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Abstract

Community detection is a research hotspot in machine learn-
ing and data mining. However, most of the existing commu-
nity detection methods only rely on the lower-order connec-
tivity patterns, while ignoring the higher-order connectivity
patterns, and unable to capture the building blocks of the
complex network. In recent years, some community detection
methods based on higher-order structures have been devel-
oped, but they mainly focus on the motif network composed
of higher-order structures, which violate the original lower-
order topological structure and are affected by the fragmenta-
tion issue, resulting in the deviation of community detection
results. Therefore, there is still a lack of community detection
methods that can effectively utilize higher-order connectiv-
ity patterns and lower-order connectivity patterns. To over-
come the above limitations, this paper proposes the Hybrid-
order Stochastic Block Model (HSBM) from the perspec-
tive of the generative model. Based on the classical stochas-
tic block model, the generation of lower-order structure and
higher-order structure of the network is modeled uniformly,
and the original topological properties of the network are
maintained while using higher-order connectivity patterns. At
the same time, a heuristic algorithm for community detection
is proposed to optimize the objective function. Extensive ex-
periments on six real-world datasets show that the proposed
method outperforms the existing approaches.

Introduction
Community detection is a research hotspot in network anal-
ysis that aims to divide the network into substructures with
tight internal connections and sparse external connections,
and plays an important role in various fields such as human
social interaction, economy and trade, biological informa-
tion, transportation and electricity.

Many community detection methods have been pro-
posed (He et al. 2016; Blondel et al. 2008; He et al. 2017;
Jin et al. 2018; Ganji, Bailey, and Stuckey 2018; Jin et al.
2019), but most of them only rely on the lower-order struc-
ture at the level of individual nodes and edges, and ignore
the higher-order structure in the network (Shi and Malik
2000; Newman 2006; Frey and Dueck 2007; Schaeffer 2007;
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Chakraborty et al. 2014). The common higher-order struc-
tures are small subgraphs in networks, also known as net-
work motifs, which are crucial for understanding the fun-
damental structures and regulating the behavior of complex
networks (Benson, Gleich, and Leskovec 2016). In order
to capture the building blocks of the network, some com-
munity detection methods based on higher-order structure
have been proposed in recent years (Arenas et al. 2008;
Benson, Gleich, and Leskovec 2016; Tsourakakis, Pachocki,
and Mitzenmacher 2017; Yin et al. 2017; Huang, Wang, and
Chao 2018, 2019a,b). The basic idea of these higher-order
methods is as follows: The first step is to construct a mo-
tif network by using motifs. If two nodes have involved in
at least one common motif, there is a higher-order connec-
tion between them; otherwise, there is no higher-order con-
nection. Then, lower-order methods are used on the motif
adjacency matrix for community detection. However, this
kind of approaches focuses on the motif network and ignores
the the original lower-order topological structure of complex
network. In the process of constructing motif network, some
connected components and isolated nodes may be generated,
which leads to the fragmentation issue of the motif network.
At the same time, the construction principle of the motif net-
work may cause two nodes connected in the original net-
work not to be connected in the motif network, and making
the nodes that might originally be in the same community
belong to different communities, which violates the lower-
order topological structure of the network, and causes the
deviation of community detection results. Although a com-
munity detection method based on edge enhancement has
proposed (Li et al. 2019a), the addition of edges may also
break the original topological structure.

To make effective use of higher-order structure and lower-
order structure for community detection, a Hybrid-order
Stochastic Block Model (HSBM) is proposed. This method
solves the problem of hybrid-order community detection
from the perspective of the generative model. Based on the
classical stochastic block model, the generation of lower-
order structure and higher-order structure of the network
is modeled uniformly. It is able to reveal the generation
mechanism of the network from the perspective of commu-
nity structure, and maintain the topological structure, higher-
order structure, and statistical characteristics of the network.
At the same time, a heuristic algorithm is proposed to op-
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timize the objective function. Extensive experiments on six
real-world datasets show that the proposed method is effec-
tive and advanced for community detection.

