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Abstract

This paper explores meta-learning in sequential recommen-
dation to alleviate the item cold-start problem. Sequential
recommendation aims to capture user’s dynamic preferences
based on historical behavior sequences and acts as a key com-
ponent of most online recommendation scenarios. However,
most previous methods have trouble recommending cold-
start items, which are prevalent in those scenarios. As there
is generally no side information in the setting of sequential
recommendation task, previous cold-start methods could not
be applied when only user-item interactions are available.
Thus, we propose a Meta-learning-based Cold-Start Sequen-
tial Recommendation Framework, namely Mecos, to mitigate
the item cold-start problem in sequential recommendation.
This task is non-trivial as it targets at an important prob-
lem in a novel and challenging context. Mecos effectively ex-
tracts user preference from limited interactions and learns to
match the target cold-start item with the potential user. Be-
sides, our framework can be painlessly integrated with neu-
ral network-based models. Extensive experiments conducted
on three real-world datasets verify the superiority of Mecos,
with the average improvement up to 99%, 91%, and 70% in
HR@10 over state-of-the-art baseline methods.

Introduction

Increasing research interests have been attracted in sequen-
tial recommendation due to its highly practical value in on-
line services (e.g., e-commerce), where users’ current inter-
est are intrinsically dynamic as the evolving of their histori-
cal actions. Accurately recommending the user’s next action
based only on the sequential dynamic of historical interac-
tions lies in the heart of sequential recommendation.
Markov Chains (MC) (Zimdars, Chickering, and Meek
2001) is a representation of traditional methods, which pre-
dicts the user’s next action based on the previous one. Re-
cently, neural network-based methods have become popu-
lar due to their strong abilities to model sequential data,
such as the methods based on recurrent neural network
(RNN) (Hidasi et al. 2015; Tan, Xu, and Liu 2016; Li et al.
2017; Cui et al. 2018), Attention (Liu et al. 2018; Kang
and McAuley 2018), convolutional neural network (CNN)

*Corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4706

(Tang and Wang 2018), and graph neural network (GNN)
(Wu et al. 2019; Zheng et al. 2020). For example, NARM
(Li et al. 2017) employs RNNs with an attention mechanism
to capture the main purpose and sequential behavior, then
combines them as a representation for the recommendation.
SR-GNN (Wu et al. 2019) models the session data in the
graph structure and utilizes a gated GNN to model complex
transitions among item nodes.

These sequential recommendation models mainly rely on
user-item interactions to portray user preference and item
property. Therefore, the number of historical interactions
largely determines the model performance. However, new
items arrive frequently in those online services, and timely
recommending these items to the target users is of high prac-
tical value. As they rarely have enough known interactions
with users, existing models have trouble in recommendation
towards those items. Therefore, cold-start problem needs to
be solved in sequential recommendation scenarios.

The basic idea behind existing cold-start methods in the
general recommendation is to incorporate side information,
such as user and item attributes (e.g., user profile, item rat-
ings or descriptions) (Barjasteh et al. 2016; Saveski and
Mantrach 2014) and knowledge from other domains (Hu,
Zhang, and Yang 2018). Recently, some meta-learning ap-
proaches have been proposed to tackle it (Vartak et al. 2017;
Yao et al. 2019; Lee et al. 2019; Du et al. 2019; Dong et al.
2020), but they still cannot get rid of these side information.
For example, s>Meta (Du et al. 2019) relies on cross-domain
knowledge transferring. Vartak et al. (Vartak et al. 2017)
utilize item ratings to make the twitter recommendation.
MAMO (Dong et al. 2020) predicts the rating for new items
with the help of user profile and item descriptions. However,
because there is generally no side information in the set-
ting of sequential recommendation task, previous cold-start
methods, including those based on meta-learning, cannot be
applied in these scenarios. Therefore, the cold-start problem
in sequential recommendation remains unexplored.

To alleviate the item cold-start problem in sequential
scenarios given only sparse interactions, we propose a
MEta-learning-based COld-start Sequential recommenda-
tion framework (Mecos). Our framework can be painlessly
integrated with neural network-based sequential recommen-
dation models. We first design a sequence pair encoder to
effectively extract user preference. Then a matching net-



work is applied to match the query sequence pair to the
support set corresponding to the candidate cold-start item.
Moreover, we employ the meta-learning based gradient de-
scent approach for parameter optimization. Once trained, the
learned metric model can be applied to make recommenda-
tions for new items without further fine-tuning. Extensive
experiments show the superiority of Mecos in dealing with
cold-start items in sequential recommendation.

