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Abstract

Traffic accident forecasting is of great importance to urban
public safety, emergency treatment, and construction plan-
ning. However, it is very challenging since traffic accidents
are affected by multiple factors, and have multi-scale depen-
dencies on both spatial and temporal dimensional features.
Meanwhile, traffic accidents are rare events, which leads to
the zero-inflated issue. Existing traffic accident forecasting
methods cannot deal with all above problems simultaneously.
In this paper, we propose a novel model, named GSNet,
to learn the spatial-temporal correlations from geographical
and semantic aspects for traffic accident risk forecasting. In
the model, a Spatial-Temporal Geographical Module is de-
signed to capture the geographical spatial-temporal corre-
lations among regions, while a Spatial-Temporal Semantic
Module is proposed to model the semantic spatial-temporal
correlations among regions. In addition, a weighted loss func-
tion is designed to solve the zero-inflated issue. Extensive ex-
periments on two real-world datasets demonstrate the superi-
ority of GSNet against the state-of-the-art baseline methods.

Introduction
Traffic accidents have caused heavy loss of life and prop-
erty every year. According to the WHO1, the number of an-
nual road traffic deaths on the earth reaches 1.35 million in
2018. Hence, traffic accident forecasting is very significant
for public safety and city construction. If the traffic accident
risk can be predicted accurately in advance, governments
can make better traffic planning to reduce traffic accidents,
administrators can issue traffic accident risk warnings and
drivers can choose safer routes to avoid traffic hazards.

Traffic accidents occur in certain spatial and temporal sce-
narios, so they are affected by both spatial and temporal di-
mensional factors. In recent years, researchers have already
proposed many deep learning-based models to forecast traf-
fic accidents. Existing deep learning-based models can be
broadly categorized into two classes. One class only cap-
tures spatial or temporal features and the other class captures
both spatial and temporal features. More specifically, the
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first class mainly employs recurrent neural networks (RNN)
to model traffic accidents’ underlying temporal correlations,
such as TARPML (Ren et al. 2018), or convolutional neural
networks (CNN) to capture adjacent regions’ spatial corre-
lations, such as SDCAE (Chen et al. 2018). The other class
combines RNN and CNN to model both the temporal peri-
odicity and spatial correlations of traffic accidents, such as
Hetero-ConvLSTM (Yuan, Zhou, and Yang 2018).

However, these existing traffic accident forecasting meth-
ods cannot effectively solve the following three problems:

1) The causes of traffic accidents are complex. In reality,
lots of factors such as weather, time, traffic flow, etc., can
affect the occurrence of traffic accidents. How to take all
these factors into account when forecasting traffic accident
risk is challenging.

2) Traffic accidents usually exhibit multi-scale dependen-
cies in both the spatial and temporal dimensions, which can
be called geographical spatial-temporal correlations and se-
mantic spatial-temporal correlations. Firstly, taking the ge-
ographical spatial-temporal correlations shown in Figure 1
as an example, in the spatial dimension, traffic accidents of
neighboring regions (e.g., region ¬ and ­) are usually af-
fected by each other due to the road connections and traffic
flows. In the temporal dimension, traffic accidents often have
short-term proximity and long-term periodicity. Besides,
there are semantic spatial-temporal correlations among re-
gions. For example, region ¬ and ® in Figure 1 share similar
features, i.e., road structure, POI (point of interest) distribu-
tion and traffic accident pattern. Therefore, they might have
a similar trend in traffic accident risk. In a word, it is es-
sential to model the multi-scale correlations of regions for
accurate traffic accident risk forecasting.

3) The zero-inflated issue. Generally, traffic accidents are
rare events, which means too excessive number of zeros
exist in traffic accident risk values. In the model training
phase, if the zeros are not properly handled, they will further
cause the prediction toward zero. We call this phenomenon
the zero-inflated issue. (Bao, Liu, and Ukkusuri 2019) men-
tioned that when the spatial-temporal resolution of the pre-
diction tasks increases, the zero-inflated issue will occur.