The main contributions of this paper are as follows:

• We propose a Hybrid-order Stochastic Block Model
(HSBM) for the community detection, which leverages
both higher-order and lower-order connectivity patterns.

• We for the first time propose to use the generative
model to uniformly model the original network and mo-
tif network, avoiding the disseverance of higher-order and
lower-order connectivity patterns and the fragmentation
issues in the current community detection methods.

• Extensive experiments are conducted on six real-world
networks to prove the effectiveness of the proposed
method.

Preliminaries and Problem Statement
Before formally introducing the problem statement and the
proposed approach, we briefly introduce some of the neces-
sary background and notations.

The input is a network G = (V , E), where V =
{v1, v2, ..., vn} means the node set of the graph, and E =
{e1, e2, ..., em} denotes the edge set consisting of m edges.
In this paper, we focus on undirected networks, which have
been most extensively studied, and we allow the networks
to include both multi-edges and self-edges without general-
ity (Karrer and Newman 2010). A ∈ Nn×n represents the
adjacency matrix of the network, i.e. the lower-order con-
nection of the original network. Specifically, Aij represents
the number of connections between node i and node j if i
is not equal to j, and Aii is equal to twice the number of
self-edges of node i.

The lower-order structure above mainly focuses on the
connectivity patterns at the level of individual nodes and
edges, and ignores the higher-order connectivity patterns.
Motif is a sub-network that occurs frequently in complex
networks, and its number is significantly higher than that in
randomized networks of the same degree distribution. As the
building block of complex networks, it is crucial to under-
stand the basic structure and to regulate the behavior of the
networks (Benson, Gleich, and Leskovec 2016). Different
motifs exist in different complex networks. For instance, the
triangle motif has been widely found in social networks, and
two-hop path motifs are common structures of air traffic net-
works. Formally, network motif can be expressed as:

Mq
p = {VM, EM} (1)

where VM ⊆ V represents the node set consisting of p
nodes, and EM ⊆ E represents the edge set consisting of
q edges in the motif M. Given the original adjacency matrix
A, we can define the motif adjacency matrix M ∈ Nn×n

based on different motif types, which is defined as:

Mij =number of motif instances containing nodes i and j
(2)

In this way, M is used to represent the motif-based higher-
order connections of the complex network, where the edges

(a) Original network (b) Motif network

Figure 1: Illustration of the differences between the original
network and the motif network on the DBLP dataset.

represent the number of co-occurrence of nodes i and j un-
der a specific motif type. Note that Mij can be 0 even if
Aij 6= 0. This paper focuses on the triangular motif M3

3, but
the proposed method can be well extended to other motifs.

From the above formula, we can see that in the process
of constructing the motif network, the original lower-order
topological structure is not well maintained. For illustra-
tion purpose, we illustrate the original network of the DBLP
dataset and its corresponding motif network, as shown in
Figure 1. From the figure, the structure of the original net-
work and the motif network is significantly different. On the
one hand, for the node-level, the lack of higher-order con-
nectivity patterns between some nodes led to the following
situation: two nodes are connected in the original network,
while there are no edges between them in the motif network.
If only the higher-order connectivity structure obtained by
the above definition is used for the subsequent analysis, the
original lower-order information will obviously be ignored,
which will result in the deviation of community detection
results. On the other hand, for the network-level, when we
construct a motif network, the original connected network
is divided into several connected components of different
sizes and some isolated nodes, resulting in the fragmenta-
tion issue (Li et al. 2019a). In the process of partitioning
nodes, these isolated nodes will not be supported by the orig-
inal network, which makes the community labels of isolated
nodes present randomness.

