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Abstract

Network modeling aims to learn the latent representations
of nodes such that the representations preserve both network
structures and node attribute information. This problem is fun-
damental due to its prevalence in numerous domains. However,
existing approaches either target the static networks or strug-
gle to capture the complicated temporal dependency, while
most real-world networks evolve over time and the success
of network modeling hinges on the understanding of how
entities are temporally connected. In this paper, we present
TRRN, a transformer-style relational reasoning network with
dynamic memory updating, to deal with the above challenges.
TRRN employs multi-head self-attention to reason over a set
of memories, which provides a multitude of shortcut paths
for information to flow from past observations to the current
latent representations. By utilizing the policy networks aug-
mented with differentiable binary routers, TRRN estimates the
possibility of each memory being activated and dynamically
updates the memories at the time steps when they are most
relevant. We evaluate TRRN with the tasks of node classifica-
tion and link prediction on four real temporal network datasets.
Experimental results demonstrate the consistent performance
gains for TRRN over the leading competitors.

Introduction

Network modeling is a fundamental problem due to its preva-
lence in numerous domains, such as knowledge base, social
media and bioinformatics (Wu et al. 2020). Network model-
ing aims to learn the latent representations of nodes, which
preserve both the structure properties and the node attribute
information. Such representations benefit various applica-
tions, such as node classification, link prediction and commu-
nity detection (Zhang, Cui, and Zhu 2018; Zhou et al. 2018),
etc. Over the years, numerous efforts are made to improve the
performance of network modeling, such as DeepWalk (Per-
0zzi, Al-Rfou, and Skiena 2014), GCN (Kipf and Welling
2017), GAT (Velickovi¢ et al. 2018), GraphSAGE (Velickovié
et al. 2018), which model the static networks.

However, in many real-world applications, networks are
often dynamic and may evolve over time. To model tempo-
ral network, a single (static) observation is not sufficient to
learn the latent representations, such as using GNNs (Figure
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(c) Spatio-temporal NNs (d) The proposed TRRN

Figure 1: Four architectures for temporal network modeling.
{f;} represent different factors that influence node behaviors,
such as network topology, attribute information of nodes
and edges, etc. e is the latent representation of node to be
learned. {my, } are memories. Circles are aggregation layers.
Trapeziums are gate layers. The hexagon with letter p inside
is the policy network.

1(a)). It makes more sense to reason over the history of past
observations such that sufficient information can be extracted
for current time step decision-making. For this problem, an
intuitive choice is to apply the gated RNNs (Hochreiter and
Schmidhuber 1997) (Figure 1(b)) which maintain the infor-
mation from past observations via the recurrent state vectors.
However, it would ignore the network structure properties.
Some recent progresses have been made on jointly modeling
the spatial and temporal contextual information (He et al.
2019; Xu et al. 2019a,b) (Figure 1(c)). Despite their success,
their capacity for learning complicated temporal dependency
is limited. To successfully model temporal network, it is de-
sirable to understand how entities are connected temporally.
For this problem, we argue that the relational reasoning abil-
ity plays an essential role (Battaglia et al. 2018), which helps
comprise a capacity to compare and contrast information
observed at different time steps.

In this work, we focus on the problem of temporal net-



work modeling. Given a sequence of network snapshots for
the same set of nodes, where each node is coupled with at-
tributes and has a unique class label over time. Both network
topology and node attributes evolve over time. The task is to
learn the latent representation for each node that considers
temporal patterns of both topological structures and node at-
tributes. We evaluate the learned representations on different
downstream tasks, such as node classification and link pre-
diction. The problem is challenging mainly for three reasons.
First, capturing the complicated temporal dependency is hard.
For temporal networks, the evolution distributes in different
time steps. How to effectively compartmentalize and relate
the information of different time steps is extremely interest-
ing but at the same time quite challenging. Second, learning
contextualized representations of nodes is also challenging.
Node behaviors are often determined by various factors as
denoted by {f;} in Figure 1, such as node attributes and net-
work topology structures, etc. Different factors at different
time periods influence node representations diversely. How
to embed them into node representations and differentiate
their influence on node representations remains a challenging
problem. Third, we highlight the sparse dynamics in the evo-
lution of temporal networks. Dynamic systems in real-world
are often characterized by independent and sparsely interact-
ing dynamic processes (Goyal et al. 2019). It is desirable and
challenging to capture the most relevant ones at time steps
and update the dynamic processes sparsely (Bengio 2017).