The main contribution of this work is threefold. First, we
propose Mecos framework for sequential scenarios to alle-
viate the item cold-start problem. To the best of our knowl-
edge, this is the first work to tackle this problem. The task
is non-trivial as it aims at a classical problem in a novel
and challenging context, where the only available data is the
user-item interaction. Second, our framework can be eas-
ily integrated with existing neural network-based sequen-
tial recommendation models. And once trained, Mecos can
be adapted to new items without further fine-tuning. Lastly,
we compare Mecos with state-of-the-art methods on three
public datasets. Results demonstrate the effectiveness of our
framework. And a comprehensive ablation study is con-
ducted to analyze the contributions of the key components.

Related Work
Sequential Recommendation

Neural networks-based recommenders (Wu et al. 2020; Li
et al. 2020) have attracted much attention due to their effect
in modeling sequential data. RNN with a gated recurrent unit
(Hidasi et al. 2015) achieves significant improvement com-
pared with conventional methods. To further improve it, an
encoder-decoder model (NARM) applying attention mecha-
nism (Li et al. 2017) is proposed to extract more represen-
tative features. Besides these RNN-based methods, CNN is
used in Caser (Tang and Wang 2018) to learn local features
of a sequence “image” using convolutional filters. Moreover,
to explicitly model the impact of items of different time steps
on the current decision, attention-based models are also de-
veloped in sequential recommendation, such as STAMP and
SASRec (Liu et al. 2018; Kang and McAuley 2018; Liu and
Zheng 2020). As GNN becomes popular, it is also employed
to model sequential data into graph-structured data to cap-
ture complex items transitions (Wu et al. 2019; Yu et al.
2020). Recent works (Zheng, Liu, and Zhou 2019; Zheng
et al. 2020) introduced cross-session item transitions. Dif-
ferent from these methods, we explore few-shot learning to
alleviate the item cold-start problem in sequential recom-
mendation.

Cold-start Recommendation

The common solution to address cold-start recommenda-
tion is to utilize side information, such as auxiliary and
contextual information (Barjasteh et al. 2016; Saveski and
Mantrach 2014) and knowledge from other domains (Hu,
Zhang, and Yang 2018). Traditional content-based meth-
ods augment the data with user or item features. Saveski
and Mantrach (Saveski and Mantrach 2014) proposed a
local collective embedding learning method to exploits
items’ properties and user preferences. DecRec (Barjasteh
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et al. 2016) decouples the rating sub-matrix completion
and knowledge transduction from ratings to exploit the
side information. Besides, based on the assumption that
the same user or item can be located in different scenar-
ios, transferring-based methods (Hu, Zhang, and Yang 2018;
Kang et al. 2019) use cross-domain knowledge to mitigate
cold-start problems in a new scenario.

Meta-learning in Cold-start Recommendation Re-
cently, meta-learning for recommender systems has been at-
tracting attention. Most of these works focus on the recom-
mendation scenarios with few training samples because it is
natural to turn these tasks into few-shot learning problems.
For example, Vartak et al. (Vartak et al. 2017) propose two
network architectures based on a meta-learning strategy to
predict the user’s rating for twitters based on historical item
ratings. s?Meta (Du et al. 2019) initializes the recommender
with a sequential learning process based on cross-domain
knowledge transferring. Li et al. (Li et al. 2019) formulate
cold-start recommendation as a zero-shot learning task with
user profiles. MeLU (Lee et al. 2019) integrates both user
and item attributes and identifies reliable evidence candi-
dates for customized preference estimation. Also relying on
user and item side information, MAMO (Dong et al. 2020)
uses two designed memory matrices to avoid the local op-
tima for users with a specific pattern. However, as they all
rely on side information (e.g., user profile, item attributes,
and cross-domain knowledge) to leverage limited training
data, they cannot be applied in the sequential recommenda-
tion, where the only data that is always available is the user-
item interaction. Different from them, our work introduces
a general framework to alleviate cold-start problem based
only on user-item interactions.