To address the above problems, we propose a Geograph-
ical and Semantic spatial-temporal Network (GSNet) for
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Figure 1: An example of geographical and semantic spatial-
temporal correlations. Region ¬ and ­ are road connected,
so they have geographical spatial-temporal correlations. Re-
gion ¬ and ® share similar road structure, POI distribution
and traffic accident pattern, so they have semantic spatial-
temporal correlations.

traffic accident risk forecasting. With multi-source spatial-
temporal data as input, we respectively design a Spatial-
Temporal Geographical Module which uses convolution,
GRU and attention mechanism to capture the geographical
spatial-temporal correlations among regions, and a Spatial-
Temporal Semantic Module which employs multiple graph
convolutions, GRU and attention mechanism to capture the
semantic spatial-temporal correlations among regions.

Our contributions can be summarized as follows:

• A Geographical and Semantic spatial-temporal Network
(GSNet) model is proposed for traffic accident risk fore-
casting, which takes multi-source spatial-temporal factors
into account and is able to model the spatial-temporal cor-
relations of the traffic accident data from geographical and
semantic aspects.

• We design a weighted loss function to address the zero-
inflated issue, which pays more attention to the samples
with high traffic accident risk to adjust the model to pre-
dict unbiased results.

• Extensive experiments are conducted on two real-world
traffic accident datasets, which demonstrate our model
surpasses the state-of-the-art methods.

Related Work
Traffic Accident Forecasting
Traffic accident forecasting has attracted many attentions
and some effective works have been developed for years.
These works can be classified into statistic learning-
based methods and deep learning-based methods. Statistic
learning-based methods mainly include negative binomial
regression, decision tree, and k-nearest neighbor. (Caliendo,
Guida, and Parisi 2007) utilized negative binomial regres-
sion to investigate the impact of multilane roads conditions
on traffic accidents. In (Olutayo and Eludire 2014), the au-
thors used decision tree to model the severity of injury re-
sulting from traffic accidents. (Lv, Tang, and Zhao 2009)
adopted the k-nearest neighbor method to investigate how

to identify the traffic accident potential. However, these ap-
proaches assume traffic accidents are independent, which is
hard to accord with reality.

Recently, researchers attempted to utilize deep learning-
based methods to predict traffic accidents. (Chen et al. 2016)
employed stack denoise autoencoder (SDAE) and for the
first time to estimate traffic accident risk on a city scale. To
further improve the performance of prediction, (Chen et al.
2018) proposed stack denoise convolutional autoencoder
(SDCAE), which stacks CNN to extract spatial correlations
among regions. However, these two models ignore the tem-
poral dependencies of traffic accidents. Later, (Yuan, Zhou,
and Yang 2018) proposed the Hetero-ConvLSTM model to
capture spatial heterogeneity by moving window. Besides,
it captures temporal auto-correlation from a geographical
aspect. (Zhou et al. 2020) proposed the RiskOracle model,
which captures spatial-temporal correlations from different
periodic urban graphs and then uses multi-task learning to
predict traffic accident risk and traffic flow. However, all of
the above works still have some shortcomings in simulta-
neously considering the geographical and semantic spatial-
temporal features of traffic accidents.

Therefore, in this paper we propose a novel model to cap-
ture the geographical spatial-temporal correlations and se-
mantic spatial-temporal correlations simultaneously, which
is believed to improve the performance of traffic accident
risk forecasting.

Graph Convolution Networks in Spatial-Temporal
Forecasting

As mentioned in (Guo et al. 2019), although traditional
convolutions can effectively extract the geographical pat-
terns of data, they can only be applied for the standard
grid data. Nowadays, graph convolutional networks (GCN)
have achieved great success in spatial-temporal tasks, such
as traffic flow forecasting, ride-hailing demand forecast-
ing, etc. (Guo et al. 2019) proposed the ASTGCN model,
which uses attention based spatial-temporal graph convolu-
tions to model dynamic spatial-temporal features of traffic
flows. ST-MetaNet (Pan et al. 2019) employs a sequence-
to-sequence architecture and utilizes a meta graph atten-
tion network to model the diverse spatial correlations. ST-
MGCN (Geng et al. 2019) deploys multiple graph convo-
lutions to explicitly model the pairwise spatial correlations
among regions. In addition, to model the temporal depen-
dencies, it designs Contextual Gated RNN to incorporate the
global contextual information. (Song et al. 2020) proposed
the STSGCN model, which introduces a spatial-temporal
synchronous graph convolution mechanism and achieves the
state-of-the-art performance in traffic flow forecasting.