In an effort to better model temporal networks, we propose
TRRN, a transformer-style relational reasoning network with
dynamic memory updating. Specifically, similar to memory-
augmented architectures (Santoro et al. 2016, 2018), TRRN,
as illustrated in Figure 1(d), adopts a set of memories to
enhance temporal capacity. It applies Transformer-style self-
attention to allow for interactions between memories over
time, which helps compartmentalize and relate information
of different time steps explicitly. To learn the contextualized
representations of nodes, TRRN feeds different factors along
with the updated memories into a gated recurrent network,
from which the generated representations is able to consider
the variety of contexts (factors) that the node involves. The
influence of different factors are reflected in the attention
matrix. Moreover, to model the sparse dynamics of networks,
TRRN takes inspiration from conditional computation (Ben-
gio, Léonard, and Courville 2013) and employs the policy
networks to selectively activate and update the most relevant
memories at each time step, on a per node basis. However,
as the decisions determining which memories need to be
activated are non-differentiable, we introduce differentiable
binary routers based upon the Gumbel-softmax reparameteri-
zation (Jang, Gu, and Poole 2017) to train policy networks.

We validate the proposed model on node classification and
link prediction tasks, using four real-world temporal network
datasets. Experimental results show that TRRN outperforms
the leading competitors by a large margin. We demonstrate
the benefits of dynamically updating memories through an
ablation study and visualize the activation decision vectors
together with the attention weights to provide interpretability
of results. We summarize our contributions as follows.

* We analyze major challenges for temporal network model-
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Method Relational Relational Model Different Sparse
Bias  Reasoning Interp. Factors Dynamics
DeepWalk S. X X X X
GAT S. X X * X
GCN S. X X * X
GraphSAGE S. X X * X
node2vec S. X X X X
LSTM T. X X X X
GRU T. X X X X
DynGEM SA+T. X X X X
DynAERNN. S.+T. X X X X
DANE S.+T. X X * X
DySAT S+T. * * * X
STAR S+T. * * * X
Our Work S+T. v v v v

Table 1: A comparison of published approaches for tempo-
ral network modeling. S. and T. represent spatial relational
bias and temporal relational bias respectively. Model Interp
denotes model interpretability. v/, %, X represent true, not
exactly true and false, respectively.

ing, including the complicated temporal dependency, the
contextualized representations of nodes and the sparse dy-
namics of network evolution, which encourages us to find
the complementarity between memory-augmented archi-
tectures and conditional computation.

* We extend the strength of multi-head self-attention via
policy networks, proposing TRRN, in which complicated
temporal dependency is learned, nodes in temporal net-
works can be contextualized flexibly and sparse dynamics
of network evolution is captured.

* We summarize the existing network modeling approaches
in a unified manner and conduct extensive experiments
on four real datasets. The results show that TRRN outper-
forms the leading competitors in accuracy, and provides
better interpretability as well.

Problem Definition

A temporal network, denoted by G = (G1, G2, ---,G7T),isa
collection of snapshots of a network at different time steps.
Gt = (V, A!, X') is the snapshot at time step ¢. V is the
set of nodes that is fixed for all time steps. Each node has
a consistent label across 7" time steps. A? € RNY*Y is the
adjacency matrix. X! € RV*? is the node attribute matrix.
Unlike some previous methods that do not consider node
attributes and assume links can only be added over time, we
allow for node attributes and support the removal of links
over time. The goal of temporal network modeling is to learn
the latent representation e, for every node v € V at time
step t € {1,2,---,T}, such that e, preserves both network
structures and node attributes related to node v.

Related Work

A comparison of the leading approaches that can be used to
model temporal network is illustrated in Table 1.

