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Abstract

Event-based corporate profiling aims to assess the evolv-
ing operational status of the corresponding corporate from
its event sequence. Existing studies on corporate profiling
have partially addressed the problem via (i) case-by-case em-
pirical analysis by leveraging traditional financial methods,
or (ii) the automatic profile inference by reformulating the
problem into a supervised learning task. However, both ap-
proaches heavily rely on domain knowledge and are labor-
intensive. More importantly, the task-specific nature of both
approaches prevents the obtained corporate profiles from be-
ing applied to diversified downstream applications. To this
end, in this paper, we propose a Self-Supervised Prototype
Representation Learning (SePaL) framework for dynamic
corporate profiling. By exploiting the topological informa-
tion of an event graph and exploring self-supervised learning
techniques, SePaL can obtain unified corporate representa-
tions that are robust to event noises and can be easily fine-
tuned to benefit various down-stream applications with only
a few annotated data. Specifically, we first infer the initial
cluster distribution of noise-resistant event prototypes based
on latent representations of events. Then, we construct four
permutation-invariant self-supervision signals to guide the
representation learning of the event prototype. In terms of
applications, we exploit the learned time-evolving corporate
representations for both stock price spike prediction and cor-
porate default risk evaluation. Experimental results on two
real-world corporate event datasets demonstrate the effective-
ness of SePaL for these two applications.

Introduction
Event-based corporate profiling aims to assess the evolv-
ing operational status of the concerned corporate from its
event sequence. Instead of static corporate overview, it in-
corporates dynamic event information to capture the evolv-
ing business circumstances, which enables investors to ex-
ploit the price inefficiencies around events. Thus, event-
based corporate profiling could be beneficial to a wide range
of financial services, such as corporate budget planning, cor-
porate bond credit ratings, and event-driven asset investing.

*Hao Liu and Hui Xiong are corresponding authors.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustrative example of corporate event sequences.

Prior studies on event-based corporate profiling can be
roughly categorized into two classes: (i) Traditional finan-
cial methods, which implement case-by-case empirical anal-
ysis on substantial events (Richardson, Taylor, and Wright
2014), and (ii) Learning-based methods, which achieve au-
tomatic profile inference by formulating the problem into
various supervised learning tasks such as stock price pre-
diction (Ding et al. 2016) and corporate default risk evalu-
ation (Yeh, Wang, and Tsai 2015). However, both types of
approaches rely to a large extent on domain knowledge and
are inevitably labor-intensive. More particularly, their task-
specific nature prevents the obtained corporate profile from
being applied to various application scenarios.

Indeed, the recent emergence of prototype learning and
self-supervised learning provides great potentials for us to
improve existing literature, in terms of both dependence of
domain knowledge and generalization of profile. We detail
our research insights from the following two perspectives.

First, real-life event sequences are usually characterized
by their high degree of stochasticity and obscurity. Inspired
by event trend analysis (Raj and Musgrave 2009), we find
that the representative event subsequences can explicitly re-
flect the corporate status, but do not always strictly appear;
instead, they may be delivered in various permutations and
accompanied by noise events. For instance, in Figure 1, an
event set {1, 2, 3} is exactly repeated in different permuta-
tions of subsequences to express negative expectations on
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the operational status for corporates A and B, while corpo-
rate C breaks such permutation-invariant property with noise
event 4. Moreover, the support of these useful subsequence
patterns decreases drastically with the growing cardinality
of event subsequences. A promising solution to the above is-
sues is to utilize the concept of prototype learning (Schmidt
et al. 2001), which essentially obtains a refined representa-
tion of the original sequence by clustering single sequence
items into abstract, interpretable prototypes. It allows us to
learn a unified representation of event sequence with ex-
tracted event sets (i.e., prototypes) that are delivered in the
form of meaningful subsequences, and highlight the evolv-
ing operational status for corporate profiling. While recent
studies have successfully applied this concept into sequence
modeling (Liu et al. 2016; Zhang et al. 2020b), most of them
adopted simple regularization schemes to quantify the event
correlations, which reduces the consistency of prototype se-
lections from long event sequences.

Second, we notice that in lack of domain-expert guid-
ance, the majority of non-landmark corporate events only
reveal immaterial, neutral information w.r.t. corporate sit-
uation. According to the large-scale data analysis through
Wind Data Service1, the landmark events only account for
less than 8% of all event data, which results in the absence
of annotated data for effective supervised training. We there-
fore require a self-supervised learning paradigm to extract
high-quality training signals from event sequences for dy-
namic corporate profiling.