Preliminary

Problem Formulation In sequential recommendation, a
dataset can be represented as a collection of user-item se-
quences. Let ¢/ and V represent the user set and item set
respectively. And ¢; = (v;1,v;,2, ..., Vi n) denotes the inter-
action sequence generated by user u; € U in the chronolog-
ical order. The aim of sequential recommendation model is
to recommend the next item v; ,,11 that the user u; will in-
teract with based on (;. Thus, it is equal to predict next item
v; n4+1 based on the query sequence pair ((;, ?*). To achieve
that, the model will generate a score for each candidate item
in the item set V. Then items with a top-p recommendation
score will be recommended as the model’s output.

In our task, we have a set of cold-start items ) C V, that
every single item in ) only has a few interactions with users
in the dataset. Different from other sequential recommenda-
tion models that rely on rich training instances, our goal is to
recommend cold-start items with few-shot examples. We use
Virain and Vet to represent the training and testing instances,
where Viest N Virain = (rb

Meta-training Following the standard meta-learning set-
tings, we train our model based on a set of training tasks

“The question mark “?” represents an unknown next-click item
that needs to be recommended.
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Figure 1: Single task with K = 3 and N different support
sets. Each query set is the query sequence pair that needs
to be matched with a candidate cold-start item (red) corre-
sponding to the support set. When K = 3, we have three
training instances for our target item. And N is the size of
candidate cold-start items set.

Tmeta-train- 10 create a training task T; € Tetatrain (Figure 1),
we first sample N next-click items from Y.i,. For each of
those IV items, we sample K sequence pairs, where each
pair ((;,v;n+1) represents a sequence ¢; and its ground-
truth next-click item v; ,, 1, as the support set. As the cold-
start item is recommended to one user at each time, the query
set is represented by a single query sequence pair ((;, ?).
We denote those N support/query sets in task 7; as D"
and D', respectively. Then the query set will match over
all support sets to calculate the similarities between them.
The similarity score will be handled as the recommendation
score of the candidate next-click item in the corresponding
support set. Since we employed the data augmentation on
the datasets as previous methods (Liu et al. 2018; Wu et al.
2019) (e.g., a sequence (vg, v1, Ve, v3) is divided into three
successive sequences: (vg, v1), (vo, v1, v2), (Vg, V1, Va2, V3)),
the candidate next-click items are actually distributed in all
positions of the original sequence thus they are equal to
the candidate items. Then the loss can be calculated by the
ground-truth next-click item and the recommended one. We
will elaborate these in the next sections.

Meta-testing After training, the model can make predic-
tions for the task with N new ground-truth items from Vi,
which is the meta-testing step. These meta-testing ground-
truth items are unseen from the meta-training. The same as
meta-training, each meta-testing task also has its few-shot
training data and testing data. And these tasks form the meta-
test set Teta-test- Moreover, we randomly leave out a subset
of labels in Yy, to generate the validation set Tieta-valid-
Now we can define our total meta-learning task setas 7 =

ﬁneta—train U 7;neta—test U 7:11eta—valid-

Integrating with Existing Methods With the input of
pre-trained item embeddings generated by existing sequen-
tial recommendation models, Mecos can be easily integrated
with these methods to improve their performance in cold-
start scenarios. Based on our setting, tasks that their ground-
truth next-click items have rich interactions will be excluded
from 7. And these data will be selected for the training of
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pre-trained item embeddings. To ensure those ground-truth
items will not be seen before meta-learning tasks, sequences
in pre-trained datasets will be removed when they contain
the ground-truth item in 7.

It is noteworthy that we are not introducing more com-
plexity or training with more data based on the baseline
models. The purpose of pre-training is to make sure that both
models with or without Mecos have a similar quality of em-
beddings for items with rich interactions. And all models are
training with the same amount of data. Under these circum-
stances, we can make a fair comparison of recommendation
performance toward cold-start items.

Mecos

In this section, we elaborate on the details of Mecos (Figure
2). With the pre-trained item embeddings as inputs, Mecos
first encodes sequence pairs into representation vectors, then
aggregates them to generate the support/query set represen-
tations. After that, a matching network is employed to match
the query set with the support set, which is corresponding to
a candidate cold-start item, as the recommendation result.