Static Network Modeling Network modeling has drawn
extensive research attention in recent years (Perozzi, Al-Rfou,



and Skiena 2014; Grover and Leskovec 2016; Wang, Cui, and
Zhu 2016; Kipf and Welling 2017; Wang et al. 2017; Hamil-
ton, Ying, and Leskovec 2017; Veli¢kovic et al. 2018). For
example, a biased random walk is utilized to learn richer
node representations by exploring diverse local information
(Grover and Leskovec 2016). An attention is applied to gener-
ate node representations by learning the relationship between
a node and its neighbors (Velickovi¢ et al. 2018).

Temporal Network Modeling However, many real-world
networks are temporal. Some recent progresses have been
made on modeling temporal networks (Zhu et al. 2018; Du
et al. 2018; Goyal, Chhetri, and Canedo 2018; Ma et al. 2018;
Zuo et al. 2018; Xu et al. 2019b; Sankar et al. 2020). An
offline way to learn node representations in terms of network
topology and node attributes is introduced (Li et al. 2017).
A method based on autoencoder is proposed to generate the
embedding of snapshot at time ¢ from the embedding at time
t-1 (Goyal et al. 2018). DySAT (Sankar et al. 2020) models
network by appling self-attention along the two dimensions of
structural neighborhood and temporal dynamics. STAR (Xu
et al. 2019b) is a spatio-temporal attentive RNN, proposed to
learn node representations in temporal networks. However,
the capacity of these approaches for learning complicated
temporal dependency is limited.

Memory-Based Architectures Many neural network ap-
proaches that successfully model sequential data utilize mem-
ory systems. However, the standard memory architectures
like LSTM might struggle when tasks are involved in under-
standing how entities are related. Some memory-augmented
architectures (Sukhbaatar et al. 2015; Santoro et al. 2016;
Graves et al. 2016; Santoro et al. 2018; Goyal et al. 2019)
are further proposed to address this issue. For example,
RMC (Santoro et al. 2018) and RIMs (Goyal et al. 2019) ap-
ply self-attention on a set of memories similar to our TRRN.
However, RMC updates all memories at each time and RIMs
updates k£ memories. In contrast, TRRN selectively activates
memories and update them dynamically. In addition, TRRN
is proposed for network modeling, while these methods are
proposed for reinforcement learning tasks.

The TRRN Model

The architecture of TRRN is shown in Figure 1(d). We first
introduce how to determine the memories to be activated,
followed by how to update the selected memories. Then we
elaborate how to generate the contextualized representations,
and last we give the learning objective.

Activating Memory Selectively

Figure 2 illustrates how to activate memories selectively,
which allows each node to have its own memory activation
policy at each time step. TRRN applies Gumbel Softmax
sampling to jointly train the policy network and the target
learning task. The output of policy network is sampled to pro-
duce activation decisions of which memories to be activated.

Extraction of Network Factors To generate contextual-
ized representations, we mainly consider two factors, node
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Figure 2: Illustration of activating memories selectively.

attributes and network topology, which are believed to in-
fluence node representations most. Other factors like edge
weights can be easily utilized by our method.

To extract node attribute factor, we feed node attributes
into a fully-connected layer. The output vector is used as the
attribute factor. How to extract network topology factor is
flexible and we use random walk with restart (RWR) (Cao,
Lu, and Xu 2016) in this work. Given a snapshot Gt = WV,
A?, Xt) and a node v, the r-step RWR vector is defined as

p = ep" V(D AT+ (1

where p{

—o)p® e RN, (1)

represents the probability of node u transitions
from v after r steps. p(?) is the initial vector with p5,°>=1

and all other entries are 0. D is a diagonal matrix with
DiFZjN:lAﬁ ;- 1-c s the probability that the random walker

will restart from v. Thus, we use a; = Zf;l p") to represent
the topology information for node v at time step ¢, where R
indicates the number of steps. After feeding a, into a fully-
connected layer, we use the output as the topology factor.

The Policy Network The policy network aims to estimate
the probability of each memory being activated for each node.
Its output is a matrix B € R™» *2  of which rows correspond
to njs memories and columns represent two categories (ac-
tivate and inactivate). The output B is further fed into the
routers to produce the binary activation decisions.