Along these lines, in this paper, we propose a Self-
Supervised Prototype Representation Learning (SePaL)
framework for event-based corporate profiling. Our major
contributions are summarized as follows:
• We first introduce the temporal skeletonization tech-

nique to embed event co-occurrence patterns into a graph
structure. To reduce the stochasticity and obscurity of
event sequences, we develop a graph-based co-occurrence
smoothing operation to learn the event representations,
which are further used to infer the initial cluster distri-
bution of a set of noise-resistant event prototypes.

• We further construct four permutation-invariant self-
supervision signals to guide the event prototype repre-
sentation learning, in order to maintain the consistency
of prototype selections.

• We finally utilize the learned prototypes to generate the
time-evolving corporate representations and exploit them
for various applications, including stock price spike pre-
diction and corporate default risk evaluation. The corre-
sponding experimental results demonstrate the effective-
ness of proposed SePaL.

Related Work
Event-based Corporate Profiling. Unlike traditional pro-
filing tasks such as user profiling (Wang et al. 2019; Gu
et al. 2020), event-based corporate profiling receives little
attention from prior studies in the machine learning field.
Moreover, the majority of them put emphasis on profiling

1https://www.wind.com.cn/en/data.html

corporates for specific downstream tasks (Ding et al. 2016;
Li et al. 2020b; Xu et al. 2020; Lin et al. 2017). For in-
stance, Li et al. (2020b) proposed an event-driven sequen-
tial neural network to aggregate multi-source information of
market fundamentals and news articles for stock price pre-
diction. However, we argue that the tight coupling with con-
crete tasks narrows down the applicable values of the learned
event representations in dynamic corporate profiling.
Prototype Learning. The intuition of prototype learning
is to cluster single items into abstract, interpretable proto-
types for better pattern recognition (Liu et al. 2016; Zhang
et al. 2020b). As an unsupervised learning exemplar, tem-
poral skeletonization (Liu et al. 2016) proposes to form a
series of abstract prototypes that cluster and represent the
sequence items with similar co-occurrence patterns via an
undirected sequential graph. Its major advantages include
proactively reducing the sequence cardinality with extracted
prototypes, and uncovering the significant high-hierarchy
structures inside sequences. However, due to its low com-
plexity of graph learning, such method has difficulty in fast
convergence when dealing with long, noisy event sequences.
Self-Supervised Representation Learning. As an impor-
tant subarea of unsupervised learning, self-supervised rep-
resentation learning intends to learn the useful feature em-
beddings through self-supervisory signals that are directly
constructed from input data. Such learning mechanism has
been successfully applied in many areas, such as sequence
modeling (Liu et al. 2016), translation embedding methods
(Zhang et al. 2017), job title benchmarking (Zhang et al.
2019) and language modeling (Zhang et al. 2020a). To the
best of our knowledge, this is the first study that adopts the
self-supervised representation learning for event-based cor-
porate profiling.

Preliminaries
Suppose there are M event sequences S = {S1, · · · , SM}
that entail a collection of N distinct corporate events
E[1:N ] = {e1, · · · , eN}. We denote the m-th event sequence
as Sm = {e1m, · · · , etmm }, where tm is the length of the m-th
event sequence, and m ∈ {1, · · · ,M}.

Definition 1 Event Prototype (EP) is defined as an event set
that clusters individual events with similar co-occurrence.
The purpose of EP is to form the meaningful event subse-
quences in different permutations, which can represent the
evolving operational states of corporates, e.g., the event set
{1, 2, 3} in Figure 1 is considered as an EP exemplar that
appears in different permutations of subsequences, deliver-
ing negative expectation on the corporate operational status.

Problem Statement
This paper studies the problem of profiling companies with
corporate event data. Specifically, we formulate the prob-
lem as a task of learning dynamic representation of corpo-
rate profile from event sequences. Since EP can encapsulate
the hierarchical patterns of event sequences that reflect the
corporates’ real status, this problem is therefore decomposed
to (i) group individual events into multiple useful EPs, and
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Figure 2: Framework of SePaL.

(ii) preserve the EP patterns in building meaningful event
subsequences for dynamic corporate profiling.

