
GraphMSE: Efficient Meta-path Selection in Semantically Aligned Feature Space
for Graph Neural Networks

Yi Li1, Yilun Jin2, Guojie Song3*, Zihao Zhu4, Chuan Shi4, Yiming Wang1

1Peking University, Beijing, China
2The Hong Kong University of Science and Technology, Hong Kong SAR, China

3Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
4Beijing University of Posts and Telecommunications, Beijing, China

{liyi2015, gjsong, wangyiming17}@pku.edu.cn, yilun.jin@connect.ust.hk, {zhuzihao,shichuan}@bupt.edu.cn

Abstract

Heterogeneous information networks (HINs) are ideal for de-
scribing real-world data with different types of entities and
relationships. To carry out machine learning on HINs, meta-
paths are widely utilized to extract semantics with pre-defined
patterns, and models such as graph convolutional networks
(GCNs) are thus enabled. However, previous works gener-
ally assume a fixed set of meta-paths, which is unrealis-
tic as real-world data are overwhelmingly diverse. There-
fore, it is appealing if meta-paths can be automatically se-
lected given an HIN, yet existing works aiming at such prob-
lem possess drawbacks, such as poor efficiency and ignoring
feature heterogeneity. To address these drawbacks, we pro-
pose GraphMSE, an efficient heterogeneous GCN combined
with automatic meta-path selection. Specifically, we design
highly efficient meta-path sampling techniques, and then in-
jectively project sampled meta-path instances to vectors. We
then design a novel semantic feature space alignment, aim-
ing to align the meta-path instance vectors and hence facili-
tate meta-path selection. Extensive experiments on real-world
datasets demonstrate that GraphMSE outperforms state-of-
the-art counterparts, figures out important meta-paths, and is
dramatically (e.g. 200 times) more efficient.

Introduction
Heterogeneous information networks (HINs) (Sun and Han
2012) effectively extend the notion of networks by allow-
ing their nodes and edges to be of different types. Such
heterogeneity makes HINs ideal for describing real-world
data with complex entities and relations, such as academic
data (with authors, papers, conferences, and journals) and
e-commerce data (with customers, items, and businesses).

However, along with the versatility of HINs comes with
intractability, where the heterogeneity of nodes and edges
bear intricate semantics that cannot be extracted in an or-
dinary manner. Fortunately, researchers propose meta-paths
(Sun et al. 2011), paths with pre-defined patterns to ex-
tract corresponding semantics from HINs. Based upon meta-
paths, numerous HIN mining models have been enabled, in-
cluding the popular Graph Convolutional Networks (GCNs)
(Wang et al. 2019; Zhang et al. 2019).

*Corresponding Author
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yet, the majority of existing works leveraging meta-path
based GCNs assume that an indicative set of meta-paths
have been given a priori upon which the GCNs are built,
which is clearly not the case in reality. Specifically, real-
world data are notoriously diverse, and it is not even re-
motely possible to manually select informative meta-paths
for every type of HIN. What is more, even on a fixed HIN,
selecting optimal meta-paths may require trials and errors,
which takes significant effort and also domain expertise.
Consequently, it would be highly appreciated if algorithms
are developed that can automatically detect important meta-
paths from HINs, such that the manual “meta-path engineer-
ing” can be alleviated.

Up till now, to the best of our knowledge, GTN (Yun et al.
2019) is the only work that combines automatic meta-path
selection with semi-supervised heterogeneous GCNs. How-
ever, we identify several drawbacks which cast doubts on
GTN. On one hand, GTN leverages matrix multiplications
for the selection of meta-paths, which is equivalent to enu-
merating all meta-path instances starting from all nodes,
which may incur high computational cost. On the other
hand, GTN assumes homogeneous features even for hetero-
geneous nodes, i.e. different types of nodes possess identical
feature semantics, which is clearly unlikely in reality.

In this paper, we propose GraphMSE, combining semi-
supervised graph neural networks with automatic meta-path
selection, and simultaneously address both aforementioned
drawbacks. Specifically, first, instead of taking |V | × |V |
matrix multiplications to enumerate all meta-paths from all
nodes, we resort to sampling, both on meta-paths and nodes,
which drastically reduces the effort of meta-path enumera-
tion. In addition, we tackle the problem of feature hetero-
geneity (i.e. different types of nodes possess heterogeneous
features) by injectively projecting all meta-path features into
the same length, and apply a novel semantic feature space
alignment technique to mitigate their heterogeneity, which
can be viewed as an analogue of disentangled representation
(Ma et al. 2019) and further facilitates stable selection. Fi-
nally, we utilize an attention layer for meta-path selection.
We carry out extensive experiments on real-world HINs,
where GraphMSE outperforms state-of-the-art counterparts,
while being dramatically more efficient.

Our contributions can be summarized as follows;

• We propose GraphMSE, an efficient and effective frame-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

4206

work unifying automatic meta-path selection and semi-
supervised graph convolution network on HINs.

• We design efficient node and meta-path sampling tech-
niques that eliminate the need to carry out full matrix mul-
tiplication and significantly boosts efficiency.