At each time step, TRRN receives a memory matrix M
€ R™mxdu that stores the information from previous time
steps and a factor matrix F € R™* X9 that represents an
observation of np factors. TRRN concatenate each memory
and the transformation of F'. The policy network further takes
the concatenation as input. The form of policy networks is
flexible and we opt to use a two-layer MLP as the policy
network. Conceptually, it is defined as

m]— of
T o FT

B = PolicyNetwork( m2- @ £ ) ER™MXZ . (2)
mIM Y £7

where @ is the concatenation operator, my € R is the k-th
memory, and f € R9F is generated by first flattening F' and



then applying a transformation matrix W € R"#9# xdr The
policy network is jointly trained with other parts of TRRN.
Its simple architecture makes the estimation of the probability
matrix fast and efficient, which is similar to the design of
the policy network in (Guo et al. 2019) and the design of
Decision-Learner in (Ahmed and Torresani 2019).

Differentiable Binary Routers Given the output B €
R"™M*2 3 router is designed to produce the binary activation
decisions for each memory. An intuitive way to achieve this
goal is to select the position with maximum value of by, = {bY,
b}c}, where k = {1,2,-- - ,nps }. However, this approach is non-
differentiable. In this work, we adopt the Gumbel-Softmax
sampling approach (Jang, Gu, and Poole 2017; Maddison,
Mnih, and Teh 2017) that allows us to propagate gradients
through the discrete nodes.

Specifically, we have two categories (activate and inacti-
vate). The outputs {b?, bi } are considered as the log proba-
bilities {log(p?), log(pi)} of the two categories for the k-th
memory. Based on Gumbel-Max trick (Maddison, Mnih, and
Teh 2017), we can draw samples from a Bernoulli distribution
parameterized by class probabilities {p?, pi.} in the follow-
ing way: we first draw i.i.d samples {g?, gi } from a Gumbel
distribution described by:

9;’9 = —log(—log(z)) ~ Gumbel,i € {0,1}, 3)

where & ~ Uniform(0, 1). Then produce the discrete sample
by adding g} to introduce stochasticity:

2z, = argmax[by, + g;],i € {0, 1}. “4)
7

Thus, we get a binary decision vector z = (21, 22, 2, M)T €
R™™ in which the values indicate the memory is activated
(zx=1) or frozen (z,=0).

However, the arg max operation is non-differentiable. We
can use the softmax as a continuous differentiable approxi-
mation to it, and generate a two-dimensional vector G:

gl P (b +94)/7)

k — 1 ~ -~

> i—o &xp (b, + g3)/7)
where 7 is the temperature to control the discreteness. Thus,
we use the arg max to make the binary activation decision on
the forward pass, while approximate it with softmax on the

backward pass, which is called the straight-through estimator
(Jang, Gu, and Poole 2017).

,i€{0,1}, 4)

Updating Memory Dynamically

Transformer-Style Self-Attention Transformer-style dot
product self-attention (Vaswani et al. 2017) operates on a set
of typed interchangeable objects and aims to relate different
objects in order to compute representations of the same set.
It has been shown to be useful in various task (Vaswani et al.
2017). Specifically, it applies a scaled dot-product of a query
matrix Q to a key matrix K, of which the result is normalized
via a softmax to produce a set of weights. The resulting
representations are the weighted average of a value matrix V
based on the produced weights, which are computed as

QK'
Vd

Attention(Q, K, V) = softmax ( ) V, (6)
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where the softmax is applied to each row of its argument
matrix and d is the size of a key vector used as a scaling
factor. Notably, the size d can be split into multiple heads
and each head operates independently.

Intuitively, we can utilize transformer-style self-attention
(generating Q/K/V via applying linear projections to M) to
allow memories to interact and update their content based
upon the attended information. However, it is not capable to
update the activated memories without ignoring the informa-
tion from various factors that influence node behaviors.

Updating Activated Memories
memories as follows.