Motivated by the above works, we construct multi-view
graphs to represent the similarities among regions from dif-
ferent semantic perspectives, and then we employ multiple
graph convolutions to capture the semantic spatial-temporal
correlations of traffic accident patterns.
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Preliminaries
Definition 1: Region. We partition a city into I × J grids
based on the longitude and latitude, where a grid i represents
a region and all regions have the same size. It is noted that,
the shape of a city is usually irregular, so only N(N ≤ I ×
J) regions have road segments. In these N regions we can
collect their actual features and traffic accident data, while
in other regions we set zero values for their features.

Definition 2: Traffic Accident Type. According to the
number of casualties in traffic accidents, we define three
traffic accident types, i.e., minor accidents, injured accidents
and fatal accidents, and corresponding risk values are set to
be 1, 2 and 3 respectively.

Definition 3: Traffic Accident Risk. Let Yi
t be the sum

of traffic accident risk values in region i at time interval t.
For example, Yi

t is 5 if two minor accidents and one fatal
accident have happened in region i at time interval t.

Definition 4: Similarity Graph. To describe the similari-
ties among regions in a city from different semantic aspects,
We define three undirected graphs: (1) Risk Similarity Graph
GK = (V,EK ,AK), which represents the similarity of traf-
fic accident risk patterns among regions; (2) Road Similarity
Graph GD = (V,ED,AD), which represents the similar-
ity of road characteristics (e.g., the number of roads, road
types, etc.) among regions; and (3) POI Similarity Graph
GP = (V,EP ,AP ), which represents the POI distribution
similarity among regions. Here V is the set of nodes of the
three graphs, and each node i ∈ V represents a region with
some road segments. According to Definition 1, |V | = N .
E? denotes the set of edges and A? ∈ RN×N denotes the
adjacency matrix of graph G?, where ? ∈ {K,D,P}.

To determine A?, we first need to calculate the similarity
score Sim?(i, j) ∈ [0, 1] between node i and j. Motivated
by (Zhou et al. 2020), we utilize the Jensen-Shannon diver-
gence to measure the similarity, and the details will be intro-
duced later in Eq. 6. After obtaining the pairwise similarities
of all the nodes, we select top-L most similar nodes for each
node as its first-order neighbors. That is, let ei,j? ∈ E? if
node i and j are first-order neighbors with each other. Then
we construct the adjacent matrix A? as follow:

Ai,j
? =

{
Sim?(i, j), ei,j? ∈ E?,
0, otherwise.

(1)

Problem Statement: Traffic Accident Risk Forecasting.
Let Xt ∈ RI×J×dr denote the grid features of all the regions
at time interval t, including the information of weather, POI,
traffic flow and traffic accident risk, where dr is the dimen-
sion of region features. Let St ∈ RN×dg denote the signal
matrix of the three graphs at time interval t. Each row rep-
resents a node’s features, including the values of traffic flow
and traffic accident risk, where dg is the dimension of node
features. Let zt ∈ Rdt be the time information of time inter-
val t, including hour of day, day of week and if it is a hol-
iday, where dt is the dimension of time features. Given the
historical observations of region features (X1,X2, . . . ,XT ),
graph signal matrices (S1, S2, . . . , ST ) and zT+1, our goal
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Figure 2: Architecture of GSNet.

is to predict the traffic accident risk at the next time interval,
i.e., YT+1 ∈ RI×J .

The GSNet Model
The main idea of our proposed model is to fuse the ge-
ographical and semantic spatial-temporal features to im-
prove the accuracy of traffic accident risk forecasting. Fig-
ure 2 presents the architecture of our GSNet model, which
mainly consists of two modules, i.e., Spatial-Temporal Ge-
ographical Module and Spatial-Temporal Semantic Mod-
ule. Specifically, the Spatial-Temporal Geographical Mod-
ule takes spatial-temporal grid features and time features
as input, and it uses convolution, GRU and temporal at-
tention to model the geographical spatial-temporal correla-
tions among regions. The Spatial-Temporal Semantic Mod-
ule takes the graph signal matrices and time features as in-
put, and it employs multiple GCN, GRU and temporal atten-
tion to capture semantic spatial-temporal correlations among
regions. Finally, the outputs of the two modules are fused
dynamically to make the final prediction.

Spatial-Temporal (ST) Geographical (Geo) Module
The ST Geo Module, as shown in the left part of Figure 2,
intends to capture the geographical spatial-temporal correla-
tions among regions. It first utilizes convolutions to model
the geographical spatial correlations, and then uses GRU
and temporal attention mechanism to dynamically capture
the short-term and long-term temporal correlations.