Although an edge enhancement approach has been pro-
posed to solve the above issue (Li et al. 2019a), the added
edges of the method may still destroy the original lower-
order connectivity patterns. To our best knowledge, there
is still a lack of methods to effectively utilize higher-order
structure and lower-order structure for community detec-
tion. Since we are using both higher-order connectivity pat-
terns and lower-order connectivity patterns, the proposed
method should be named ”Hybrid-order Stochastic Block
Model (HSBM)”. On the one hand, we maintain the topolog-
ical structure of the original network so that the community
assignments of nodes does not violate the original lower-
order connectivity patterns. On the other hand, we utilize
higher-order connectivity patterns, and construct the motif
network to correct the deviation of community detection re-
sults caused by using only lower-order structure.

4471



The Proposed Method
Motif Network Construction
We use the topological structure of the original network to
construct a motif network, which is represented as:

GM = {VM , EM} (3)

where GM represents a motif network based on the tri-
angle motif, and VM represents the node set of the mo-
tif network containing n nodes, which is the same as the
node set V in the original network, and EM represents the
edge set containing m′ edges. In particular, we have EM =
{EM1 , EM2 , ..., EMm′} with

EMl = (i, j,Mij), l = 1, 2, ...,m′. (4)

where i and j represent the nodes at both ends of edges, and
Mij represents the number of edges between nodes i and j
on the motif network as Eq. (2).

Hybrid-order Stochastic Block Model
In this section, we introduce the proposed Hybrid-order
Stochastic Block Model (HSBM) in detail.

We first introduce the generation mechanism of the mo-
tif network. In the motif network, we assume that the num-
ber of edges generated between each pair of nodes follows
an independent Poisson distribution. Let gi ∈ {1, 2, ...,K},
∀i = 1, ..., n represent the community label of node i, where
K is the number of communities. X ∈ RK×K represents
the edge expectation matrix of nodes between communities
in the motif network, where Xrs denotes the expected value
of the motif adjacency matrix element Mij for node i and
j belonging to communities r and s respectively. To reflect
the difference of nodes within the community in the motif
network, the parameter ξ ∈ [0, 1]n is introduced to control
the expected degrees of nodes. Therefore, in the motif net-
work, the expected number of edges between nodes i and j
belonging to communities r and s respectively is ξiξjXrs.

In this way, under the conditions of given parametersX , ξ
and community labels g, the probability distribution of gen-
erating the motif network GM can be obtained as follows:

P (M |ξ,X, g) =
∏
i<j

(ξiξjXgigj )Mij

Mij !
exp(−ξiξjXgigj )

∏
i

( 1
2ξ

2
iXgigi)

Mii/2

(Mii/2)!
exp(−1

2
ξ2iXgigi)

(5)

where the expected number of self-edges at node i in com-
munity r is 1/2ξ2iXrr. For each community r, there is a con-
straint about ξ as follows:∑

i

ξiδgi,r = 1 (6)

where δ is the Kronecker delta, which is equal to 1 when two
subscripts are equal, and 0 otherwise. Then, the sum of ξi of
all nodes in the community is 1, i.e., the value of ξi is equal
to the probability that the connected node is i itself when an

𝑔𝑔𝑖𝑖
𝑀𝑀𝑖𝑖𝑖𝑖

𝜔𝜔𝑟𝑟𝑟𝑟

𝑋𝑋𝑟𝑟𝑟𝑟
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𝐴𝐴𝑖𝑖𝑖𝑖

∀ 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝓥𝓥

𝐾𝐾 × 𝐾𝐾

𝐾𝐾 × 𝐾𝐾

𝜃𝜃𝑖𝑖 𝜃𝜃𝑗𝑗 𝜉𝜉𝑖𝑖 𝜉𝜉𝑗𝑗

Figure 2: A graphical representation of HSBM

edge is connected to the community which node i belongs
to in the motif network.