We propose to update the

Q= (M x2z) W9, 7)
K= [Mf ;6 ;6 ] W?, ®)
V=M, ] WY, ©)

. QK™
M = softmax R V+M=x(1—-2z)+M, (10

where 6 = (W2, W?* W" 0,). z is the binary decision vec-
tor. [M; £,7; £, £,] ] denotes the row-wise concatenation. f;
is the observation of the j-th factor.

In particular, to only update the activated memories, we
use z € R™™ to mask inactivated memories as shown in

Equation (7), where M x z is defined by

My, 20y ) (11)

In Equations (8)-(9), to consider the influence from dif-
ferent factors, we incorporate the vector representations of
factors into new memory matrix .

In Equation (10), softmax (Q—KT) V represents the up-

Mxz= (myzq,---

Vds

dated activated memories, M * (1 — z) represents the kept
inactivated memories, and M is a residual connection.

Notably, we do not mask the inactivated memories when
generating the key and value matrices (Equations (8)-(9)).
This is because we allow the activated memories to read
from all memories. The intuition is that inactivated memories
might still store contextual information related to the acti-
vated memories, though they are not related to the current
input factors.

Learning Contextualized Representations

Different factors at different time periods influence node
representations diversely. To consider the observations of
different factors at each time step, we introduce the following
recurrence to generate the contextualized representations.
The recurrence of each memory is independent, but shares the
same set of parameters with others. Implementing recurrence
is flexible and we opt to embed it into an LSTM.

t

g o

i | = lo Wy, 'efiefiof, ] +b), (12

ol o

mj, = gj, O my " + i © ¢(my), (13)
el = ol ®tanh(m}), (14)
e=leldeipel,, ] (15)



where e? € R"M9M s the contextualized representation of a
node and e}, € R is generated from the k-th memory. ®
denotes the element-wise multiplication operator.

Equation (12) describes how to generate the forget, input
and output gates for the k-th memory, which considers the
previous node representation and all the factor observations.
Equation (13) describes how to generate a new memory,
where the updated memory m, is used as a candidate. ¢
is a transformation function and we use a two-layer MLP
with layer normalization. Equation (14) describes how to
generate a part of contextualized representation from the k-th
memory. Equation (15) concatenates the representations from
all memories as the contextualized representation of a node.

Objective Functions
2

Two Tasks Given the node representations {e,lj, e, -,
el'} for node v € V, we consider tasks of node classification
and link prediction to evaluate the representation quality. The
two tasks share a similar objective function:

J:Lce+)\Pnn7 (]6)

where L., = -% > ylog (¥) is the cross-entropy loss, Py,
is the penalization term for parameters to address over-fitting,
and ) is a hyper-parameter.

For node classification, y is the class label. y is the esti-
mate, which is produced by ¥ = softmax(W,el +b,). W,
€ Rexnmda and b, € R are parameters. ¢ is the number
of classes. For link prediction, y is the binary label, indi-
cating whether there is a link between two nodes. y is the
estimate, which is produced by a logistic regression classi-
fier,i.e., y = {h(el,el),1- h(el, el) }, where h(el, e!) =

Xnada i a parameter.

o(W,el)T(W,et)) and W, € R%

Sparsity Constrains We add the sparsity constraint on the
binary activation decision vector z = (21, 22, an)T € R"M
of each time step. We want TRRN to avoid activating every
memory and capture the most relevant ones at each time step,
which reflects the sparse dynamics in the evolution of tempo-
ral networks. Inspired by (Ke et al. 2018), we add a penalty
term Mg 23:1 S(z") into the objective function. S(z") rep-
resents the penalty that TRRN needs to pay for activating
memories at time step t. The penalty term is defined as
T T Ny
Ae Y S(2') = A ReLU((D | 2) —ynar),  (U7)
t=1 t=1 k=1
where A, and ~y are hyper-parameters. n,; is the number of
memories. 7y is the proportion of memories that are without

being penalized when they are activated. Intuitively, each
activated memory above the threshold yn ;s is penalized.