Note that, throughout the paper, we use boldface capital
and lowercase letters (e.g., W and e) to denote matrices and
vectors, and all Ws and bs are regarded as the learnable
weight matrices and bias terms, respectively.

Framework Overview
Figure 2 presents an overview of SePaL and its applications
for financial services. It includes three major parts: (i) ini-
tializing EPs based on event graph learning, (ii) optimizing
EP representation via self-supervised learning, and (iii) val-
idating the learned time-evolving corporate representations
in two representative financial applications.

In the first part, we propose the Event prototype ini-
tialization module, in which the Event graph construction
block first embeds raw event sequences into an event graph
through a temporal skeletonization technique, and the Event
representation learning applies a graph-based smoothing
operation to initialize the low-dimensional representations
of each event. Then, the Prototype initialization block in-
corporates a clustering approach to derive the initial cluster
distribution of EPs based on event representations.

In the second part, we develop the Self-supervised pro-
totype representation learning module, where an N -round
Iterative prototype assignment block is introduced to val-
idate the cluster distribution of EPs. In each round, the
Permutation-aware self-supervision block applies four types
of neural units, i.e., Intra-cluster unit, Inter-cluster unit,
Contrastive unit, and Unassigned unit, to produce self-
supervised permutation-invariant signals for current EPs.
Representations of EPs are finalized in the Prototype rep-
resentation learning block, and we use three separate self-
supervision losses to regularize the end-to-end training.

In the third part, we incorporate the learned EPs to refine
the original event sequence for dynamic corporate profiling,
which can be fine-tuned using the existing temporal model
for various applications, such as stock price spike prediction
and corporate default risk evaluation.

Event Prototype Initialization
We first present the event prototype initialization module to
derive the initial distribution of EPs.

Event Graph Construction
Inspired by the temporal skeletonization (Liu et al. 2016),
we first create an encoding scheme of event that corresponds
to EP label: ep = F(e) ∈ {1, · · · , K̃} such that the sequen-
tial variations of events is minimized for all given sequences:

min
ep∈{1,···,K̃}

1

M

M∑
m=1

∑
1≤i,j≤tm
|i−j|≤δ

(F(eim)−F(ejm))2. (1)

Here δ denotes a pre-defined range of local sequence varia-
tions. The cardinality K̃ of generated EPs is typically much
smaller than that of any original sequence. Furthermore, we
assume that given an event sequence Sm ∈ S , a pair of
events sim and sjm that are within a close interval are usu-
ally correlated with each other, which also applies to their
encoded form F(sim) and F(sjm). Finding the optimal F(·)
w.r.t. objective (1) belongs to an integer programming prob-
lem, which has shown to be NP-hard (Liu et al. 2016).
We then construct an event graph to relax the integer con-
straint to real numbers, and encode the closeness of events
ei, ej ∈ E[1:N ] into graph structure:

Aij =
1

M

∑
1≤m≤M
ei,ej∈Sm

Φλ(|l(ei, Sm)− l(ej , Sm)|), (2)

where l(e, S) represents the exact location of event e in
the sequence S. The range |l(ei, Sm)− l(ej , Sm)| of lo-
cal sequence is smaller than the pre-defined δ. Here, we
use Φλ(x) = exp(−λx), a non-increasing function, to
quantify the averaged closeness of event co-occurrences re-
flected by each element Aij in the graph adjacency ma-
trix A ∈ RN×N . However, this simple exponential co-
occurrence function still suffers from the scarcity problem
of event co-occurrences, such that noise events can hardly
be distinguished from useful ones.
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Event Representation Learning
To further reduce the stochasticity and obscurity of event se-
quences, we develop a graph-based co-occurrence smooth-
ing operation to substantiate the event correlations with its
neighboring features. Specifically, we apply a multi-scale
graph neural network (e.g., GAT (Veličković et al. 2017))
to convolve over the event graph for event encoding:

êi = Softmax(φL(· · ·φ2(φ1(e1i ))),

el+1
i = φl(eli), l ∈ [1, L],

φl(eli) = Wl
1

H

||
h=1

ReLU(
∑
ej∈Ni α

h
ijW

l
2e
l
j) + bl1,

αhij =
exp(ReLU(W[eli||e

l
j ]))∑

eq∈Ni
exp(ReLU(W[eli||elq ]))