Encoding Support and Query Set Due to the inconsis-
tency of sequence length among different sequences, we
need to obtain a uniform sequence pair representation for
matching. So the Sequence Pair Encoder is designed to get
the representation vector s; of the support sequence pair
(Ci, vin+1) and g, of the query sequence pair ((;, ?), where
(; contains a sequence of items interacted by user u;. v; ; €
R? denotes the pre-trained embedding of j-th item in (;, and
Vin+l € R4 is the next-click item embedding.

The first step is obtaining the sequence representation s.
Since the last-click item in the sequence basically represents
user’s current interest, we incorporate it into the sequence
embedding s through self-attention:

ej =p (Wivin+Wivi;+Wov,a +b),

__ exp(e))
> k=1 exp(er)’

n
> PEACE

where R/((;) is the representation of sequence ¢;, p7 € R?
is a projection vector, W., W2 ‘W3 ¢ R?¥4 are learnable
weighted parameters, Vi ag = »_;_; (Vi ;) /7 is the aver-
age item embedding, and b is a bias vector.

Then, for sequence pairs in the support set, we combine
the next-click item embedding with the sequence representa-
tion vector (; to generate sequence pair representation h. We
utilize a feed-forward network with standard residual con-
nection to better merge the representations:

h? = [R(Cz');Vi,nH] ,

aj

(M

R(G)

h! = ReLU (W'h!™! +b'), )
h; = h{ + h,
where h;; is the sequence pair representation. W' ¢ R2dx2d

and b! € R?? denote the weight and bias for layer [, respec-
tively. ReLU(z) is a non-linear activation function.



+:sum  @: cosine similarity

®D: concatenation|

/ S e -
SENCPT N G T I | [
{ U’%;:"_‘___":’___1"____“_7___‘_x\ ' : i R [T Yi1
| [ > 1 !
p | I'UG Vg —V3—Vy— Vs —> w [ | > |
P | 2 ! ' % : s | Zi Yio
| 1 =] 1 ! — b 1 ! 70]
T Vp—>Vyp—>Vg —> | g [— —— | o , 1 o
[N ] =3 1 ! g ! L = [»
~Z ! ) H 1 ) ! &b 1 g
- | 1 ¢} \ | = 1 ® 5
AW | o [l — | & : J T: =
< . =) e I
__________________ :
8 1| LSTM +—
o 1 1
S ! 5 ! T ! ZiN Yin
R - T . LR t
Ve e ____ J 1 . 1
q; | Matching Processor 7. 9;
I L l

Query set i

Figure 2: The framework of Mecos. The green square represents a support set that contains few-shot training sequences of a
candidate cold-start item (red). Our goal is to recommend cold-start items to the query sequence (blue square). It first generates
sequence pair representations (Eq. 1, 2), then aggregates few-shot sequence representations to generate support set representa-
tion (Eq. 3). Finally, it employs a matching network (Eq. 4) to compute similarity scores between the query set and all support
sets (Eq. 5). After matching the i-th query set with IV different support sets, we can get a vector of similarity scores z;. Then a
softmax function is applied to generate the i-th query set’s final recommendation score of each candidate item, denoted as y;.

After encoding K sequence pairs in the support set into
h! = {h;1,h;2,...,h; k}, we aggregate them into the sup-
port set representation s;:

si = Aggr(h;), (©)
where Aggr(-) could be mean pooling, max pooling, feed-
forward neural network, etc. To keep the framework simple,
we choose the mean pooling layer as Aggr(-).

Because the cold-start item is recommended to one query
at each time, the representation of the query set q; is equal
to that of the query sequence pair ((;, ?). Moreover, for the
sequence pair in the query set, the next-click item should be
inaccessible to prevent data leakage. Thus, in generating the
query pair embedding, h? in Equation 2 should be rewritten
as hY = W, R((;), where W, € R24*? denotes a projec-
tion matrix. And the output of Equation 2 will be the query
set representation q;.