Geographical Spatial Convolutions Traffic accidents
usually exhibit complex spatial correlations among regions.
For example, the accidents of two nearby regions tend to be
strongly correlated in peak hours due to tidal flows. We uti-
lize convolutions to capture such geographical spatial corre-
lations. The convolution at time interval t is described as:

Xk
t = f(Wk

t ∗Xk−1
t + bkt ), (2)

where * represents convolution operation, and Wk, bk are
learnable parameters of the k-th convolutional layer. Note
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Figure 3: (a) Daily traffic accident risk curves of a region
over three consecutive weeks; (b) Hourly traffic accident risk
curves of the region on three consecutive Fridays.

that the convolutions for all time intervals share the same
parameters. f(·) is the ReLU activation function. Xk

t repre-
sents the output of the k-th convolutional layer at time inter-
val t, and X0

t = Xt. After K convolutional layers, the out-
put is denoted as XK

t ∈ RI×J×dK , where dK is the number
of convolution kernels in the K-th convolutional layer. We
use X′t to represent XK

t for short in the following sections.

Temporal Representation of Geographical Spatial Fea-
tures Besides the geographical spatial correlations, traffic
accidents usually have short-term proximity and long-term
periodicity in the temporal dimension. For example, traffic
accidents are usually affected by the traffic flows and road
conditions of a region in the recent time periods. And for
observing the long-term periodicity, we chart the daily traf-
fic accident risk curves of a region over several consecutive
weeks, as shown in Figure 3(a), and the hourly risk curves of
the region on several consecutive Fridays, as shown in Fig-
ure 3(b). We can find that the traffic accidents in this region
have a strong weekly periodicity. Therefore, it is essential
to model the short-term and long-term temporal correlations
for accurate forecasting.

To capture the short-term proximity and long-term peri-
odicity of the geographical spatial features, we fetch tempo-
ral data from the recent p time intervals and the same time
interval in the previous q weeks to form a sequence of data
X1 . . . ,Xq, . . . ,XT (T = p+q), which is taken as the input
of the ST Geo Module. In our model, we use GRU to capture
the underlying temporal correlations of traffic accidents:

hit = GRU(x′it ,h
i
t−1), (3)

where x′it ∈ RdK denotes the output of the geographical
spatial convolutions of region i at time interval t, hit ∈ Rdh
denotes the hidden states of region i at t, and dh is the num-
ber of hidden units. Note that the GRUs for all the regions
share the same parameters. Let H = [h1,h2, . . . ,hT ], in
which ht ∈ RI×J×dh is the hidden states of all the regions.

In reality, different historical data have different influ-
ences on the target time interval, and the influences vary over
time. Motivated by STG2Seq (Bai et al. 2019), we intro-
duce a temporal attention mechanism to adaptively capture
the dynamic correlations in the temporal dimension by com-
puting the attention scores between H and the time features
zT+1 at the target time interval T + 1:

α = softmax(ReLU(HWH + zT+1Wz + bα)), (4)

where WH ∈ Rdh×1, Wz ∈ Rdt×T and bα ∈ RT are
learnable parameters. α ∈ RT is the temporal attention score
vector, which indicates the importance distribution of differ-
ent historical time intervals on the target time interval. Fi-
nally we get the output of the ST Geo Module by dynami-
cally merging the hidden temporal information:

ŶG =
∑T

i=1
αi · hi, (5)

where ŶG ∈ RI×J×dh .

Spatial-Temporal (ST) Semantic (Sem) Module
The ST Sem Module, as shown in the right part of Figure
2, is used to capture spatial-temporal correlations from dif-
ferent semantic aspects. It employs three graph convolution
networks to model three kinds of spatial correlations respec-
tively, i.e, risk similarity, road similarity and POI similarity.
Like the ST Geo Module, it then utilizes GRU and temporal
attention to capture short-term proximity and long-term pe-
riodicity of semantic spatial features. Finally, the map matrix
is used to map the graph data into grid data.

Semantic Spatial Multi-Graph Convolutions To capture
the three kinds of spatial correlations from different seman-
tic aspects, we construct three types of similarity graphs, in-
cluding risk similarity graph GK , road similarity graph GD,
and POI similarity graph GP .