• We address the problem of feature heterogeneity, which is
ignored by GTN, by projecting all meta-paths to one uni-
fied feature length and conducting a novel semantic fea-
ture space alignment, which further facilitates selection.

• Extensive experiments demonstrate that GraphMSE is
competitive against strong baselines while being dramati-
cally more efficient. 1

Related Work
HINs and Heterogeneous GCNs
HINs (Sun and Han 2012) are able to represent a wider
range of data due to node and edge heterogeneity. While
homogeneous network mining methods (Kipf and Welling
2017; Veličković et al. 2018) generally fall ineffective due
to the heterogeneity, researchers resort to meta-paths (Sun
et al. 2011) to extract hierarchical semantics from HINs
and develop effective HIN mining algorithms (Shang et al.
2016; Dong, Chawla, and Swami 2017). (Yang et al. 2020)
provides an extensive survey on recent advances in mining
HINs.

More specifically, GCNs on HINs have become an attrac-
tive topic to researchers. For example, HetGNN (Zhang et al.
2019) adopted different RNNs for different types of nodes.
GraphInception (Zhang et al. 2018) proposed hierarchical
aggregation for feature learning in HINs. HAN (Wang et al.
2019) designed hierarchical attention mechanisms for ag-
gregation from different semantic levels. MAGNN (Fu et al.
2020) proposed to utilize intermediate nodes within multiple
meta-paths so as to minimize the information loss. However,
these works all assume a given set of meta-paths, which is
unrealistic given the diverse nature of real-world HINs.

Automatic Meta-path Selection
The problem of automatic meta-path selection in HINs has
been considered from multiple domains. (Wang et al. 2018)
proposed unsupervised meta-path selection by building a
minimum spanning tree to sort out the importance of meta-
paths. (Wei et al. 2018) proposed to select important meta-
paths by maintaining meta-path based proximity between
nodes. However, both of them consider the problem for
information retrieval, but not for representation learning.
While (Yang et al. 2018) combines meta-path discovery and
representation learning with auto-encoders, semi-supervised
GCNs with meta-path selection remain to be explored.

GTN (Yun et al. 2019) is a representative model combin-
ing meta-path selection with GCNs. GTN depends on stack-
ing l graph transformer (GT) layers to softly select meta-
paths of length l. A GT layer is defined as

Qi = φ(A; softmax(Wφ)), i = 1, 2 (1)

A = D−1Q1Q2. (2)

1Visit https://github.com/pkuliyi2015/GraphMSE for code.

After generating C such soft adjacency matrices
{Aj}Cj=1, GTN aggregates them by learning a channel-wise
GCN and concatenating their outputs (denoted by ‖).

Z =

∥∥∥∥C
j=1

σ(AjXW). (3)

We identify two drawbacks of GTN. First, GTN leverages
matrix multiplication to extract meta-paths, which is equiv-
alent to enumerating all meta-path instances starting from
all nodes, which is clearly unnecessary. In addition, the fea-
ture matrixX implicitly assumes that all nodes share a com-
mon feature space, which is unrealistic since different types
of nodes generally have varying features. As a simple ex-
ample, GTN will fall ineffective in the simple case where
feature dimensionality varies among node types.

Preliminaries
In this section, we present related backgrounds related to our
work. We first present the concepts of HINs and meta-paths.

Definition 1 (HIN). An HIN is denoted as G =
(V,E, φ, ψ,A,R,X), with V and E denoting the node set
and the feature set correspondingly. A,R denote sets of
node and edge types where |A| + |R| > 2, and φ : V →
A, ψ : E → R are functions mapping nodes and edges to
their types. X = {Xv ∈ Rdφ(v) , v ∈ V } denotes the set
of node features, where we allow different types of nodes to
have heterogeneous features.

Definition 2 (Meta-path). A meta-path P of length l is de-
fined as a path in the form of A1

R1→ A2
R2→ ...

Rl→ Al+1 (ab-
breviated as A1A2...Al+1), where Ai ∈ A, Rj ∈ R, which
describes a relation R = R1 ◦R2 ◦ · · · ◦Rl between object
types A1 and Al+1. We denote the set of all meta-paths of
length l as Pl, and P≤l for those no longer than l.

We then formulate the concepts of meta-path instances
and instance sets.

Definition 3 (Meta-path instances and instance sets). Given
a meta-path P and an HIN G, a meta-path instance p of
P is defined as a node sequence in G following the schema
defined by P . All meta-path instances p of P starting from
node v consists of a meta-path instance set SP (v).

Finally, we formalize the task of learning GCNs on HINs.

Definition 4 (GCN learning on HINs). The task of learning
a GCN on an HIN can be formulated as, given an HIN G,
a meta-path candidate set P ′, find a mapping function f :
V → RdG that captures node-level semantic information.

In this work, we hope to automatically determine impor-
tant meta-paths from a general candidate set P≤l, instead of
a pre-defined one, upon which the GCN is learned.