,

(3)

in which || is the concatenate operator. H is the number
of attention heads in GAT. eq ∈ Ni represents the 1-hop
neighbours of node event ei. Wl

1 ∈ Rd×Hd, Wl
2 ∈ Rd×d,

W ∈ R2d, eli, êi ∈ Rd×1, where d is the dimension of event
embeddings, and l ∈ [1, L]. e1i , êi denote the randomly-
initialized and the learned graph representations of event ei,
respectively. Note that eli represents the l-th scale represen-
tation of event ei. The time complexity of multi-scale GAT
is O(LHNd2 + LHN2d).
GR Loss. To ensure that the learned event embeddings can
capture the original event co-occurrence patterns stored in
event graph adjacency matrix, we introduce the graph re-
construction loss to regularize the representations of events:

LGR = − 1

N2

N∑
i=1

N∑
j=1

(ê>i êj −Aij). (4)

Prototype Initialization
The concept of prototype learning has provided the inherent
interpretability to highlight prototype patterns from long se-
quences (Zhang et al. 2020b). We therefore leverage the pre-
learned event representations to derive the EPs, with the pur-
pose of reflecting the corresponding corporate status. Specif-
ically, we form the EPs ep[1:N ] via the mean shift algorithm
MS(·) (Cheng 1995) on events E[1:N ], parametrized by win-
dow radius γ and kennel function κ:

ep[1:N ] ∼MS(E[1:N ]; γ, κ), (5)

in which epi = F(ei) denotes the EP label which the event
ei is assigned to. Until now, we have established the initial
cluster distribution of EP pγ,κ(ep[1:N ]; E[1:N ]) based on Eq.
(5), as shown in Figure 2(a).

Self-Supervised Prototype Representation
Learning

Then, we develop the self-supervised prototype representa-
tion learning module to learn the EP embeddings.

Iterative Prototype Assignment
During the early stage of training, the above event represen-
tations barely reflect the actual eventive semantics, ending
up with the biased prototype distribution pγ,κ. Motivated by

(Pakman et al. 2018), we develop an iterative prototype as-
signment process to maintain the consistency of prototype
selection, via examining the permutation-invariant property
possessed by desired EPs. Specifically, we first apply chain
rule to reformulate pγ,κ in the log conditional probability
of EP assignments onto events en ∈ E[1:N ], where n ∈
{1, · · · , N}:

pγ,κ(ep[1:N ]; E[1:N ]) =
N∑
n=2

log p(epn; en, ep[1:n−1]). (6)

Note that the first event e1 naturally creates the first EP ep1,
and each of the factor in Eq. (6) can be represented by a
generic factor:

p(epn; en, ep[1:n−1]) =
p(E[1:n], ep[1:n])∑K+1

ep′n=1 p(E[1:n], ep′[1:n])
, (7)

where K denotes the quantity of existing distinct EPs for
events E[1:n−1]. The values of Eq. (7) decide on the event en
of joining any of the K EPs, or forming a new EP cluster.
Since the above EP configuration Eq. (6) is difficult to com-
pute directly, we propose a neural representation of Eq. (7)
to estimate these factors.

Permutation-Aware Self-Supervision
Critically, the neural representations of Eq. (7) should re-
spect the symmetric structures inside the joint distribution
of these EP assignments p(E[1:n], ep[1:n]). That is, we aim
to identify the permutation-invariant properties of generated
EPs from: (i) the within-EP events, (ii) the between-EP clus-
ters, (iii) the within-EP events in consecutive assignment
rounds, and (iv) the unassigned events. To construct such
permutation-equivariant representations ep[1:n] of EPs, we
design four neural units to produce self-supervision signals:
• Intra-cluster unit is proposed to maintain the invariant

permutations of Eq. (7) under the events E[1:n] inside a
specific EP. For the k-th EP sampled from K existing
ones, we define the intra-cluster unit as:

F(k)
n =

∑
i:epi=k

f(êi). (8)

• Inter-cluster unit is proposed to maintain the invariant
permutations of Eq. (7) under different EPs in the same
round. For each of the between-EP invariant H(k)

n , we de-
sign the inter-cluster unit as:

H(k)
n =

K∑
k=1

h(F(k)
n ). (9)

• Contrastive unit is proposed to maintain the invariant
permutations of Eq. (7) under the same EP in the con-
secutive assignment rounds. In terms of the contrastive
invariant C(k)

n in the n-th assignment round, we design
the contrastive unit as:

C(k)
n =

K∑
k=1

c(F(k)
n ). (10)
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• Unassigned unit is proposed to maintain the invariant
permutations of Eq. (7) under N − n unassigned events.
In terms of the unassigned invariants Gn, we design the
unassigned unit as:

Gn =
N∑

i=n+1

g(êi). (11)

Note that f(·), h(·), c(·) and g(·) provide fixed-dimensional,
permutation-invariant representations of the assigned and
non-assigned events, respectively. Self-supervised signals
generated by these forms yield arbitrarily accurate ap-
proximations for (partially) symmetric functions, which
demonstrates at least two benefits: (i) the end-to-end self-
supervision protocol allows assignment decision to adap-
tively improve the representation learning of event, and (ii)
the permutation-invariant units justify the validity of cluster
distribution pγ,κ, such that the generated EPs will become
more resistant to long-sequence stochastic noise. Note that
the time complexity of all neural nets is O(d2).

Prototype Representation Learning
Once the cluster distribution of EPs is anchored, we final-
ize the representation vectors for all K̃ EPs, as illustrated in
Figure 2(b). Here, to downscale the parameter space, for the
k-th EP representation ep(k), where k ∈ {1, · · · , K̃}, we
simply average the embeddings of its included events as:

ep(k) =
1

|ep(k)|
∑

i:epi=k

êi. (12)

KL Loss. After assigning n − 1 corporate events to K ex-
isting EPs, where K < K̃, the possibility of allocating the
n-th event en to each of K + 1 possible EPs in Eq. (7) is
approximated by:

qθ(epn = k; en, ep[1:n−1]) =
exp(u(R

(k)
n ))∑K+1

k′=1 exp(u(R
(k)
n ))

. (13)

In above, R(k)
n = H

(k)
n ||C(k)

n ||Gn, where || is the concate-
nate operator, k ∈ {1, · · · ,K + 1}. The single-layer linear
mapping u(·) projects each pair of (H

(k)
n ,C

(k)
n ,Gn) into

a real-number logit. Note that a new EP is formed with
F

(k)
n = f(ên) when the possibility of EP candidate to be

assigned in Eq. (13) peaks at k = K + 1. To minimize the
distribution divergence between the initial distribution pγ,κ
and approximated one qθ of EPs, we define the expected KL
divergence loss as:

LKL = −Epγ,κ [
N∑
n=2

log qθ(epn; en, ep[1:n−1])]. (14)

PC Loss. We then introduce the probabilistic contrastive
loss (Oord, Li, and Vinyals 2018) to maximize a lower
bound on mutual information shared by the same EP in con-
secutive EP-assignment rounds:

LPC = −Epγ,κ [
K̃∑
k=1

log
I(C

(k)
n−1,F

(k)
n )

K̃∑
k1=1

K̃∑
k2=1

I(C
(k1)
n−1,F

(k2)
n )

], (15)

Description (corporate events) Shanghai Shenzhen
# of events 104,072 161,246
# of corporates 262 287

Description (downstream applications) Stock price Corporate bond
spike events default events

# of positive cases 6,060 1,465
# of total cases 153,480 18,415
# of corporates 549 549

Table 1: Statistics of datasets.

in which mutual information between two EPs is calculated
as I(x,y) = exp(xW1y+b1). As can be seen, the minimal
value for LPC is negatively proportional to I(C

(k1)
n−1,F

(k2)
n ),

such that we can maximize the mutual information between
same EPs in the consecutive assignment rounds.

Model Training
Overall, we define the end-to-end loss function as the
weighted aggregation of the above self-supervised losses
(i.e., LGR, LKL, and LPC) with hyper-parameters α, β:

L = LPC + αLKL + βLGR. (16)

Applications
In order to evaluate the effectiveness of the learned EPs,
we re-encode the original event sequence by replacing each
event with its assigned EP label, and obtain the dynamic cor-
porate representations for diverse applications.

Definition 2 Stock price spike prediction. Given an EP se-
quence in an openly traded company, the objective is to pre-
dict the existence of its day-frequent stock price spike in the
next trading day:

fPS(cpt)→ {0, 1}t, (17)

where the label is set to be 1 if the percentage difference
of daily stock price in two consecutive days is greater than
10% (|pt−1 − pt| /pt−1 ≥ 0.1) and 0 otherwise.