Here we introduce how to construct these similarity
graphs. Firstly, we calculate the risk, road and POI similar-
ity scores between any two nodes. In this study, we use the
Jensen-Shannon divergence (Zhou et al. 2020) to measure
the similarity. Taking the POI similarity as an example, the
calculation method is as follows:

SimP (i, j) = 1− JS(Ri
P ,R

j
P ),

JS
(
Ri
P ,R

j
P

)
=

1

2

∑
1≤l≤q

 Ri
P (l) log

2Ri
P (l)

Ri
P (l)+Rj

P (l)
+

Rj
P (l) log

2Rj
P (l)

Ri
P (l)+Rj

P (l)

 ,
(6)

where Ri
P ,R

j
P ∈ Rq denote the POI distribution of re-

gion i and j, which the sum is 1. Ri
P (l) means the l-

th dimension of Ri
P . Similarly, we calculate SimK(i, j)

through the risk vectors of regions in all time intervals, and
SimD(i, j) through the road properties vectors, which in-
clude the length and width of roads, road types, snow re-
moval priorities, etc. Secondly, we select top-L most similar
regions for each region to construct the adjacency matrices
A = [AK ,AD,AP ].

After constructing the three graphs, multi-graph convo-
lutions are used to model the semantic spatial correlations
among regions. We stack two graph convolutional layers. At
time interval t, the graph convolution can be described as:

S′t =
∑

?∈{K,D,P}

ReLU(A?ReLU(A?StW
(0)
? + b

(0)
? )W

(1)
? + b

(1)
? ), (7)

where W
(0)
? ∈ Rdg×dc ,W(1)

? ∈ Rdc×dc ,b(0)
? ,b

(1)
? ∈ Rdc

are learnable parameters. dc denotes the number of ker-
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nels in the graph convolutional operations. dg is the dimen-
sion of node features in St. Notice that the graph convolu-
tions for all time intervals share the same parameters. Then,
S′t ∈ RN×dc represents the output of the multi-graph con-
volutions at time interval t.

Temporal Representation of Semantic Spatial Features
Similar to the ST Geo Module, we utilize GRU and tempo-
ral attention to capture temporal correlations of the semantic
spatial features. Likewise, we select the recent p time inter-
vals and the same time interval in the previous q weeks to
form the input S1 . . . ,Sq, . . . ,ST of the ST Sem Module.
Then GRU is used to model temporal correlations:

h′it = GRU(s′it ,h
′i
t−1), (8)

where s′it ∈ Rdc is the output of the multi-graph convolu-
tions of node i at time interval t, h′it ∈ Rd′h denotes the
hidden states of i at t, and d′h is the number of hidden units.
The GRUs for all the nodes share the same parameters. Let
H′ = [h′1,h

′
2, . . . ,h

′
T ], in which h′t ∈ RN×d′h is the hidden

states of all the nodes.
Then we utilize a temporal attention to dynamically cap-

ture the temporal correlations by computing the attention
scores between H′ and the time features zT+1:

α′ = softmax(ReLU(H′W′
H + zT+1W

′
z + b′α)), (9)

where W′
H ∈ Rd′h×1, W′

z ∈ Rdt×T and b′α ∈ RT are
learnable paparemters. α′ ∈ RT is the temporal attention
score vector, which indicates the importance distribution of
different historical time intervals on the target time interval.
Then, we get the output of the temporal attention:

F =
∑T

i=1
α′i · h′i, (10)

where F ∈ RN×d′h .
For better fusing the graph signals with the grid fea-

tures later, we construct a pre-computed map matrix M ∈
R(I×J)×N to transform F into grid format, in which Mi,n =
1 if node n corresponds to region i, otherwise Mi,n = 0. Fi-
nally, we get the output of the ST Sem Module:

ŶS = MF, (11)

where ŶS ∈ RI×J×d′h .

Feature Fusion
Generally, geographical spatial-temporal correlations and
semantic spatial-temporal correlations have different de-
grees of influence on the target region. Therefore, instead
of concatenation, we use two weight matrices and a fully
connected layer to dynamically fuse the outputs of the ST
Geo Module and ST Sem Module:

Ŷ = FC(W1 ∗ ŶG +W2 ∗ ŶS), (12)
where ∗ denotes convolution operation, and 1 × 1 convo-
lution kernels are used here. W1 and W2 are parameters
of convolution kernels. FC(·) denotes fully-connected layer.