Model: GraphMSE
In this section, we introduce our model Graph Meta-path Se-
lection and Embedding Network,i.e. GraphMSE. Fig. 1 gives
a brief overview of GraphMSE.

Our model consists of four major components.

4207

������

�

�

�

�

�

�

�

	

��	
���

�����

�����������
 ������
�

�

�
�

�

������ �

�

�

���

�

	

 �

 � �

�����
���������������	
���

��������	
���

�

�

�

�

�

�

�

� �

�

���

	

�

������ ��
��

����������

�

�

������

�

�
� �

�

�

�

�

�

�

�����
�����	 �!!��
�"����������

���
�����

���
������

###

###

��

###

���
�����

$������
������

��

��

�

�

�

�

�

�����
�����	 �!!��
 $��������
�������
�	����
������������������������������� !��
"�#��$���%&��'�������(��)����(���

������

������)��*++

"�#���

$���%&��

 ��������

,��)&�����

+)��

��������#�

�����&

-�!)��
�"����.�����)�

!)��
�

###

 ��

�� �� ��

������	�������

���������
� �

��

�

�� �

	��

�

�
 �

�

�

�

Figure 1: An overview of GraphMSE. GraphMSE consists of four major components: (a) Meta-path Instance Sampling, (b)
Meta-path Embedding, (c) Feature Space Alignment. (d) Selection through Attention.

• First, we sample meta-path instances from a subset of
nodes VC ⊂ V and construct meta-path instance sets, al-
leviating the need for full matrix multiplications.

• Next, the node features along each meta-path instance will
be concatenated and fed into the SUM-MLP encoder cor-
responding to the meta-path type, injectively projecting
them to vectors of equal length.

• In addition, we carry out semantic feature space alignment
on the feature space, which disentangles and aligns the
feature space to alleviate their heterogeneity, and hence
facilitates stable selection.

• Finally, a graph attention layer is used, from which we get
node embeddings as outputs and attention weights repre-
senting meta-path importance.

Meta-path Extraction
As stated above, the GT layer extracting meta-paths in GTN
suffers from low efficiency. In this section, we introduce how
we address it via sampling techniques.

Meta-path Sampling In GTN, |V | × |V | matrix multipli-
cations are carried out, which is equivalent to extracting all
meta-path instances from all nodes and train the GT layers
on them. However, we hardly consider it necessary and pro-
pose two sampling techniques to accelerate training:

• First, we only sample a candidate node set VC upon which
meta-paths are extracted and GraphMSE is trained. We
empirically found that |VC | ≈ 0.2|V | is sufficient to train
a well generalizable model.

• Second, we also sample, instead of enumerate, meta-path
instances starting from each node. Specifically, we utilize
breadth-first search to sample instances under the con-
straint of each meta-path, and set a limit λ determining
at most how many neighbors will be searched in the next
step, controlling the scale of neighborhood expansion.

Essentially, the first technique can be seen as a counter-
part of inductive learning in homogeneous GCNs, such as
GraphSAGE (Hamilton, Ying, and Leskovec 2017), while
the second technique, also discussed in (Yang, Zhang, and

Han 2019), intentionally discard a proportion of meta-path
instances, which can be viewed as a heterogeneous analogue
of DropEdge (Rong et al. 2020), which alleviates over-fitting
and over-smoothing caused by full neighborhood expansion
(Li, Han, and Wu 2018). We demonstrate that sampling is
not only sufficient, but may also perform better than enumer-
ating in our ablation studies. We then represent the sampled
instances of each meta-path P starting from v as a meta-path
instance set SP (v).

Meta-path Embedding
In this section we introduce how we embed meta-path in-
stance sets SP (v) into vectors of equal length injectively.

Meta-path Instance Embedding We embed a meta-path
instance p ∈ SP (v) with features of nodes along it. Con-
sidering heterogeneity of node features, taking sum or mean
along a path p may not be possible. Therefore, we concate-
nate all node features, excluding the center node v along
each meta-path instance p as its embedding,

Xp = CONCAT(Xp1 , Xp2 , ..., Xpn). (4)

By concatenating, we efficiently preserve the intermediate
nodes and their orders in a meta-path instance (Fu et al.
2020), which is helpful towards better representation.

Instance Aggregation We aggregate meta-path instances
through an encoder EP , and then sum them up to obtain the
instance set embedding hP (v).

hP (v) =
∑

p∈SP (v)

EP (Xp). (5)

Considering that SP (v) may be a multi-set (i.e. it may con-
tain identical instances), inspired by GIN (Xu et al. 2019),
we prove that above aggregator can injectively map different
SP (v) to different real numbers, and similarly vectors.

Lemma 1. Assume that the multi-set SP is countable. There
exists an encoder Ep(Xp) : Rn → R so that h(SP (v)) =∑
Ep(Xp), p ∈ SP (v) is unique for each set SP (v) ∈ SP

with bounded size.