Complexity Analysis TRRN is local in time and the in-
put sequence length does not affect its storage require-
ments. The complexity per parameter is O(1) for each
time step. Thus, the complexity of TRRN per time step
is proportional to the number of parameters. The param-
eters of TRRN are from the policy network, memory up-
dating, contextualized representation learning and the task
layers. Based on the four parts, the complexity of TRRN is
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Statistics Task-fMRI DBLP5 Epinions Reddit
# Nodes 5000 6606 16025 8291
# Edges 1955488 42815 1144258 264050
# Attributes 20 100 20 20

# Time Steps 12 10 11 10

# Node Categories 10 5 10 4

Table 2: Dataset description.

O(dpdy+cdymny+npdi+nydi,) for node classification
or O(dpdpr+dpydonpr+npds+nada,) for link prediction.
Because O(d)=0(dr) and O(np;)=0O(np), the complexity
of per time step of TRRN is derived to O(cdpyrna+nasda,)
or O(deonM+nMd?w).

Experiments

To analyze the node representation quality from different
perspectives, we propose three research questions:

(RQ1) How does TRRN compare with the leading network
modeling methods on node classification task?

(RQ2) How does TRRN compare with the competitors on
link prediction task?

(RQ3) Are the proposed memory activating and updating
mechanism in TRRN effective and interpretable?

Experimental Setup

Datasets We use four real temporal network datasets as
shown in Table 2. Task-fMRI is a brain temporal network
dataset, where nodes represent tidy cubes of brain tissue and
are categorized into ten groups. Two nodes are connected
if they show similar degree of activation during a time pe-
riod (Gonzalez-Castillo et al. 2015). This dataset is extracted
from the task based functional magnetic resonance imaging
(fMRI) data', which is collected when the subject conducts
different tasks successively. We apply PCA to the fMRI data
of a time period to generate the node attributes of a network
snapshot. DBLPS is a co-author temporal network dataset,
where nodes represent authors. The dataset is extracted from
the bibliography website DBLP. The node attributes in a net-
work snapshot are extracted from the titles and abstracts of
the corresponding author’s publications during a time period
by word2vec (Mikolov et al. 2013). The authors in DBLP5
are from five areas. Epinions is a who-trust-whom temporal
network dataset which is extracted from the product review
website Epinions.com, where users decide whether to trust
others to seek advice. Nodes represent users and two nodes
are connected if one of them seeks advice from the other.
Node attributes are generated from the reviews by word2vec.
We select ten categories of products to construct the dataset.
Reddit is a post temporal network dataset (reddit.com), where
nodes represent posts. Two nodes are connected if their cor-
responding posts contain similar keywords. We apply the
word2vec approach to the comments of a post to generate its
node attributes. We select four categories of the posts.

"https://tinyurl.com/y4hhw8ro



Method Task-fMRI DBLP5 Epinions Reddit
ACC AUC ACC AUC ACC AUC ACC AUC
DeepWalk 71.4+1.3 97.24+1.0 35.4+1.2 61.0+1.8 30.1£1.6 68.4+1.8 47.5+1.7 71.94+2.4
GAT 43.8£2.5 86.2+3.4 325424 48.6£2.9 22.5+1.5 63.1+1.8 29.6£1.9 52.4+£2.6
GCN 65.0+1.4 86.7£0.9 33.7£1.3 50.0+1.2 20.94£0.7 62.4+1.4 27.7£0.8 54.0+1.0
GraphSAGE ~ 69.4£2.6 96.7£2.1 71.0£1.1 90.7£1.9 24.5£2.9 63.9+2.0  42.5+2.1 66.8+£2.5
node2vec 71.0£1.5 96.8+1.8 36.9£1.1 64.2+1.1 32.8+1.5 70.2£1.6 48.0£1.3 72.2+1.1
LSTM 83.6£1.8 98.6+1.5 74.1+0.6 91.440.8 17.9£1.0 61.5+£1.2  40.2+14  66.5£1.6
GRU 80.4+1.7 98.2+1.7 75.6£1.0 91.5+1.1 17.3+1.1 61.7£1.6  42.1+£14  67.2+1.7
DynGEM 71.04£2.7 97.242.7 52.3£3.2 59.04+3.4 31.6+£2.4 54.6£2.5 39.943.5 66.24+2.8
DANE 85.2+1.3 94.8+£2.9 82.5+1.7 92.3+1.0 31.8+1.8 67.1+£1.8 45.7£1.9 70.0£1.6
STAR 89.2+1.2 99.24+0.8 80.3£1.5 95.5+0.7 32.6+1.6 67.4£1.5 50.8+1.3 75.0+1.7
TRRN 91.5+£1.0 99.8+0.8  88.9f1.5 97.6£1.8  34.6+1.3 72.8£1.2 52.0+£1.7  79.2+1.8
Table 3: Node classification results (%).
Baselines We compare TRRN with competitive base- static network modeling methods, we first apply them to each