For the original adjacency matrix Aij , the above process
is also applicable. The generation probability of A can be
obtained as follows:

P (A|θ, ω, g) =
∏
i<j

(θiθjωgigj )Aij

Aij !
exp(−θiθjωgigj )

∏
i

( 1
2θ

2
i ωgigi)

Aii/2

(Aii/2)!
exp(−1

2
θ2i ωgigi)

(7)

where ω ∈ RK×K is the expected value of the original adja-
cency matrix elements. θ ∈ [0, 1]n is the parameter of node
differences in original networks, corresponding to ξ in the
motif network, and its constraint is:∑

i

θiδgi,r = 1 (8)

Figure 2 shows the generation process of the original ad-
jacency matrixA and the motif adjacency matrixM , and re-
flects the conditional independent relationship between the
observation variables A and M , and parameters g, θ, ξ, ω
and X . It can be seen that the generation of the original ad-
jacency matrix A is independent of other variables except
for the community labels g and the expected value of edges
ω, and the node difference parameter θ. The generation of
motif adjacency matrix M only depends on the node labels
g, the expected value of edges X , and the node difference
parameter ξ in the motif network.

The proposed model generates both the original adja-
cency matrix A and the motif adjacency matrix M . In clas-
sical SBM, the generation of edges in the network is con-
ditional independent. The motif network characterizes local
motif structures, and the generation of M can alleviate the
constraint of conditional independence in SBM. Although
the model does not directly model the relationship between
A and M , M is calculated by deterministic rules through
A, and the community labels g are used to simultaneously
model the generation of A and M , so that the two have mu-
tually reinforcing effects. The model not only describes the
original lower-order topological structure, but also realizes
the influence of the higher-order connectivity pattern on the
community structure.
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Therefore, we can obtain the joint probability distribution
of the observation variables A and M given the model pa-
rameters and community labels as follows:

P (A,M |θ,ω, g, ξ,X)

=P (A|θ, ω, g)P (M |ξ,X, g)

=
1∏

i<j Aij !
∏

i 2Aii/2(Aii/2)!

1∏
i<j Mij !

∏
i 2Mii/2(Mii/2)!∏

i

θki
i

∏
rs

ωmrs/2
rs exp{−1

2
ωrs}

∏
i

ξ
k′
i

i

∏
rs

X
m′

rs/2
rs exp{−1

2
Xrs}

(9)

where ki and k′i are the degree of node i in the original net-
work and the motif network respectively. mrs and m′rs are
the total number of edges between communities r and s in
the original network and the motif network, respectively, i.e.

mrs =
∑
ij

Aijδgi,rδgj ,s, m′rs =
∑
ij

Mijδgi,rδgj ,s (10)

Notice that when r is equal to s, mrs and m′rs are twice the
total number of edges within the community in the corre-
sponding network above.

The goal is to maximize the probability in Eq. (9) with re-
spect to the unknown parameters ω, θ, X , ξ and the commu-
nity labels g. It can be calculated more easily by maximizing
the logarithm of the probability. The logarithmic of Eq. (9)
that neglects constants is as follows:

logP (A,M |θ, ω, g, ξ,X)

=2
∑
i

ki log θi +
∑
rs

(mrs logωrs − ωrs)

+2
∑
i

k′i log ξi +
∑
rs

(m′rs logXrs −Xrs)

(11)

Under the constraints of Eq. (6) and Eq. (8), the model
parameters obtained by maximizing logarithmic likelihood
are as follows:

θ̂i =
2ki∑

i 2kiδgi,r
=

ki
Kgi

, ξ̂i =
k′i
K′gi

(12)

ω̂rs = mrs, X̂rs = m′rs (13)

where Kr and K′r are the degrees of all nodes in community
r in the original network and motif network respectively, i.e.

Kr =
∑
s

mrs =
∑
i

kiδgi,r, K′r =
∑
i

k′iδgi,r (14)

And they are also equal to the total number of edges gen-
erated by nodes in community r in the corresponding net-
works.