4208

We put detailed proofs into appendices. We also show that
common aggregators such as MEAN fail to injectively map
SP (v) into vectors:
Lemma 2. Assume that the multi-set SP is countable.
There exist two multi-sets SP (v1), SP (v2) with bounded
size, so that for ∀Ep(Xp) : Rn → R, h(SP (v)) =

1
|SP (v)|

∑
Ep(Xp), p ∈ SP (v), we have h(SP (v1)) ≡

h(SP (v2)).
Essentially, by taking mean over a multi-set, information

about cardinality will be lost. In HINs, meta-path instance
sets contain structural information, and their cardinalities
show relative frequency of different meta-paths. Therefore,
using MEAN instead of SUM will lead to loss of structural
information, as we will demonstrate in the ablation studies.

Given the existence of an injective EP , we resort to mul-
tilayer perceptrons (MLPs) to approximate them (Hornik,
Stinchcombe, and White 1989). As Xp may be of different
length due to feature heterogeneity, we use different MLPs
for different meta-paths. We obtain the embedding for meta-
path instance set SP (v) as:

hP (v) =
∑

p∈SP (v)

MLPP (CONCAT (Xp1 , Xp2 , ..., Xpn))

(6)
where p = (p1, p2, ...pn) ∈ SP (v).

Though the number of MLPs needed grows exponentially
with l, we empirically found that l ≤ 5 and 1 or 2 layer
MLPs are generally sufficient. More importantly, once the
model is trained, top-k meta-paths with highest weights and
their MLPs would be well sufficient to generate node em-
beddings. Therefore, the number of MLPs would pose little
challenge to efficiency.

Semantic Feature Space Alignment
In the previous section, we injectively project meta-path in-
stance sets to vectors with equal length. However, despite
the unified length, the entangled nature of neural networks
may lead to arbitrary change in the semantics of the meta-
path feature space, i.e. different SUM-MLP encoders may
project the same information into arbitrary position of the
feature space. Such great discrepancy of feature space will
confuse the selector, leading to weights with great variance
and thus compromising selection.

To address this problem, we propose to semantically align
the feature space, i.e. identical dimensions always corre-
spond to identical semantics, similar to disentangled repre-
sentations (Ma et al. 2019), so that the selector can stably
evaluate different meta-paths. In this work, we propose to
manually align the feature space by grouping them accord-
ing to node types, while it is also possible to use other align-
ment standards, e.g edge types.

Specifically, we let SUM-MLP encoders generate
hP (v) ∈ RT×d, where T = |A| is the number of node types,
and d is the dimension for each block. We denote each length
d block in hP (v) as hiP (v), i = 1, ...T . Correspondingly, we
design loss functions Li to ensure the information of node
type Ai resides in and only in block hiP (v). Intuitively, for
node type Ai, when they are correctly projected into hiP (v),

� ��

� �

�����

������	
���

����

�������������
�������	��	�

������������

�����������

�����������

������
�	��	������

�������������
�����������

 ����
���

����

������������� �����������

�����������
����
�	
��

Figure 2: The intuition of the loss. Loss occurs when the
semantics are wrongly aligned.

relatively low loss is expected; on the contrary, when they
are projected into wrong blocks, high loss is anticipated.

To achieve our purpose, we introduce T discriminators
Di : Rd → R to discriminate the existence of Ai. Ideally,
if information of Ai exists in Di’s input, it outputs 1, and 0
otherwise. Thus, a loss exemplifying the previous intuition
can be designed as:

LDi(v) = EP∈P≤l

[
CE
(
Di

(
hiP (v)

)
, y
)

+ Ej 6=i
[
CE(Di(h

j
P (v)), 0)

]] (7)

where y = 1 iff Ai ∈ P , CE denotes cross-entropy loss.
We employ Di(x) = σ(wTi x+ bi), ∀i, where σ(x) is the

sigmoid function. We illustrate the intuition of Eq. 7 in Fig
2. In implementation, we build j 6= i by shuffling meta-
path instance set embeddings hP (v) in blocks, and trainD to
detect such incorrect alignments. By joint training of SUM-
MLPs and the discriminators, they become strong together,
and the feature space would be automatically aligned.

Attention GNN
We finally leverage a graph attention (Veličković et al. 2018)
that aggregates all meta-path embeddings around a node v.

hv = W1Xv +
∑

Pi∈P≤l

αihPi(v) (8)

αi =
1

|V |
∑
v∈V

αvi (9)

αvi =
exp(−evi)∑
i exp(−evi)

(10)

evi = LReLU(aTW2tanh([hv||hPi(v)])), Pi ∈ P≤l (11)

The model is trained by minimizing the cross-entropy with
respect to the training set labels, which is also the set where
we extract meta-paths VC , along with the discriminator
losses (Eq. 7). WC is the weight matrix for classification.

minL =
1

|VC |
∑
v∈VC

(
CE (softmax (WChv) , yv)

+
1

|A|
∑
Aj∈A

LDj (v)
)
.

(12)

Upon convergence, we obtain node representations
{hv}, v ∈ VC along with attention weights of meta-paths

4209

αi, Pi ∈ P≤l. For v /∈ VC , their node representations can
be generated inductively, either using the full meta-path set,
or using meta-paths with the top-k attention weights, as we
will show in node classification.