lines. DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
GAT (Velickovic et al. 2018), GCN (Kipf and Welling 2017),
GraphSAGE (Velickovi¢ et al. 2018) and node2vec (Grover
and Leskovec 2016) are well-known network modeling meth-
ods proposed for static networks. They are good at extract-
ing spatial structure information, but ignore the temporal
dependency of temporal networks. LSTM and GRU (Cho
et al. 2014) are proposed to model temporal dependency and
famous for their gate mechanism to address the vanishing
(and exploding) gradient issues. DANE (Li et al. 2017), Dyn-
GEM (Goyal et al. 2018), DynAERNN (Goyal, Chhetri, and
Canedo 2018) and STAR (Xu et al. 2019b) are temporal net-
work modeling methods. DANE and STAR are capable of
considering both network topology and node attributes. To
gain insights about TRRN, we study its variants. TRRN-All
updates all memories at each time step. TRRN-Fix updates
a fixed number of memories (half of the total) at each time
step. TRRN-S does not apply the sparsity constraint. More
details of these methods are summarized in Table 1.

Other Settings In our experiments, A\ and A\ are set to
the same, 10~3. They are determined by grid-search from
{0, 2x1074, 5x107%, 1x1073, 2x1073}. 7 is set to 0.5,
which is from {0.25, 0.5, 0.75}. R and np are set to 4 and
2 respectively. nyy is set to 4, which is from {2,3,4,5}. dj;,
dr and dp are set to the same, 20. The sizes of query, key,
value are set to same, d,=20 (we use three attention heads).
They are determined from {10, 20, 30, 40}. We randomly
select 4/5 of all training examples as the training set and 1/5
as the test set. We randomly select 1/10 of the training set as
the validation set to determine the best hyper-parameters. 10-
fold cross-validation is applied. TRRN is implemented with
PyTorch and optimized by Adam (Kingma and Ba 2014)>.

Node Classification Comparison (RQ1)

In this section, we conduct experiments on node classification.
All models are trained on G = (G1, G2, - -+, GT) to learn the
node representations {el, e2, ---, el'} for v € V. Given
these representations and the labels of a subset of nodes Vy,
node classification aims to classify the nodes in subset Vi

whose labels are unknown, where V = Vy U Vy. For the

Data and codes can be found in the authors’ website.
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network snapshot to generate the node representation at each
time step. Then we concatenate the representations of all time
steps into a vector. A fully-connected layer with softmax is
applied to the vector to predict the node label.

Table 3 shows the node classification results. We observe
that TRRN achieves consistent gains over the baselines.
LSTM and GRU perform well on Task-fMRI and DBLP,
but show low performance on Epinions and Reddit. This is
because the node representations of Task-fMRI and DBLP
are dominated by node attributes, but they are dominated by
network topology in Epinions and Reddit. DeepWalk and
node2vec show high performance on Epinions and Reddit be-
cause of their advanatges of extracting topology information.
STAR DANE and DynGEM show high performance in gen-
eral, which is mainly because of their ability of utilizing both
node attribute and network topology information. We conjec-
ture that allowing relational reasoning on a set of memories
helps TRRN capture the evolution of temporal networks and
thus is responsible for achieving the superior performance.