By substitute Eq. (12)- Eq. (13) into logP (A,M), we get:
logP (A,M |θ, ω, g, ξ,X)

= 2
∑
i

ki log
ki
Kgi

+
∑
rs

mrs logmrs − 2m

+ 2
∑
i

k′i log
k′i
K′gi

+
∑
rs

m′rs logm′rs − 2m′

(15)

wherem andm′ are the total number of edges in the original
network and motif network, respectively. Further simplify-
ing Eq. (15), the objective function can be obtained as:

L(A,M |g) =
∑
rs

mrs log
mrs

KrKs
+

∑
rs

m′rs log
m′rs
K′rK′s

(16)
Since the calculation of Eq. (16) needs to consider the sit-

uation of the whole network each time, the calculation is rel-
atively complicated. In order to improve the efficiency of the
algorithm, we calculate the change of Log-likelihood when
a node changes its community. When node i is transferred
from community r to community s, the change of log likeli-
hood can be written as:
∆L

=
∑
t6=r,s

[a(mrt − kit)− a(mrt) + a(mst + kit)− a(mst)]

+ a(mrs + kir − kis)− a(mrs) + b[mrr − 2(kir + ui)]

− b(mrr) + b[mss + 2(kis + ui)]− b(mss)

− a(Kr − ki) + a(Kr)− a(Ks + ki) + a(Ks)

+
∑
t6=r,s

[a(m′rt − k′it)− a(m′rt) + a(m′st + k′it)− a(m′st)]

+ a(m′rs + k′ir − k′is)− a(m′rs) + b[m′rr − 2(k′ir + u′i)]

− b(m′rr) + b[m′ss + 2(k′is + u′i)]− b(m′ss)
− a(K′r − k′i) + a(K′r)− a(K′s + k′i) + a(K′s)

(17)
Here, we define a(x) = 2x log x, b(x) = x log x, and
a(0) = 0, b(0) = 0. kit is the number of edges between
node i and the nodes that belong to community t in the orig-
inal network, and ui is the number of self-edges of node i.
All symbols with superscript such as k′it and u′i represent
their equivalents in the motif network.

Algorithm Summary and Analysis
According to the community labels of nodes gi, ∀i =

1, ..., n, the community structure of the network can be ob-
tained, which is denoted by C = {C1, ..., CK}, where K is
the number of communities in the network.

Cr = {vi|vi ∈ V , s.t. gi = r}, ∀r = 1, ..,K. (18)
For clarity, we summarize the main procedure of the pro-

posed HSBM in Algorithm 1.
We analyze the complexity of the proposed HSBM

method as follows. In general, the complexity of this algo-
rithm mainly depends on two parts: calculating motif adja-
cency matrix and partition nodes to communities in the net-
work. For triangle motif, the worst-case computational com-
plexity of constructing motif adjacency matrix is O(m1.5),
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Algorithm 1 Hybrid-order Stochastic Block Model
Require: Adjacency matrix of network A, number of com-
munities K, stop criterion ε.

1: Construct motif adjacency matrixM fromA via Eq. (2).
2: Obtain the initial community labels g by random initial-

ization.
3: Compute objective score Lnew via Eq. (16).
4: repeat
5: Lold = Lnew.
6: for every node i do
7: gi ← arg maxs ∆L(s) via Eq. (17).
8: end for
9: g ← arg maxg L

10: until |Lnew − Lold| < ε
11: Convert community labels gi, ∀i = 1, ..., n to commu-

nity structure {C1, ..., CK} of the network via Eq. (18).
Ensure: Community labels g.

where m is the number of edges in the original network.
In practice, the computation is faster, and the computational
complexity is O(m1.2) (Benson, Gleich, and Leskovec
2016). The complexity of computing ∆L is O(K + 〈k〉 +
〈k′〉), where 〈k〉 and 〈k′〉 are the average degree of nodes in
the original network and motif network respectively. Given
node i and the original community r, finding the commu-
nity s that maximizes ∆L requires O[K(K + 〈k〉 + 〈k′〉)].
The time required to assign each node in the network to the
communities is O[N(K(K + 〈k〉 + 〈k′〉))]. Therefore, the
overall complexity of Algorithm 1 is O[m1.2 + N(K(K +
〈k〉+ 〈k′〉))].