For stable selection, we pre-train the discriminators with-
out attention (i.e. αi = 1

|P≤l|) to first align the feature space,
and then introduce attention to tune the selection layer.

Experiments
In this section, we show the experimental evaluations of
GraphMSE. We carry out node classification under various
settings and ablation studies to analyze individual compo-
nents of our model. We also evaluate the efficiency of our
model. Finally, we provide qualitative results that help un-
derstanding of our model.

Experimental Settings
Datasets We employ three datasets from GTN (Yun et al.
2019) for our experiments: DBLP, IMDB, ACM. The statis-
tics of these datasets are shown in Table 1. We also list the
node types below.

• ACM: Paper (P), Author (A), Subject (S).

• DBLP: Author (A), Paper (P), Conference (C);

• IMDB: Movie (M), Actor (A), Director (D);

For ACM and DBLP, target nodes are labeled with research
fields. For IMDB, movies are labeled with genres. It is im-
portant to note that features are processed to be homoge-
neous for all three datasets, so as to enable homogeneous
GCNs and GTN. We will demonstrate GraphMSE’s ability
to handle heterogeneous features later.

Baselines We compare GraphMSE with the following
competitive baselines.

• Homogeneous GCNs: We take GCN (Kipf and Welling
2017) and GAT (Veličković et al. 2018). On HINs, these
models will ignore the heterogeneity of nodes.

• Heterogeneous Network Embedding Models: We take
Metapath2vec (Dong, Chawla, and Swami 2017).

• Heterogeneous GCNs: We take HAN (Wang et al. 2019),
GTN (Yun et al. 2019) and MAGNN (Fu et al. 2020).

Hyperparameter Settings For all methods, we use 120
dimensional embeddings and split identical train, validation
and test sets. For GraphMSE, we set learning rate to 0.01. On
ACM and DBLP, we take linear perceptrons. On IMDB, we
take 2-layer MLPs. The sampling limit λ for ACM, IMDB,
and DBLP is set to 8, 5, and 10, respectively. We put settings
for baselines into appendices.

Dataset Nodes Edges Edge Type Features
ACM 8994 25922 PA,AP,PS,SP 1902
DBLP 18405 67946 PA,AP,PC,CP 334
IMDB 12772 37288 MD,DM,MA,AM 1256

Table 1: Dataset Statistics

Regarding meta-path settings, Metapath2vec, HAN, and
MAGNN take fixed meta-paths for training, which we omit
for space limitations. For GTN and GraphMSE, we search
l ≤ 5 in P≤l and select the optimal l. The optimal l for
ACM, DBLP, and IMDB are 2, 4, 3 respectively.

Node Classification
Homogeneous Node Features We carry out node classi-
fication on all three datasets with different proportions of
training nodes. For the unsupervised method Metapath2vec,
classification is carried out via a separate logistic regres-
sion. We independently run each experiment 10 times and
report means and standard deviations of performances. Ta-
ble 2 shows all results on node classification. It can be
shown that GraphMSE outperforms all strong baselines con-
sistently. What is more, by comparing with GTN, it can be
shown that GraphMSE achieves significant improvements
across all settings (e.g. by 3% on ACM and 5% on IMDB).

Heterogeneous Node Features While all three datasets
are processed to have homogeneous features, we would like
to investigate how they perform in feature heterogeneity,
which is common in reality. To do so, we randomly shuffle
feature indices for each type of nodes, and re-run the node
classification experiments with 20% training nodes. The re-
sults are shown in Table 3. Compared with Table 2, it can be
shown that while GCN and GTN both suffered from drops
in performance (e.g. for GCN, 5% and for GTN, 10% on
IMDB), GraphMSE is able to maintain performance regard-
less of the shuffle. Such performance endorses the ability of
GraphMSE to handle heterogeneous features.

Meta-path Selection Since the attention weights repre-
sent meta-path importance, it should be possible to keep
only a small proportion of important meta-paths without
compromising performance. Therefore, we carry out node
classification with 20% training nodes and only Top-k meta-
paths, to validate our selection results.

The meta-paths chosen and results are shown in Table 4,
which clearly demonstrate that GraphMSE successfully fig-
ures out important meta-paths and hence maintains similar,
or even better performance with only 2 or 3 meta-paths.

Ablation Studies
We carry out ablation studies to verify contributions of indi-
vidual model components. We run node classifications with
20% training node on IMDB to reflect performance changes.

MEAN instead of SUM We replace the sum aggregation
by mean in Eq. 6 to empirically verify Lemma 1 and 2. We
refer to this variant as GraphMSE-MEAN, and show the re-
sults in Table 5. A significant drop is observed with SUM
replaced by MEAN, which verifies Lemma 1 and 2.

Feature Space Alignment We run GraphMSE, and
GraphMSE without feature space alignment (denoted as
GraphMSE-xAlign), and test the classification performance,
as well as the meta-path attention values, to demonstrate the
effect of Semantic Feature Space Alignment.