Definition 3 Corporate default risk evaluation. Given an
EP sequence in a publicly listed firm, the objective is to fore-
cast the existence of its next corporate bond default event:

fCD(cpt)→ {0, 1}t, (18)

in which the label is set to be 1 if the corporate bond default
event happens on the t-th day and 0 otherwise.

As shown in Figure 2(c), the corporate representation cpt
on the t-th day is represented by the most recent ν EPs. Fur-
thermore, we introduce two separate temporal models (e.g.,
GRU (Chung et al. 2014)) as predictive functions fPS(·),
fCD(·) to fine-tune cpt for the above applications.

Experiments
Experimental Setup
Data Description. We collected three real-world datasets
for corporate events, stock price spike events, and corporate
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bond default events from Wind-Financial Terminal2. They
all correspond to 549 publicly traded companies in Shanghai
and Shenzhen Stock Exchanges. The first dataset is ranged
from May 1, 2013, to June 1, 2020, while the rest are both
ranged from May 1, 2017, to June 1, 2020. Since the number
of positive cases for real corporate bond default event is very
limited (≤ 170), according to (Altman 1998), we expand the
original bond default event dataset with the monthly corpo-
rate default evaluation (i.e., ‘improved’, ‘unchanged’, ‘dete-
riorated’) provided by credit rating agency3, where we treat
the ‘improved’ and ‘unchanged’ as negative cases, and the
‘deteriorated’ as positive ones. We leverage LDA (Blei, Ng,
and Jordan 2003) to extract event-based keywords, and cate-
gorize raw events into 176 distinct types of events as E[1:N ],
where N = 176. We chronologically order the groundtruth
data of stock price spike and corporate bond default events
for performance evaluation, where we take the first 60% as
the training set, the following 20% for validation, and the
rest as the test set. The statistics of the datasets are summa-
rized in Table 1.
Implementation Details. Our model4 and all ten baselines
are implemented with Pytorch, and optimized by the Adam
algorithm (Kingma and Ba 2015). All models are trained
by a NVIDIA GeForce RTX 2080 Ti. We set the learn-
ing rate to 0.0001, the batch size to 32, the dimension d
of all representation vectors to 600, the decay weight λ of
non-increasing function to 0.9, the scale L of graph con-
volutional operation to 5, the length of time window ν in
EP sequence to 10, the number H of attention heads in
GAT to 4, and hyper-parameters α, β to 0.5, 0.3. The ker-
nel function κ and window radius γ of mean shift func-
tion MS(·) are set to be a Gaussian kernel and 2, re-
spectively. f(·), h(·), c(·) and g(·) are four separate 3-
layer MLPs with Parametric ReLUs, and the number of
neurons in each layer is [600, 400, 200], [200, 200, 200],
[200, 200, 200], [600, 400, 200], respectively. The range of
local sequence variations δ is set to 23, i.e., the average
number of events between two consecutive landmarks. Each
temporal model consists of a single layer of GRU cell with
tanh activation function. For fair comparison, we fine-tune
the model parameters and set the number of training epochs
to be 400 for all baselines.
Evaluation Metrics. We adopt F1 score, Precision, and Re-
call, three widely used metrics for evaluation.
Baselines. We compare our full approach with two pro-
totype learning methods, three unsupervised representation
learning methods, three rare event prediction methods, and
two variants of SePaL:
• TSM (Liu et al. 2016) exploits the sequential structures

of original sequences by encoding event graph topology
into prototypes.

• TapNet (Zhang et al. 2020b) proposes a random dimen-
sion permutation method to form the attentional proto-
types. In the experiments, we use the event sequence as
input, and train separate models for two different tasks.
2https://www.wind.com.cn/en/wft.html
3https://www.chinaratings.com.cn/CreditRating
4Source code: https://github.com/yuanzx33033/SePaL

Algorithm
Stock price spike Corporate default

prediction risk evaluation
F1 P. R. F1 P. R.

