest ac-
curacy of three datasets. Besides, all CovidNet3D-S models
are with much smaller sizes than the baseline models, but
they can also achieve similar or even better results. For ex-
ample, CovidNet3D-S (8.36 MB) achieves 94.27% accuracy
on Covid-CTset, which is 41× smaller than ResNet3D101
(325.21 MB) with 0.4% higher accuracy. In summary, the re-
sults demonstrate that our DNAS method can discover well-
performing models without inconsistency on network size,
input size or scan depth (the number of slices).

We can also see that the performance of both baseline
models and our CovidNet3D on the MosMedData dataset
is not as good as that on the other two datasets. There are
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Dataset Model Model size
(MB) Input size #Slices Accuracy

(%)
Precision

(%)
Sensitivity

(%) F1-score

Clean-CC-CCII

ResNet3D101 325.21 128×128 32 85.54 89.62 77.15 0.8292
DenseNet3D121 43.06 128×128 32 87.02 88.97 82.78 0.8576

MC3 18 43.84 128×128 32 86.16 87.11 82.78 0.8489
CovidNet3D-S 11.48 128×128 32 88.55 88.78 91.72 0.9023
CovidNet3D-L 53.26 128×128 32 88.69 90.48 88.08 0.8926

MosMedData

ResNet3D101 325.21 256×256 40 81.82 81.31 97.25 0.8857
DenseNet3D121 43.06 256×256 40 79.55 84.23 92.16 0.8801

MC3 18 43.84 256×256 40 80.4 79.43 98.43 0.8792
CovidNet3D-S 12.48 256×256 40 81.17 78.82 99.22 0.8785
CovidNet3D-L 60.39 256×256 40 82.29 79.50 98.82 0.8811

Covid-CTset

ResNet3D101 325.21 512×512 32 93.87 92.34 95.54 0.9392
DenseNet3D121 43.06 512×512 32 91.91 92.57 92.57 0.9257

MC3 18 43.84 512×512 32 92.57 90.95 94.55 0.9272
CovidNet3D-S 8.36 512×512 32 94.27 92.68 90.48 0.9157
CovidNet3D-L 62.82 512×512 32 96.88 97.50 92.86 0.9512

Table 3: The experimental results of standard human-designed models and DNAS-designed models.

two possible reasons. One is that the MosMedData datasets’s
original data format is NIfTI, but all our models do not con-
verge when trained with NIfTI files; therefore we convert
NIfTI to Portable Network Graphics (PNG) format, and this
process would loss information of the input files. The other
possible reason is that the MosMedData dataset is imbal-
anced (shown in Table 2), which increases the difficulty of
model training.

We also find that the random seed greatly influences on
the training of the searched CovidNet3D model through ex-
periments. In other words, the results obtained by using dif-
ferent seeds for the same model would differ significantly.
Hence, how to improve the robustness of NAS-based mod-
els is worthy for further exploring.

Interpretability

Although our model achieves promising result in detecting
COVID-19 in CT images, classification result itself does not
help clinical diagnosis without proving the inner mechanism
which leads to the final decision makes sense. To inspect
our CovidNet3D model’s inner mechanism, we apply Class
Activation Mapping (CAM) (Zhou et al. 2016) on it.

CAM is an algorithm that can visualize the discriminative
lesion regions that the model focuses on. In Fig. 5, we apply
CAM on each slice of a whole 3D CT scan volume from
Clean-CC-CCII dataset. Regions appear red and brighter
have a larger impact on the model’s decision to classify it to
COVID-19. From the perspective of the scan volume, we can
see that some slices have more impacts on the model’s deci-
sion than the others. In terms of a single slice, the areas that
CovidNet3D focuses on has ground-glass opacity, which is
proved a distinctive feature of CT images of COVID-19
Chest CT images (Bai et al. 2020). CAM enables the inter-
pretability of our searched models (CovidNet3D), helping
doctors quickly locate the discriminative lesion areas.

Figure 5: The class activation mappings generated on Covid-
Net3D on a chest CT scan of the Clean-CC-CCII dataset.
Regions colored in red and brighter has more impact on
model’s decision to the class of COVID-19 while blue and
darker region has less.

Conclusion

In this work, we introduce the differentiable neural architec-
ture (DNAS) framework combined with the Gumbel Soft-
max technique to search 3D models on three open-source
COVID-19 CT scan datasets. The results show that Covid-
Net3D, a family of models discovered by DNAS can achieve
comparable results to the baseline 3D models with smaller
size, which demonstrates that NAS is a powerful tool for as-
sisting in COVID-19 detection. In the future, we will apply
NAS to the task of 3D medical image segmentation to locate
the lesion areas in a more fine-grained manner.
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