We show the performances and attention weights αi of
different meta-paths in Table 5 and 6. It can be shown that

4210

Baseline
ACM

20% 40% 60% 80%

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

Metapath2vec 76.74±0.95 76.46±9.75 78.76±1.02 78.49±1.01 79.06±0.90 78.79±0.92 80.98±1.27 80.74±1.29
GCN 90.00±0.73 89.96±0.73 90.18±0.80 90.11±0.81 89.98±1.15 90.00±1.10 90.73±1.47 90.68±1.48
GAT 92.29±0.63 92.27±0.60 93.28±0.27 93.29±0.26 92.85±0.35 92.87±0.34 94.20±0.52 94.16±0.51
HAN 91.03±0.98 90.96±0.97 91.58±0.12 91.55±0.13 92.45±0.35 92.46±0.34 92.83±0.33 92.75±0.32
GTN 91.06±0.73 91.06±0.64 90.63±1.46 90.64±1.48 91.24±0.97 91.13±1.02 91.09±0.84 91.19±0.84
MAGNN 88.22±0.77 88.17±0.78 90.06±0.63 90.04±0.63 90.74±0.50 90.76±0.50 91.04±0.57 91.05±0.57
GraphMSE 92.97±0.38 93.01±0.38 93.65±0.16 93.62±0.15 93.36±0.31 93.35±0.31 93.92±0.33 93.84±0.33

DBLP
Metapath2vec 92.14±0.27 92.64±0.25 92.42±0.26 92.94±0.25 92.44±0.31 92.92±0.30 92.74±0.57 93.24±0.54
GCN 90.30±0.93 90.99±0.85 91.26±0.49 91.84±0.41 91.60±0.79 92.06±0.74 91.26±0.49 91.82±0.40
GAT 78.61±0.27 80.30±0.21 79.62±0.84 81.56±0.51 82.16±0.59 83.60±0.41 85.15±0.83 86.08±0.76
HAN 89.55±1.14 90.43±0.99 89.12±2.26 90.03±1.77 90.30±1.52 91.07±1.33 90.97±1.00 91.49±0.90
GTN 91.46±1.86 92.26±1.50 93.41±0.19 93.83±0.17 93.60±0.26 94.02±0.25 93.56±0.19 94.01±0.19
MAGNN 91.97±0.29 92.50±0.26 92.61±0.22 93.13±0.20 92.89±0.19 93.42±0.17 93.06±0.15 93.61±0.14
GraphMSE 94.03±0.22 94.41±0.22 94.31±0.16 94.64±0.16 94.55±0.33 94.86±0.30 94.60±0.21 94.99±0.21

IMDB
Metapath2vec 54.16±0.86 58.15±0.94 58.33±1.53 63.06±1.30 58.37±0.96 63.36±0.96 58.64±1.34 64.04±0.99
GCN 56.92±1.25 60.13±1.84 62.14±1.46 65.41±1.39 63.89±1.45 66.79±1.07 64.71±0.99 67.92±0.71
GAT 44.99±2.05 58.49±0.89 50.40±1.61 62.60±0.76 53.62±1.19 64.38±0.79 54.28±1.67 64.33±0.95
HAN 47.58±2.35 59.14±0.93 54.24±2.53 63.30±0.99 60.89±0.72 66.60±0.38 59.41±1.05 65.38±0.73
GTN 57.59±0.75 64.75±0.36 47.91±5.40 63.42±1.56 46.42±0.90 63.73±0.80 47.40±0.74 65.01±0.75
MAGNN 55.74±1.24 60.19±0.95 57.54±1.13 61.85±0.85 58.30±1.19 62.57±0.85 58.93±1.19 63.22±0.91
GraphMSE 57.78±1.90 62.63±0.64 63.47±0.89 66.97±0.82 65.39±1.13 68.24±1.22 67.48±1.67 70.58±1.16

Table 2: Experimental results of node classification on three datasets.

Baseline ACM DBLP IMDB

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

GCN 90.35±0.95 90.22±0.98 89.30±0.53 90.51±0.45 50.28±1.31 51.76±1.69
GTN 88.95±0.63 88.96±0.62 89.20±1.73 90.06±1.53 43.64±0.52 55.17±0.60
GraphMSE 92.58±0.50 92.54±0.49 94.08±0.14 94.44±0.13 57.60±2.13 62.37±1.03

Table 3: Experimental results of node classification with heterogeneous (shuffled) features.

the introduction of feature alignment significantly improved
the overall performance, which can be attributed to the lower
variance in meta-path selection in Table 6.

Intermediate Nodes in Meta-paths We also carry out
ablation studies on our preservation of intermediate nodes
within meta-paths. We run experiments with all intermedi-
ate nodes discarded, leaving only start and end nodes in Eq.
4. We denote this variant as GraphMSE-xIN and show its re-
sults in Table 5. It can be shown that GraphMSE outperforms
GraphMSE-xIN, indicating that the preservation of interme-
diate nodes contributes to better modeling of meta-paths.

Parameter Analysis
We carry out analysis on hyperparameters of our model,
specifically sampling parameters λ and l.