TSM 0.6034 0.5778 0.6314 0.6473 0.6519 0.6428
TapNet 0.5745 0.5249 0.6345 0.6126 0.5899 0.6371

Sqn2vec 0.5954 0.5771 0.6149 0.5472 0.5606 0.5344
Event2vec 0.4603 0.5065 0.4218 0.5017 0.4438 0.5770
FHVAE 0.5262 0.4938 0.5632 0.5745 0.5118 0.6547
AEDM 0.4037 0.4406 0.3725 0.4473 0.4920 0.4100

SSRDVis 0.5026 0.4533 0.5639 0.5527 0.5309 0.5764
VAE-sim 0.5341 0.4966 0.5777 0.5941 0.5562 0.6375
SePaL-G 0.6460 0.6125 0.6834 0.7051 0.6837 0.7279
SePaL-P 0.6242 0.5802 0.6864 0.6749 0.6629 0.6873
SePaL 0.6894 0.6535 0.7295 0.7365 0.7026 0.7738

Table 2: Overall performance.

• Sqn2vec (Nguyen et al. 2018) encodes the sequential pat-
terns into low-dimensional vectors, and applies a gap con-
straint to obtain discriminative patterns. In the experi-
ments, corporate event sequence is treated as model input.

• Event2vec (Hong et al. 2017) develops a sample genera-
tor to conduct probabilistic walks on event-based graphs
for event representations. In the experiments, we adopt the
identical operations in Sqn2vec.

• FHVAE (Hsu, Zhang, and Glass 2017) presents an unsu-
pervised variational autoencoder that learns disentangled
and interpretable representations from sequences. In the
experiments, we use the event graph as input and apply
the same representations for both applications.

• AEDM (Arora, Sun, and Wang 2019) introduces an
embedding-based method to perform classification with
data imbalanced over different classes using triple header
hinge loss. In the experiments, we adopt the identical op-
erations in FHVAE.

• SSRDVis (Li et al. 2020a) proposes a hybrid sequential
pattern representation learning paradigm to summarize
the common sequential patterns and detect the abnormal
behaviors. In the experiments, we feed the original cor-
porate event sequence as input, and leverage the sequence
location of detected outliers for two applications.

• VAE-sim (Hamaguchi, Sakurada, and Nakamura 2019)
learns disentangled representations from only low-cost
negative samples using different variant and invariant fac-
tors. In the experiments, we generate the event sequences
as input for both positive and negative labels in two appli-
cation tasks.

• SePaL-G is a variant of SePaL that directly applies the
eigenvectors of event graph as event embeddings, without
using graph-based co-occurrence smoothing operation.

• SePaL-P is a variant of SePaL without applying self-
supervised prototype representation learning module.

Overall Performance
Table 2 presents the overall performance comparisons of our
model SePaL and all baselines. As can be seen, SePaL, to-
gether with its variants, outperforms all other baselines on
both datasets using all metrics. Specifically, SePaL achieves
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Figure 3: Robustness check.

Figure 4: Visualizations of event prototypes.

(8.60%, 7.57%, 9.81%) and (8.92%, 5.07%, 13.10%) im-
provements beyond the optimal prototype baseline, TSM
on both datasets in terms of three metrics respectively. In
addition, both prototype learning methods perform rela-
tively better than unsupervised representation learning mod-
els and rare event prediction methods, which indicates
that EPs may achieve better understandings in discover-
ing event-based sequential patterns. Finally, our full ap-
proach SePaL outperforms all the baselines by (14.24%,
12.72%, 15.45%, 15.08%, 13.42%, 16.53%) in average on
two datasets. Indeed, the introduction of graph-based co-
occurrence smoothing and self-supervised prototype repre-
sentation learning does generate meaningful EPs, imposing
positive influences on dynamic corporate profiling.

Robustness Study
Figure 3 demonstrates the performances of SePaL and base-
lines on the firms that own different event sequence length.
It is notable that fewer event sequence length leads to better
performances for all models, possibly because the sequen-
tial pattern increases with the dwindling cardinality. Com-
pared with all baselines, SePaL is more stable and achieves
excellent performance with longer event sequences. More
concretely, with the decrease in event sequence length, the
F1 performances of SePaL can be improved from 0.6652 to
0.7034 in stock price spike prediction, and from 0.7123 to
0.7637 in corporate default risk evaluation, which indicates
its effectiveness in extracting meaningful EPs.