Link Prediction Comparison (RQ2)

Link prediction is another widely used task to evaluate the
quality of learned node representations (Wu et al. 2020). The
training examples (node pairs) are created for time step ¢ by
sampling the links in G* and an equal number of randomly
sampled non-links. We split the training examples of each
time step into training set and test set. All models are trained
on training sets and tested on test sets. The node representa-
tions at time step ¢-1 are used to predict the links at time step ¢.
i.e., classifying a node pair in test set into links and non-links.
We evaluate the models at time step ¢ for ¢t € {2,3,---,T'}.
Table 4 shows the link prediction results. TRRN shows
the consistently superior performance. Notably, GAT shows
comparable performance compared to STAR. One possible
reason is that GAT has a good ability to extract local network
structure information, which plays an important role on link
prediction. TRRN outperforms STAR, which indicates the
benefit of reasoning over a set of memories that provides
multiple paths for information to flow from past to current.
In addition, we compare the prediction results at each time
step as shown in Figure 3. It is observed that TRRIN shows
more stable performance compared to GAT. This is because



Method Task-fMRI DBLP5
ACC AUC ACC AUC
GAT 722+1.5 75.6+£09 639+2.0 69.0+1.7
LSTM 68.1£2.7 71.3+0.7 59.7£1.4  659+1.7
STAR 71.9+£0.9 73.4+1.7 639£1.5 67.4%+1.5
TRRN 75.3+1.9 78.0+0.9 66.5+0.7 70.9+14
Table 4: Link prediction results (%).
Method Task-fMRI DBLP5
ACC AUC ACC AUC
TRRN-AIl  88.7£1.9 97.6%£1.1 86.0£1.8 94.341.6
TRRN-Fix. 90.1£2.3 984=£1.6 852+19 95.241.8
TRRN-S 90.4+1.2 97.7£0.9 86.2+1.5 95.241.6
TRRN 91.5+1.0 99.840.8 88.9+1.5 97.6+1.8

Table 5: Ablation study on dynamic memory updating.

the static network modeling methods ignore the temporal
dependency of network evolution.

Analysis of Memory Activating & Updating (RQ3)

Since memory activating and updating play critical role in
TRRN, we conduct exploratory analysis of: (effectiveness)
how they influence the performance of TRRN, and (inter-
pretability) whether the activation decisions are interpretable.

Effectiveness We conduct an ablation study by comparing
TRRN with its variants TRRN-AIll, TRRN-Fix and TRRN-S.
TRRN-AII updates all memories by setting the activation de-
cision vector z to 1. TRRN-Fix updates half of the memories.
It feeds the concatenation of input factors and memories to an
attention layer and the memories with the top half attention
values are selected. TRRN-S removes the sparsity constrain.
Table 5 shows the results (node classification). TRRN outper-
forms TRRN-AIl and TRRN-S, indicating the importance of
selective memory activation and sparsity constrain on model-
ing network evolution. By comparing TRRN with TRRN-Fix,
we see the benefit of updating memories dynamically.

Interpretability We visualize the (averaged) activation de-
cision vectors. Figure 4(a) shows the results of two categories
of nodes from Task-fMRI. It is observed the two categories
of nodes activate different memories. However, they share
more decision vector patterns at the first and last few periods.
This is because both of the categories of nodes are active
when the subject conduct the tasks during these periods.

We also visualize the self-attention matrix, i.e., softmax
(QK T /v/dy) in Eq. (10). Figure 4(b) shows the results. We
observe memories are activated dynamically in different peri-
ods. Moreover, node attribute factor (f;) shows higher atten-
tion values (on activated memories) than network topology
(f2), which indirectly verifies attribute information is domi-
nant in DBLPS5. Thus, TRRN is able to provide effective and
more importantly, interpretable evolution modeling results.

Conclusion

In this paper, we propose a method TRRN to model temporal
networks. To capture the complicated temporal dependency,
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Figure 4: (a) The visualization of (averaged) activation deci-
sion vectors of two categories of nodes from Task-fMRI. (b)
The visualization of self-attention weight matrices of a node
from DBLP5 at two time steps .

TRRN employs transformer-style self-attention to reason
over a set of memories. With the policy network augmented
with differentiable routers, TRRN updates memories dynami-
cally at the time steps where they are more relevant. Contex-
tualized node representations are generated by considering
both updated memories and different factors that influence
node behaviors. Experimental results show TRRN outper-
forms the competitive baselines and provides interpretability
for the modeling results.
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