First, we analyze λ, namely the maximum number of
neighbors to expand during sampling. We vary λ =
1, 2...10, 15, 20, and plot the results in Fig. 3a. It can be
shown that, in general it only takes a few neighbors to ex-

(a) Sampling limit λ (b) Max meta-path length l

Figure 3: Performances with varying parameters λ and l.
Shades denote standard deviation.

pand to achieve satisfactory performance, which contributes
to the efficiency of GraphMSE. Moreover, when λ goes ex-
cessively large (> 10), we can observe a drop in perfor-
mance on IMDB, which indicates that discarding meta-path
instances actually contributed to better generalization, simi-
lar to (Rong et al. 2020).

4211

Baseline
ACM DBLP IMDB

Top 2: PA,PS Top3: AP,APA,APC Top3: MD,MAMA,MDM

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

GraphMSE (Full) 92.97±0.38 93.01±0.38 94.03±0.22 94.41±0.22 57.78±1.90 62.63±0.64
GraphMSE (Top-k) 91.49±1.38 91.43±1.40 94.06±0.32 94.44±0.29 59.31±2.88 63.48±1.84

Table 4: Experimental results of GraphMSE with top-k meta-paths.

Macro F1 Micro F1
GraphMSE 58.46±2.56 62.59±1.98

GraphMSE-MEAN 48.46±2.69 53.70±0.74
GraphMSE-xAlign 56.93±2.11 60.84±1.76

GraphMSE-xIN 52.30±2.69 58.75±1.20

Table 5: Classification Performance of GraphMSE,
GraphMSE-MEAN, GraphMSE-xAlign and GraphMSE-
xIN on IMDB, 20%

Attention Weights GraphMSE GraphMSE-xAlign
MD 19.33±4.72 5.86±14.47

MAMA 17.51±4.59 22.94±24.17
MDM 13.26±1.83 0.68±1.83

MDMA 13.19±1.55 33.46±23.55
MA 11.93±1.63 6.63±15.58

MAMD 10.1±1.11 6.32±15.55
MAM 9.69±0.85 1.06±2.48

MDMD 4.98±9.79 23.04±24.26

Table 6: Attention weights of different meta-paths on
GraphMSE and GraphMSE-xAlign. Lower variance is
bolded.

In addition, we analyze the length of meta-paths to search
l. We vary l = 2, 3, 4, 5 and show the results in Fig. 3b. It can
be shown that generally l = 3 or 4 is sufficient for a good
performance, while excessively large l will pose challenges
towards selection and compromise the performance (lower
accuracy and higher variance).

Efficiency

We evaluate the efficiency of baseline methods along with
GraphMSE. We run experiments on DBLP, which contains
18405 nodes and 67946 edges. We run all baseline methods
for 30 epochs, and for GraphMSE, we run 30 epochs for
pre-training, and 30 epochs for tuning the selection layer.
We record the average time elapsed for all methods to reach
the lowest validation error.

We show the results in Table 7 with two settings: CPU
and GPU. For CPU, we use 2 Intel Xeon E5-2697A V4 with
128GB RAM. For GPU, we use one NVIDIA Tesla P100
with 16GB RAM. It can be shown that GraphMSE is aston-
ishingly (200 times) more efficient than its counterpart GTN,
and is also slightly (2 or 3 times) more efficient than HAN
and MAGNN. Such dramatic improvement in efficiency un-
derscores its competence in addition to accuracy.

Baseline Meta-paths CPU GPU
GCN N/A 25.50 20.26
HAN 2 88.90 28.67

MAGNN 2 68.83 57.68
GTN l ≤ 4 5527.91 OOM

GraphMSE l ≤ 4 22.94 11.08

Table 7: Average time (s) elapsed to achieve lowest valida-
tion error. OOM denotes Out Of Memory.

(a) With Alignment (b) Without Alignment

Figure 4: Visualization of meta-path embeddings on IMDB.

Visualization
Meta-path Embeddings We visualize the meta-path em-
beddings hP (v) on IMDB to show how our model orga-
nizes the feature space. Specifically, we sample 1000 nodes
from IMDB, obtain their hP (v) for 5 meta-paths, and project
them into a 2-dimensional space via PCA.

The visualization results are shown in Fig. 4. It can be
shown that with feature alignment, GraphMSE is able to
project semantics of different meta-paths in a clear and or-
ganized manner. On the contrary, the feature space would
become cluttered in the absence of the alignment.

Conclusion
In this paper, we propose GraphMSE combining semi-
supervised heterogeneous GCNs and automatic meta-path
selection. Specifically, we sample, instead of enumerate,
meta-path instances starting from nodes, boosting efficiency.
We then project all meta-path instances into a unified feature
space, which is semantically aligned and disentangled via
our elaborate discriminator losses. Extensive experiments
demonstrate that our model is highly competitive in both
predictive performances and efficiency compared to existing
state-of-the-art heterogeneous GCNs.

For future work, we plan to dig further into meta-path
sampling techniques, especially how they contribute theo-
retically to model capability and model learning.