Matching Support and Query Set After encoding sup-
port and query sets, we get the support set representation
set S and query set representation set Q. Then we need to
match the i-th query set representation q; € Q with the j-th
support set s; € S. There are lots of popular similarity met-
rics, such as Euclidean distance and Cosine similarity. These
meatrics simply measures the distance between two vectors
in the embedding space, which does not represent relativity
in real life. Thus we need to learn a general distance function
to capture the real connection in the application scenarios.
To address this, we leverage a recurrent matching processor
(Vinyals et al. 2016) for multi steps matching. Once trained,
our model can be used to any new item types without re-
training. The ¢-th step could be defined as following:

élﬁvct = LSTM (q“ [qifl; Sj] ,Ct_l) 7
al =4q +a;,

where LSTM is a LSTM cell (Hochreiter and Schmidhuber
1997) with input q;, hidden state [qﬁ_l; sj] and cell state

“
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c!~1. The last hidden state q! after ¢ steps is the refined em-
bedding of the query pair.
Then the similarity score is measured by cosine similarity:

t
= A 5)
lai | > lls;

where z;; denotes the similarity between query set represen-
tation q; and support set representation s;. According to the
setting, every support set corresponds to a candidate item.
Thus, z;; represents the recommendation score of the candi-
date item tied with the j-th support set and z; € R denotes
the set of all candidate item scores for query pair ((;, 7).

Zij

Algorithm 1: Meta-training process

Input: Meta-training task set Tiea train, pre-trained item
embedding v;, initial model parameters ©
QOutput: Model’s optimal parameters ©*

1: while unfinished do
2:  Shuffle tasks in Tieta-train
3 for Ti € 7;neta—train do
4: Sample support sets and query sets
5: Generate support and query set representations
S,Q
6: for q; € Q do
7. Match with support set representations in S
8: Accumulate the loss by Eq. 7
9: end for
10: Update parameters © by Adam optimizer
11:  end for
12: end while
13: return ©*

Objective Function and Model Training After obtaining
Z;, we apply a softmax function to generate the output vector
y; of the model:

yi = softmax(z;),

(6)



Datasets Steam  Electronic Tmall
# sequences 358, 228 443,589 918, 358
# items 11,969 63,002 624,221
# ground-truth items 9,496 50, 331 219, 560
Propotion of meta-sequences 0.12 0.31 0.20

Table 1: Statistics of three datasets.

where §; € RY denotes the probabilities of items becoming
the next-click item in the query sequence (;.

The training process is shown in Algorithm 1. For each
task, we apply cross-entropy as the loss function:

N N
Lr=— ZZ%J log (i) + (1 — i) log (1 — 945) »
i=1j=1
@)

where y; denotes the one-hot vector of the ground truth item
for i-th query pair. And y;;, §;; represent the j-th element in
vector y; and ¥, respectively. Finally, our model is trained
by Back-Propagation Through Time (BPTT) algorithm.

Experiments

We conduct experiments on three real-world datasets to
study our proposed framework. We aim to answer the fol-
lowing research questions:

RQ1: How does integrating state-of-the-art models into
Mecos perform as compared with the original models?

RQ2: How do different components in Mecos affect the
framework?

RQ3: What are the influences of different settings of
hyper-parameters (matching steps and support set size)?

RQ4: How do the representations benefit from Mecos?

Experimental Setup

Datasets. We use three public benchmark datasets for
experiments. The first one is based on Steam’(Kang and
McAuley 2018), which contains user’s reviews of online
games from Steam, a large online video game platform.
The second one is based on Amazon Electronic*, which is
crawled from amazon.com by (McAuley et al. 2015). The
last one is based on Tmall® from IJCAI-15 competition.
This dataset contains user behavior logs in Tmall, the largest
e-commerce platform in China. We apply the same prepro-
cessing as (Kang and McAuley 2018; Tang and Wang 2018).

Same as (Liu et al. 2018; Tan, Xu, and Liu 2016), the
data augmentation strategy is employed on all datasets (e.g.,
a sequence (vg, vy, va,v3) is divided into three successive
sequences: (vo,v1), (vo,v1,v2), (vo,v1,v2,v3)). And that
strategy is proved to be effective by previous studies (Liu
et al. 2018; Tan, Xu, and Liu 2016). According to Pareto

"https://cseweb.ucsd.edu/~jmcauley/datasets.html\ #steam'|
_data

*http://jmcauley.ucsd.edu/data/amazon
Shttps://tianchi.aliyun.com/dataset/dataDetail ?datald=47

4710

Principle (i.e., 80/20 rule), we select the 20 percent next-
click items with the least number of interactions as few-shot
tasks. And sequences corresponding to them are denoted as
meta-sequences. Besides, the proportion of training, valida-
tion and testing tasks is 7 : 1 : 2. The statistics of data are
listed in Tabel 1.