Dataset NYC Chicago

Time range 1/1/2013 - 12/31/2013 2/1/2016 - 9/30/2016
#Traffic accidents 147k 44k

#Taxi orders 173,179k 1,744k
#POIs 15,625 None

Hours of weather 8,760 5,832
#Road segments 103k 56k

Table 1: Statistics of Datasets.

After the dynamic fusion, it generates the final prediction
Ŷ ∈ RI×J , which represents the traffic accident risks at the
next time interval.

Loss Function
To address the zero-inflated issue, we design a weighted
loss function. In the training phase, the loss function as-
signs higher weights to the samples with high traffic acci-
dent risks to avoid the final prediction toward zero values.
Specifically, we classify all samples into four levels by their
accident risks, i.e., I = {0, 1, 2,≥ 3}. We use Y(i) to rep-
resent the samples whose traffic accident risk level is i. The
final loss function is as follow:

Loss(Y, Ŷ) =
1

2

∑
i∈I

λi(Y(i)− Ŷ(i))2, (13)

where Y denotes the ground truth, and Ŷ is the prediction
of the model. λi is the weight of the samples with traffic
accident risk level i, which is a hyperparameter.

Experiments
Datasets
We use two public real-world datasets collected from NYC2

and Chicago3. The statistics of the datasets are shown in Ta-
ble 1. The traffic accident data includes location, time and
the number of casualties. The taxi order data includes pick-
up time, longitude and latitude, and drop-off time, longi-
tude and latitude. The POI data includes seven categories:
residence, school, culture facility, recreation, social service,
transportation and commercial. The weather data includes
temperature and sky condition. The road segment data in-
cludes road length, width, type and snow removal priority.

For the NYC dataset, we respectively construct the risk,
road and POI similarity graphs based on its traffic accident,
road segment and POI data. For the Chicago dataset, due to
the lack of POI data, we only construct the risk and road
similarity graphs.

Settings
We partition all data on the time axis with ratio 6 : 2 : 2 into
training, validation and test set. The whole city is split into
rectangle regions, and the size of a region is about 2km ×
2km. The length of time interval is set as 1 hour.

We implement our GSNet model in PyTorch. All data is
normalized into the range [0, 1] by Max-Min normalization.

2https://opendata.cityofnewyork.us/
3https://data.cityofchicago.org/
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When evaluating, we denormalize the prediction into the
normal values. The hyperparameters are determined based
on the model’s performance on the validation data. For the
length of short-term and long-term historical data, we set
p = 3 and q = 4. When constructing similarity graphs, L is
set to 10. In geographical spatial convolutions, K = 2 and
the convolution kernel size is 3×3. In semantic spatial multi-
graph convolutions, we stack 2 graph convolutional layers
with 64 filters for each. In GRU, dh and d′h are both set to
256. Additionally, the batch size is 32 and the learning rate
is 1e−5. In the loss function, the sample weights λi∈I are
respectively set to 0.05, 0.2, 0.25 and 0.5.

Metrics
We evaluate the performance of GSNet from two perspec-
tives, including regression and ranking. In the regression
perspective, we use RMSE to evaluate the predicted risks
of all regions. In the ranking perspective, inspired by (Ma
et al. 2018), we use Recall and MAP to evaluate the percent-
age of accurate predictions of the regions with high traffic
accident risks. For time interval t (1 ≤ t ≤ T ), if there are
traffic accidents in kt regions, Recall indicates the percent-
age of the intersection of true kt regions and top kt regions
with highest predicted risks. MAP indicates the mean aver-
age precision, and the rank of predicted kt regions are more
relevant to that of true kt regions. Lower RMSE values in-
dicate the model predicts more accurate risks in all regions,
while higher Recall and MAP values indicate the model per-
forms better in high-risk regions, which means the model
can figure out more high-risk regions.

RMSE =

√
1

T

∑T

t=1

(
Yt − Ŷt

)2
, (14)

Recall =
1

T

∑T

t=1

St ∩Rt
|Rt|

, (15)

MAP =
1

T

T∑
t=1

∑|Rt|
j=1 pre(j)× rel(j)

|Rt|
, (16)

where Yt is the ground truth and Ŷt is the predicted values of
all regions at time interval t. Rt is the set of regions where
traffic accidents have really occurred at t. St is a set of re-
gions with top |Rt| highest predicted risks. pre(j) denotes
the precision of a cut-off rank list from 1 to j. rel(j) is the
recall of region j, where rel(j) = 1 if there are traffic acci-
dents in this region, otherwise rel(j) = 0.