Experiments
Experimental Setting
Datasets Six widely used real-world datasets are adopted
to test the effectiveness of the proposed method.
• KareteClub1: A social network about karate clubs com-

posed of 34 nodes and 78 edges, and the nodes are divided
into 2 communities.

• Polbooks1: A book network about US politics composed
of 105 nodes and 441 edges, and the nodes are divided
into 3 communities.

• Polblogs1: A network of hyperlinks between weblogs on
US politics composed of 1490 nodes and 19090 edges,
and the nodes are divided into 2 communities.

• Dolphins1: A dolphin social network of frequent associa-
tions composed of 62 nodes and 159 edges, and the nodes
are divided into 2 communities.

• Football1: A social network about the American college
football league composed of 115 nodes and 616 edges,
and the nodes are divided into 12 communities.

• DBLP2: A paper cooperative network, which is a subset
of DBLP dataset, containing 1163 nodes and 1392 edges,
1http://www-personal.umich.edu/ mejn/netdata/
2http://snap.stanford.edu/data/

and the nodes are divided into 3 communities.

Baselines Seven lower-order community detection meth-
ods and five higher-order community detection methods are
used as baseline. The lower-order methods include Stochas-
tic block model (SBM), Louvain, Nonnegative Matrix Fac-
torization (NMF), Spectral Clustering (SC), Spectral clus-
tering based on normalized cut (Ncut), Affinity propagation
(AP), and FastNewman (Blondel et al. 2008; Wang et al.
2011; Ng, Jordan, and Weiss 2001; Shi and Malik 2000; Frey
and Dueck 2007; M. et al. 2004). The higher-order methods
as follows:
• EdMot: An edge enhancement method for motif-aware

community detection, which solves the hypergraph frag-
mentation issue by adding new edges to construct motif
hypergraphs (Li et al. 2019a). The new adjacency ma-
trix constructed by EdMot are adopted as the input of
the lower-order methods, resulting in the new higher-
order methods, namely EdMot-Louvain, EdMot-NMF
and EdMot-SC, respectively.

• MWLP: A method based on label propagation, which in-
tegrates higher-order structure features, designs a unified
re-weighted network of higher-order structure and lower-
order structure, and updates node communities based on
label propagation process (Li et al. 2019b).

• Motif-Cond: A community detection method based on
higher-order connectivity patterns. By extending the spec-
tral clustering method based on eigenvalues and eigen-
vectors, the higher-order structure is adopted to obtain
the optimal partition of the network (Benson, Gleich, and
Leskovec 2016).

Performance Metrics Three commonly used perfor-
mance metrics for community detection are adopted to eval-
uate the effectiveness of the proposed method (Chakraborty
et al. 2014), which are normalized mutual information
(NMI), F1-Score and Modularity respectively. NMI evalu-
ates the similarity between the predicted communities and
the ground-truth communities from the perspective of infor-
mation theory. F1-score considers the harmonic values of
Precision and Recall comprehensively. Modularity is used to
measure the closeness of community structure. The first two
require the ground-truth, and the value range is [0, 1]. The
last one does not require, and the value range is [−0.5, 1).

Comparison Results
In this section, we compare HSBM with twelve methods,
including the lower-order community detection methods and
higher-order community detection methods.

Figure 3 shows the comparison results in terms of NMI,
F1-Score and Modularity, respectively. As can be seen from
the figure, higher-order methods generally obtain better per-
formance than lower-order methods, which reflects the ef-
fectiveness and necessity of combining motif to conduct
community detection. By adding information about higher-
order connectivity patterns, blocks of networks are more
easily captured.