Metrics. To evaluate the performance of the proposed
method, we adopt three common metrics in our experiments,
HR@p (Hit Ratio), NDCG@p (Normalized Discounted Cu-
mulative Gain), and MRR (Mean Reciprocal Rank). HR@p
is the proportion of cases having the desired item amongst
the top-p items in all test cases. It is equivalent to Recall@p
and proportional to Precision@p. NDCG@p takes the po-
sition of correctly recommended items into consideration
in the top-p list, where hits at higher positions get higher
scores. MRR is the average of reciprocal ranks of the desired
items. It is equivalent to Mean Average Precision (MAP).

Baselines. Because there is no side information in the set-
ting of sequential recommendation task, the previous cold-
start methods cannot be applied here (e.g., content-based
methods, cross-domain recommenders, and evidence can-
didate selection strategies). Thus, we focus on models that
based only on user-item interactions. We compare proposed
framework with following representative and state-of-the-art
methods: (1) RNN-based methods including GRU4Rec (Hi-
dasi et al. 2015) and NARM (Li et al. 2017). (2) CNN-based
method Caser (Tang and Wang 2018). (3) Attention-based
methods including STAMP (Liu et al. 2018) and SASRec
(Kang and McAuley 2018). (4) Graph-based method SR-
GNN (Wu et al. 2019).

Reproducibility Settings. We follow the original set-
tings suggested by authors to train all baseline models and
the pre-trained embeddings, which makes sure that no side
information has been included. Each ground-truth next-click
item is paired with 127 negative items (N = 128) randomly
sampled from Ys. All models are trained with the same
data (pre-train data, all sequences in 7petatrain @and support
sets i Tieta-valid! Tmeta-test) for fair comparisons. Moreover,
we vary the K to investigate the framework performance
with different support set sizes and report /' = 3 in default.
Besides, the matching step ¢ and hidden dimensionality d is
set to 2 and 100, respectively. All hyper-parameters are cho-
sen based on model’s performances on 7peta valia- We run all
models five times with different random seeds and report the
average.

Results and Analysis

Overall Results (RQ1). The experimental results with all
baseline methods with or without Mecos are illustrated in
Table 2. Mecos significantly improves the state-of-the-art
model performance with all metrics in all datasets. That
demonstrates the effectiveness of our proposed framework.
In addition, since meta-sequences account for a considerable
proportion in the whole datasets, Mecos can also help the
sequential recommender to perform better in a normal situ-
ation (not only in cold-start problem). Besides, Mecos has
a larger improvement over original models when p in top-p
is smaller. A small value of p in the top-p recommendation
means the correct results are in the first few items on the