To evaluate the model’s performance more comprehen-
sively, we use RMSE, Recall and MAP to indicate the per-
formance on all time intervals, i.e., 0:00-24:00. Additionally,
we use RMSE*, Recall* and MAP* to indicate the perfor-
mance on the time intervals with high frequency of traffic
accidents, i.e., 7:00-9:00 and 16:00-19:00.

Baseline Methods
We compare our model with the following 8 baselines:

• HA: Historical Average. The average value of the traffic
accident risks at the same time interval in short-term and
long-term historical data is taken as prediction.

• XGBoost (Chen and Guestrin 2016): XGBoost is a pow-
erful model based on the boosting tree.

• MLP : Multiple Layer Perceptron. We select ReLU as its
activation function.

• GRU (Chung et al. 2014): Gated Recurrent Unit. It is a
time series prediction model, which can capture historical
temporal dependencies.

• SDCAE (Chen et al. 2018): Stack Denoise Convolutional
Autoencoder. It captures the geographical spatial features
by stacking multiple denoise convolution layers to predict
traffic accident risks in the city scale.

• ConvLSTM (Shi et al. 2015): It combines CNN and
LSTM to model both spatial and temporal dependencies.

• Hetero-ConvLSTM (Yuan, Zhou, and Yang 2018): Het-
erogeneous ConvLSTM. It uses a moving window to get
subsets of spatial regions to capture the heterogeneity of
rural and urban regions.

• Graph WaveNet (Wu et al. 2019): A deep learning model
that stacks graph convolution layers to predict spatial-
temporal graph data with long-range temporal sequences.

Experiment Results
Table 2 shows the prediction performance of different meth-
ods on the NYC and Chicago datasets. It can be seen that
our GSNet model achieves the best performance on the both
datasets in terms of all metrics. Specifically, we can observe
that HA and XGBoost don’t perform well, due to their lim-
ited ability of modeling complex dependencies of spatial-
temporal data. Compared with those conventional methods,
deep learning-based models achieve better performances.
GRU can capture short-term and long-term temporal fea-
tures, while SDCAE can model spatial correlations by stack-
ing convolutional layers. But they cannot model the spatial
and temporal dependencies simultaneously. Compared with
them, ConvLSTM and Hetero-ConvLSTM combine CNN
and LSTM to model the geographical spatial-temporal cor-
relations and make further improvements. But they overlook
the semantic similarities among regions. Graph WaveNet
considers multiple similarity graphs and employs TCN and
GCN to model semantic similarities. However, it is not good
at capturing geographical spatial-temporal correlations.

Overall, our GSNet model simultaneously considers the
geographical spatial-temporal correlations and the semantic
spatial-temporal correlations among regions. Consequently,
GSNet achieves the best performance among all the meth-
ods. In addition, our model has much better performance in
high-risk time intervals against other methods, which further
demonstrates the superiority of GSNet in modeling multi-
scale spatial-temporal correlations of traffic accident data.

Effects of Different Components
To further illustrate the effectiveness of different compo-
nents, we design four variants to conduct ablation experi-
ments on the NYC dataset. (i) Concat: Instead of dynamic
feature fusion, we simply concatenate the geographical fea-
tures ŶG and the semantic features ŶS ; (ii) -Attention: We
remove the temporal attention from both the ST Geo and
Sem Modules; (iii) -Geo: We remove the ST Geo Module;
and (iv) -Sem: We remove the ST Sem Module.
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Method HA XGBoost MLP GRU SDCAE ConvLSTM Hetero- Graph GSNet
Dataset Metric ConvLSTM WaveNet (ours)

NYC

RMSE 10.3243 11.0165 8.4289 8.3375 7.9774 7.9505 7.9731 7.7358 7.5158
Recall 24.42% 23.14% 27.28% 28.09% 30.81% 30.99% 30.42% 31.78% 34.20%
MAP 0.1049 0.1008 0.1196 0.1228 0.1594 0.1526 0.1454 0.1623 0.1861

RMSE* 9.4994 10.1730 7.6379 7.3546 7.2806 7.2554 7.2750 7.0958 6.7206
Recall* 26.94% 25.22% 29.51% 30.76% 31.22% 32.61% 31.43% 33.04% 35.30%
MAP* 0.1258 0.1119 0.1338 0.1301 0.1536 0.1557 0.1498 0.1647 0.1808