EP Corporate Event SizeKeywords@top-1 Keywords@top-2
ep(1) Default Risk Event Operational Abnormality 31

ep(2) Equity Incentive Disclosure of Performance 16

ep(3) Key Project Credibility Evaluation 16

ep(4) Disclosure of Performance Shareholder Meeting 20

ep(5) Dividends Seasoned Issuance 20

ep(6) Operating Event Regulatory Compliance 9

ep(7) Fiscal Policy Red Warning 16

ep(8) Disclosure of Performance Amendment of
10

Corporate Articles
ep(9) Red Warning Financial Affair 12

ep(10) Shareholder Meeting Operating Activity 9

ep(11) Asset Trading Amendment of
12

Corporate Articles

ep(12)
Amendment of Equity Incentive 5

Corporate Articles

Table 3: The semantic annotation of EPs.

Path ID EP Path Stock Price Size
Spike Exists? (Positive / Negative)

P1 ep(4) → ep(10) → ep(8)

Yes
424 / 96

P2 ep(1) → ep(4) → ep(7) → ep(8) 267 / 65
P3 ep(8) → ep(9) 222 / 58
P4 ep(5) → ep(7) → ep(2)

No

2153 / 39

P5
ep(1) → ep(8) → ep(12) →

3870 / 45
ep(1) → ep(8)

P6 ep(1) → ep(9) → ep(4) 1318 / 15

Table 4: Sequential EP paths in stock price spike prediction.

Qualitative Study
Visualization of EP embeddings. In Figure 4, we use the
t-SNE algorithm (Maaten and Hinton 2008) to visualize the
EP embeddings learned by SePaL and TSM in the form of
a two-dimensional map, respectively. Compared to TSM,
SePaL can clearly demonstrate the distinctive characteris-
tics possessed by all events, instead of aggregating the ma-
jority of them into one gigantic cluster. We also elaborate on
the dominant semantic descriptions for each detected EP, as
shown in Table 3. Note that the semantic information here
is only used to summarize each EP to better interpret our re-
sults, but not for the purpose of grouping the events. We also
find some interesting observations on the extracted EPs: (i)
The nearby EPs tend to be conceptually relevant, e.g., ep(1)

and ep(5), where the dividend policy of a corporate is closely
related to its default risk event (Sun, Wang, and Zhang
2018); (ii) EPs with similar keywords may not be clustered
in the same group. For instance, ep(8), ep(11), ep(12) are all
marked with “Amendment of Corporate Articles”, but they
fall into three separate ESs. This could be explained by the
fact that these three EPs are respectively distributed close to
ep(6), ep(1), and ep(9), implying that they are characterized
by different levels of warnings on corporate performance.
Nevertheless, they are still distributed close to each other,
mainly because of the same event content, i.e., “Amendment
of Corporate Articles”. That is to say, EPs exploit more fine-
grained sequential correlations via SePaL, while still could
be partially consistent with content-based clusters as well.
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Analysis of EP Paths. After transforming the original event
sequences into EP sequences via SePaL, we obtain corre-
sponding EP paths to uncover the operational status of cor-
porate. For better interpretation, we focus on frequently-
appeared EP paths in the corporates with relatively more
landmark events (i.e., stock price spike events). Specifically,
given a landmark event with its most recent ν EPs, we
merge all consecutive and identical EPs to generate the EP
path. Some interesting findings could be observed from the
frequently-appeared EP paths in Table 4. For instance, the
EP path P1 passes through three EPs, as ep(4) → ep(10) →
ep(8). These corporates may release the latest status of cor-
porate performance, then hold the shareholder meeting for
detailed clarification and future planning. This may lead to
the occurrence of stock price spike, which is triggered by in-
vestors’ prompt reactions towards significant variations in
enterprise status. All these paths can be grouped into the
‘Yes’ class, and used to discover the potential risks of the
corporates. Moreover, the remaining three paths, P4, P5, P6,
are labeled as ‘No’ class, indicating that these EP sequences
do not provide salient patterns for stock spikes.

Conclusion
In this paper, we proposed a self-supervised prototype repre-
sentation learning (SePaL) framework for event-based cor-
porate profiling. Specifically, we first generated the cluster
distribution of event prototypes based on an event graph.
Then, we proposed four permutation-invariant supervision
signals to learn the noise-resistance prototype embeddings.
After that, three self-supervision losses are introduced to
guide the entire network update. Later, we incorporated
the re-encoded prototype sequence as dynamic corporate
profile, which can be fine-tuned with the temporal model
for downstream applications. Finally, extensive experiments
demonstrated that our SePaL can identify the evolving cor-
porate status to benefit various financial applications.
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