GRU4Rec NARM Caser STAMP SASRec SR-GNN Avg.
Dataset Metric w/o w w/o w w/o w w/o w w/o w w/o w Improv.
HR@5 0.0860 0.2018 0.0862 0.1850 0.0839 0.2029 0.0780 0.1861 0.0621 0.1431 0.1119 0.1878 121.33%
HR@10 0.1498 0.3066 0.1578 0.3002 0.1508 0.3136 0.1392 0.2969 0.1113 0.2358 0.1885 0.3085 98.61%
HR@20 0.2567 0.4544 0.2785 0.4583 0.2634 0.4500 0.2441 0.4539 0.2074 0.3751 0.3137 0.4561 70.70%
Steam NDCG@5  0.0533 0.1308 0.0531 0.1206 0.0518 0.1304 0.0486 0.1184 0.0400 0.0955 0.0701 0.1183 129.23%
NDCG@10 0.0737 0.1639 0.0760 0.1561 0.0732 0.1651 0.0681 0.1529 0.0557 0.1245 0.0947 0.1650 112.60%
NDCG@20 0.1005 0.1991 0.1062 0.1951 0.1014 0.1997 0.0944 0.1920 0.0798 0.1588 0.1261 0.1945 89.23%
MRR 0.0720 0.1412 0.0543 0.1380 0.0728 0.1456 0.0689 0.1353 0.0676 0.1138 0.0936 0.1454  95.05%
HR@5 0.0745 0.1389 0.0843 0.1479 0.0438 0.1300 0.0464 0.0888 0.0394 0.1029 0.1215 0.1619 107.41%
HR@10 0.1357 0.2431 0.1604 0.2546 0.0870 0.2285 0.0924 0.1652 0.0796 0.1858 0.1935 0.2591 91.10%
HR@20 0.2470 0.3970 0.2949 0.4158 0.1740 0.3878 0.1794 0.2995 0.1573 0.3217 0.3236 0.4138 70.65%
Electronic NDCG@5  0.0457 0.0856 0.0507 0.0931 0.0255 0.0807 0.0286 0.0546 0.0230 0.0618 0.0655 0.0975 115.98%
NDCG@10 0.0652 0.1180 0.0751 0.1277 0.0393 0.0975 0.0432 0.0817 0.0359 0.0890 0.0950 0.1324 95.92%
NDCG@20 0.0930 0.1565 0.1088 0.1682 0.0610 0.1522 0.0650 0.1122 0.0553 0.1231 0.1202 0.1678 84.53%
MRR 0.0684 0.1061 0.0699 0.1131 0.0440 0.0903 0.0515 0.0736 0.0514 0.0915 0.0921 0.1243 63.01%
HR@5 0.2863 0.3947 0.3105 0.4005 0.1006 0.3384 0.2791 0.3719 0.0862 0.3215 0.3263 0.4030 105.49%
HR@10 0.3437 0.4666 0.3860 0.4727 0.1724 0.4023 0.3373 0.4386 0.1307 0.3694 0.4081 0.4624 69.59%
HR@20 04371 0.5632 0.4832 0.5703 0.2966 0.5070 0.4252 0.5348 0.2086 0.4487 0.5133 0.5616 44.68%
Tmall NDCG@5  0.2470 0.3409 0.2747 0.3450 0.0640 0.2914 0.2409 0.3245 0.0578 0.2883 0.2548 0.3375 147.48%
NDCG@10 0.2655 0.3641 0.2957 0.3680 0.0870 0.3107 0.2597 0.3456 0.0721 0.3040 0.2921 0.3609 116.16%
NDCG@20 0.2889 0.3883 0.3201 0.3927 0.1181 0.3339 0.2817 0.3697 0.0915 0.3232 0.3264 0.3848 90.36%
MRR 0.2580 0.3477 0.2848 0.3510 0.0799 0.2996 0.2520 0.3327 0.0659 0.2984 0.2956 0.3635 123.46%

Table 2: Performance comparison of different sequential recommendation methods with (w) or without (w/o) Mecos. The best
performing methods are boldfaced and the best baseline results are indicated by underline.

Dataset Metric Mecos_R Variant_1 Variant 2 Variant3
Steam HR@10 0.1606 0.0933 0.1163 0.0716
NDCG@10  0.0805 0.0445 0.0555 0.0339
MRR 0.0551 0.0405 0.0476 0.0294
Electronic HR@10 0.1382 0.0832 0.1207 0.0770
NDCG@10  0.0665 0.0382 0.0572 0.0329
MRR 0.0658 0.0355 0.0505 0.0314
Tmall HR@10 0.3481 0.3135 0.3230 0.2921
NDCG@10  0.2915 0.2787 0.2737 0.2552
MRR 0.2891 0.2461 0.2503 0.2324

Table 3: Performance of ablation on different components.

list. As people tend to pay more attention to the items at the
top of the page, our framework can help original models to
produce more accurate and user-friendly recommendations.

Moreover, with the help of Mecos, the best models in
the three datasets are different. In Steam, Caser with Mecos
achieves the best on five of the seven metrics. Generally, SR-
GNN with Mecos and NARM with Mecos outperform others
in Electronic and Tmall, respectively. This indicates that in
different recommendation scenarios, we need to adopt dif-
ferent models to get the best effect in alleviating cold-start
problems. By incorporating existing base models, Mecos
can be utilized as a common solution for different data.

Ablation Study (RQ2). We conduct an ablation study to
investigate the contribution of each component. To remove
the influence of pre-trained embedding models, we conduct
our framework based on randomly initialized item embed-
dings (Mecos_R). And the following variants of it are tested
on all datasets, where the results are reported in Table 3:

* (Variant_1) Mecos_R without pair encoder. We replace
the sequence pair encoder by a simple mean-pooling layer
over all item embeddings in a sequence. As shown in Ta-
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ble 3, it performs much worse than Mecos_R, indicating
the importance of pair encoder.