HSBM has advantages in terms of NMI and F1-Score
on polblogs and DBLP networks. There is a mass of motif
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(a) Performance based on NMI
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Figure 3: Comparison results with the twelve community detection methods on the six real-world networks.

structures in these two networks, and the fusion of higher-
order connectivity patterns in HSBM improves the perfor-
mance of community detection and achieves better results
than lower-order methods. Due to the obvious fragmenta-
tion issue of these two networks, the original network gen-
erated by HSBM maintained the lower-order structure, alle-
viated the fragmentation issue of motif networks in higher-
order methods, and corrected the deviation of community
detection results caused by relying only on the higher-order
connectivity patterns. In the polbooks network that does not
suffer the fragmentation issue, the proposed HSBM method
still performs well. In the football network, HSBM and the
higher-order methods have similar results. Due to the group
stage principle of the football league, the football dataset
shows obvious community structure in the motif network,
so whether the original topological structure is adopted has
little impact on the final results of community detection.

In general, the proposed HSBM method has better perfor-
mance than baselines. Because the lower-order methods do
not fuse motif, they cannot reflect the higher-order structure.
Although the motif based higher-order methods derive some
new connections, in general, they only use motif network
constructed by higher-order connectivity patterns, without
considering the original topological structure.

Case Study
In this subsection, case study is conducted on the polblogs
dataset to verify the validity of the proposed HSBM method.
This dataset comes from web blogs around the time of the
2004 US presidential election, about the political leanings
of blogs and their online connections. On the dataset, each
blog is labeled Liberal or Conservative, and we selected
the largest connection component with 1,222 vertices for
demonstration and analysis.

Experiments show that the proposed HSBM method out-
puts a better partition of the communities, which is closer to
ground-truth. Two typical nodes are selected to illustrate the
effectiveness of the proposed method. To facilitate under-
standing and presentation, the self-networks of correspond-
ing nodes are captured in Figure 4 and Figure 5, showing the
community labels given by ground-truth, HSBM, and base-
line methods, as well as the corresponding motif networks.
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Figure 4: Visualization of community detection on polblogs
for node 701. The size of each node is proportional to its de-
gree. Different colors represent different community labels.

Compared with the lower-order methods, HSBM adds the
higher-order connectivity patterns ignored in the lower-order
methods to improve the effectiveness of community detec-
tion. As shown in Figure 4, node 701 was incorrectly clas-
sified as Liberal Party in all the lower-order methods, and
HSBM correctly identified it as the Conservative Party. By
analyzing its original topological structure, it is found that
a hub node of the Liberal Party 127 connected to node 701
has a significant influence on its results. HSBM incorporates
the higher-order connectivity patterns, in the constructed
motif network, node 701 had no higher-order connection
with node 127, which alleviated the excessive influence of
node 127 on the community label of node 701 and corrected
the deviation of community detection results. For node 127,
which all other methods gave the correct labels, SBM as-
signed it to the Conservative Party because the method tends
to divide nodes of similar degree into the same community.

Compared with the higher-order method, HSBM corrects
the deviation of community detection results caused by ex-
cessive reliance on higher-order connectivity patterns and
violation of the lower-order structure in the higher-order
methods. As shown in Figure 5, node 199 was incorrectly
classified as Conservative Party in all the higher-order meth-
ods, but HSBM correctly identified it as the Liberal party.
In the constructed motif network, compared with the origi-
nal network, the connection between the node 199 and the
Liberal node was reduced, but the connection with the Con-
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Figure 5: Visualization of community detection on polblogs
for node 199.

servative node was not affected. In the higher-order methods
that relied only on motif network, it was overly influenced by
conservative nodes, leading to bias in the community detec-
tion results. While HSBM uses the higher-order connectiv-
ity patterns, it does not discard the lower-order connectivity
patterns, which maintains the original topological structure.