Chicago

RMSE 14.9581 15.6946 12.5116 12.6482 11.3382 11.1309 11.3033 11.0835 10.5989
Recall 13.80% 12.58% 17.53% 17.83% 18.78% 18.84% 18.43% 18.95% 20.69%
MAP 0.0572 0.0545 0.0631 0.0664 0.0753 0.0789 0.0716 0.0805 0.0903

RMSE* 10.2564 10.3685 8.9500 9.0421 8.7543 8.5254 8.5437 8.4484 8.1496
Recall* 15.89% 15.22% 18.93% 18.66% 20.58% 20.30% 18.93% 20.42% 22.77%
MAP* 0.0644 0.0614 0.0748 0.0758 0.1002 0.0925 0.0770 0.0933 0.1266

* represents the performance on time interval with high frequency of accidents.
Table 2: Performance comparison of different approaches.

GSNet Concat -Attention -Geo -Sem

Figure 4: Component analysis of GSNet.

The results are shown in Figure 4. We observe that sim-
ple concatenation of features causes the performance worse
a little, which demonstrates the dynamic feature fusion is
useful. Removing the temporal attention greatly hurts the
performance, which proves the effectiveness of dynamically
modeling the importance of historical information. The re-
sults of the -Geo and -Sem are much worse than the GSNet
model, which demonstrates that simultaneously capturing
the geographical and semantic spatial-temporal correlations
is crucially important for traffic accident risk forecasting.

Effects of Different Similarity Graphs
We also investigate the effects of different similarity graphs
on the NYC dataset. We construct three variants (i.e.,
GSNet-Risk, GSNet-Road, GSNet-POI), each of which only
introduces one of the risk, road and POI similarity graphs.
And the other settings are the same as GSNet. The results are
shown in Table 3. Compared with GSNet-Road and GSNet-
POI, GSNet-Risk achieves better performance. It demon-
strates that the traffic accident risk of a certain region is more
relevant to the regions with similar risk patterns. GSNet-
Road outperforms GSNet-POI a little, which reveals regions
with similar road features are more likely to share similar ac-
cident risk patterns. It also shows roads have more important
influence on traffic accidents than POIs which represent ur-
ban functionality. Overall, the GSNet achieves the best per-

Model RMSE/RMSE* Recall/Recall*(%) MAP/MAP*

GSNet-Risk 7.7135/6.8858 32.42/33.41 0.1769/0.1710
GSNet-Road 7.7537/6.9000 32.24/32.54 0.1753/0.1695
GSNet-POI 7.8317/6.9748 31.86/32.75 0.1695/0.1648

GSNet 7.5158/6.7206 34.20/35.30 0.1861/0.1808

Table 3: Comparison of different similarity graphs.

formance. It demonstrates the necessity of modeling spatial-
temporal correlations from multiple semantic aspects.

Effects of Weighted Loss Function
We further conduct the experiments of the weighted loss
function and unweighted loss function on the NYC dataset,
with the other setting remaining the same. Table 4 shows that
those two loss functions are at the same level in terms of Re-
call and MAP, but RMSE and RMSE* of the weighted loss
function is 26.4% and 28.2% lower than the unweighted loss
function. The results further illustrate that the proposed loss
function works better in predicting all regions’ traffic acci-
dent risk and address the zero-inflated issue to some degree.

Model RMSE/RMSE* Recall/Recall*(%) MAP/MAP*

unweighted 10.2113/9.3556 34.22/34.46 0.1872/0.1771

weighted 7.5158/6.7206 34.20/35.30 0.1861/0.1808

Table 4: Comparison of loss functions.

Conclusion
In this paper, we propose a novel GSNet model for traf-
fic accident risk forecasting. To capture multi-scale spatial-
temporal dependencies, we respectively design a Spatial-
Temporal Geographical Module to capture the geographical
spatial-temporal correlations among regions, and a Spatial-
Temporal Semantic Module to describe the semantic spatial-
temporal correlations among regions. Besides, we design
a weighted loss function to address the zero-inflated issue.
The experiments on two real-world datasets show that our
model outperforms the state-of-the-art methods. Our pro-
posed model might be able to address other sparse spatial-
temporal prediction problems, such as crime prediction.
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