* (Variant_2) Mecos_R without matching processor. We set
the matching steps to zero to eliminate its effects. From
the results, Mecos_R largely outperforms Variant_2. That
demonstrates the matching-processor has strong ability
in computing relevance between query and support set,
which might contribute to its ability to extract real-world
connections.

* (Variant_3) Mecos_R without pair encoder and matching
processor. Under that setting, Variant_3 generates the rec-
ommendation score for each candidate only based on the
similarity between the embedding of the query and the
support set, which are both generated by a simple mean
pooling layer. As might be expected, it has the worst per-
formance of all variants, which further verifies the impor-
tance of these key components. However, it is still better
than most baseline models, demonstrating the effect of the
pure framework without backbone models.

Study of Mecos (RQ3)

Impact of matching steps. As the matching processor con-
tributes a lot to Mecos, it is necessary to further study it. We
consider changing the matching steps ¢ to study the influ-
ence of matching between query and reference. From Figure
3, increasing the number of matching steps significantly im-
proves the model performance, which is contributed to the
effective similarity matching of the recurrent matching pro-
cessor. However, it is noteworthy that the performance of the
model starts to decrease after we continue to increase match-
ing steps. In general, the performance reaches its best when
matching steps are maintained on two or three. The reason
for that might be the overfitting due to too many steps. As the
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Figure 3: Performance w.r.t. the number of matching steps ¢.

matching processor continuously injects information from
the support set into the query representation in each match-
ing step, the embedding space can become too crowded, re-
sulting in the hubness problem. We can observe the cluster-
ing in the embedding visualization section (Figure 5).

Besides, by jointly comparing Table 2 and Figure 4, we
observe that SR-GNN with Mecos is consistently superior
to SR-GNN. Even without any matching steps, Mecos can
also help the base model in alleviating the item cold-start
problem. That again verifies the effectiveness and robustness
of the framework.
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Figure 4: Performance w.r.t. the value of few-shot size K.
The performance of SR-GNN with Mecos consistently out-
performs SR-GNN.

Impact of support set size. Support set size K represents
how many instances that the model can use for training.
To study the impact of it, we test Mecos with the strongest
base model, SR-GNN, with different settings of K. Accord-
ing to Figure 4, performance increases with the increase of
K. That is reasonable because a larger support set contains
more known interactions for the target cold-start items. In
this way, Mecos can provide a more precise characterization
of the product’s potential users. And it is noteworthy that
Mecos can also help a lot in cold-start item recommendation
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Figure 5: Embedding visulization of query sequence pairs
belonging to different candidate next-click items. Points
with the same color denote sequence pairs belonging to the
same target item.

with only one-shot training instance (K = 1), illustrating
that Mecos produces reliable results even when training in-
stances are extremely limited (e.g., one-shot learning).
However, for SR-GNN with Mecos, the growth trend of
three metrics flattens out with the increase of the support
set size K. And the performance gap between SR-GNN
with and without Mecos is narrowing, indicating that Mecos
is not suitable for items that have rich known interactions
for training. That phenomenon is most obvious in Tmall
datasets for it has the lowest proportion of cold-start items.

Embedding Visualization (RQ4)

To intuitively study the impact of our framework, we visual-
ize the query sequence pair embedding for different candi-
date next-click items by t-SNE (Hochreiter and Schmidhu-
ber 2008). For each of those items, all others can be seen as
negative data points. Thus, a reliable model should be able to
distinguish these embeddings after training. We conduct the
visualization on Steam with four different target items, each
target item has 100 query sequence pairs. And we choose
SR-GNN as the base model because it outperforms others in
Steam. From Figure 5, it is clear that the model with Mecos
better distinguishes different types of embeddings.

Conclusion

This work introduces Mecos to alleviate the item cold-start
problem in sequential recommendation, which is an im-
portant problem in a novel and challenging context. With
the pre-trained item embeddings as the input, our frame-
work could be painlessly integrated with other state-of-the-
art models. Mecos performs jointly optimization of the se-
quence pair encoder and the multi-step matching network.
And a meta-learning based gradient descent approach is em-
ployed for parameter optimization. Once trained, our frame-
work can be directly adapted to the new items updated in
the online environment. Extensive experiments conducted
on three real-world datasets illustrate the effect of Mecos
and the contribution of each component.
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