In general, HSBM corrects some of the overzealous ten-
dencies in higher-order or lower-order methods. The result
confirms the effectiveness and necessity of the integration of
the higher-order and lower-order connectivity patterns.

Related Work
Generative Model for Community Detection
The generative model has been widely studied and devel-
oped in the field of community detection due to its excel-
lent interpretability and theoretical basis. The main idea is to
build a complex network generative model with community
structure, and make statistical inferences on the parameters
in the network to get the results of community detection.

In the classical stochastic block model, the nodes in the
network are randomly divided into different communities,
and then the nodes in the communities are regarded as un-
differentiated to generate edges. The degree-corrected block
model is proposed to correct the deviations of the commu-
nity detection results of the stochastic block model, and the
degree heterogeneity of nodes is captured by introducing the
parameters that control the expected degrees of nodes (Kar-
rer and Newman 2010). PLD-SBM introduces latent vari-
ables to represent the power-law distribution of node degree
in the real world, so that the community detection results are
closer to the ground-truth (Qiao et al. 2019).

In addition, some efforts have been made in developing
stochastic block models with mixed membership (Airoldi
et al. 2008), stochastic block models for model selec-
tion (Chen, Zhang, and Xiong 2016), and latent space model
based methods (Sewell and Chen 2016). However, the above
methods only take advantage of the original lower-order
structure and ignore the higher-order connectivity patterns.

Motif-based Higher-order Community Detection
There are abundant higher-order organizational structures in
real networks, and higher-order connectivity patterns play a

vital role in understanding and controlling the behavior of
complex systems. Motif refers to the most common higher-
order structure in networks, which is defined as the connec-
tivity pattern in networks with a significantly larger occur-
rence number than that in randomized networks preserving
the same degree of nodes. The motif is widely used to reveal
the generation mechanism of complex networks.

Different from the lower-order community detection
methods, the higher-order methods utilize motif in the net-
work to obtain communities. A generalized clustering net-
work framework based on the higher-order connectivity pat-
tern was proposed in (Benson, Gleich, and Leskovec 2016).
By integrating motif, the spectral clustering method is ex-
tended to obtain community partition so as to reveal higher-
order organizations in the network. A general motif-based
framework was proposed in (Arenas et al. 2008), which
conducted community detection by using motif instead of
edges as the basic unit in networks and expanding the mod-
ularity proposed in (Newman 2006). The EdMot method
designed an edge enhancement strategy (Li et al. 2019a),
which derived new edges in motif-based hypergraphs to
solve the hypergraph fragmentation issue caused by the
use of only higher-order connectivity patterns. The MuMod
method adopted the higher-order and lower-order connec-
tivity patterns to construct the micro-unit connection net-
work, and through the micro-unit module model, and the
overlapping community structure of the network is obtained
through a micro-unit modularity model (Huang, Chao, and
Xie 2020). In addition, some methods using motifs have
been extended in the direction of local higher-order graph
partitioning (Yin et al. 2017).

Most of the existing higher-order methods are based on
motif to construct new motif network, and then utilize the
lower-order community detection methods to detect commu-
nities on the motif network. Although higher-order building
blocks are captured, the lower-order connectivity patterns
are ignored or even violated. As a result, this paper proposes
Hybrid-order Stochastic Block Model, where both of the
original lower-order topological structures and the higher-
order structures based on motif are modeled under a uni-
fied framework, so as to simultaneously take into account
the higher-order and lower-order connectivity patterns.

Conclusion
In this paper, we propose a Hybrid-order Stochastic Block
Model (HSBM) for community detection. Different from the
existing higher-order community detection methods, we for
the first time propose to use the generative model to uni-
formly model the original network and motif network. In
the proposed model, both the higher-order and lower-order
connectivity patterns are utilized to influence the community
labels of nodes simultaneously. Extensive experiments have
shown the effectiveness of the proposed method.
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