4212

Acknowledgments
We are grateful to Ziyao Li for his insightful advice towards
this work. This work was supported by the National Natural
Science Foundation of China (Grant No. 61876006).

Appendices
Proof for Lemma 1
The proof is inspired by GIN (Xu et al. 2019).

Proof. We first prove that there exists an encoder
Ep(Xp) : Rn → R so that h(SP (v)) =

∑
Ep(Xp), p ∈

SP (v) is unique for each multi-set SP (v) ∈ SP . Because
set SP is countable, there exists a mapping ZP : Rn → N
from Xp ∈ Rn to natural numbers. Because the cardinality
of multisets SP (v) is bounded, there exists a numberN ∈ N
so that |SP (v)| < N for all |SP (v)|.

(Xu et al. 2019) provides an example encoder:

hP =
∑

EP (Xp) =
∑ 1

NZ(Xp)
, p ∈ SP (v)

Since 1
NZ(Xp)

can be regarded as a unique base N repre-
sentation of Xp, hP =

∑
EP (Xp) is injective. In other

words, h(SP (v)) =
∑
Ep(Xp), p ∈ SP (v) is unique for

each multi-set SP (v) ∈ SP .

Proof for Lemma 2
Proof. Suppose multisets Sp(v1) and Sp(v2) have the same
underlying set S. When each meta-path instance in Sp(v1)
is k times of that in Sp(v1), for ∀Ep(Xp) : Rn → R,
h(SP (v)) = 1

|SP (v)|
∑
Ep(Xp), p ∈ SP (v), we have

h(SP (v1)) =
1

|SP (v1)|
∑

Ep(Xp), p ∈ SP (v1)

=
1

k|SP (v2)|
∑

kEp(Xp), p ∈ SP (v2)

=
1

|SP (v2)|
∑

Ep(Xp), p ∈ SP (v2)

= h(SP (v2))

Hence, for ∀Ep(Xp) : Rn → R, we have h(SP (v1)) ≡
h(SP (v2)).

Hyperparameters
For some baselines, we apply their hyperparameter settings
as corresponding papers. For other baselines, we empirically
optimize their hyperparameters. The hyperparameter details
are as follow:

• For metapath2vec (MP2vec for short), we set window size
to 11, walk length to 100, walks per node to 40, the num-
ber of negative samples to 5, learning rate to 0.01, epochs
to 50. We do not evaluate its efficiency since the official
version of metapath2vec is implemented in C++ instead
of Python.

• For GCN and GAT, we optimize the learning rate and the
weight-decay parameter with the validation set, and set
epochs to 200.

Baseline ACM DBLP IMDB
MP2vec SPAPS CPAPC DMAMD

HAN PAP PSP APA
APCPA MAM MDM

MAGNN
PAP PSP

APA APSPA
SPS SPAPS

APA
APCPA

MAM MDM
DMD DMAMD
AMA AMDMA

GTN Length≤ 3 Length≤ 4 Length≤ 4
GraphMSE Length≤ 2 Length≤ 4 Length≤ 4

Table 8: Meta-path settings

• For HAN and GTN, since ACM, DBLP, and IMDB
datasets are also used in their experiments, we directly
apply the corresponding settings in their papers.

• For MAGNN, since settings for DBLP and IMDB are al-
ready provided in its paper, we directly apply the settings.
We transfer the hyper-parameters for DBLP to ACM, then
optimize them with the validation set.

• For proposed GraphMSE, we set learning rate to 0.01,
pre-training epochs to 50, selection epochs to 50, neigh-
bor sampling limit λ for ACM, IMDB, DBLP to 8, 5, 10,
respectively. On ACM and DBLP, we take linear percep-
trons. On IMDB, we take 2-layer MLPs.

Meta-path settings vary with datasets and tasks. Table 8
shows related settings. For node classification tasks, we op-
timize max-length limits for GTN and GraphMSE with val-
idation sets.

Since the optimal meta-path lengths on ACM and IMDB
in node classification tasks are relatively short, we demon-
strate the ability of GraphMSE with longer meta-paths in
ablation studies.

References
Dong, Y.; Chawla, N. V.; and Swami, A. 2017. metap-
ath2vec: Scalable representation learning for heterogeneous
networks. In Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data min-
ing, 135–144.

Fu, X.; Zhang, J.; Meng, Z.; and King, I. 2020. MAGNN:
Metapath Aggregated Graph Neural Network for Heteroge-
neous Graph Embedding. In Proceedings of The Web Con-
ference 2020, 2331–2341.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, 1024–1034.

Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural Networks 2(5): 359–366.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In ICLR
2017 : International Conference on Learning Representa-
tions 2017.

Li, Q.; Han, Z.; and Wu, X. 2018. Deeper Insights into
Graph Convolutional Networks for Semi-Supervised Learn-

4213

ing. In AAAI-18 AAAI Conference on Artificial Intelligence,
3538–3545.

Ma, J.; Cui, P.; Kuang, K.; Wang, X.; and Zhu, W. 2019. Dis-
entangled graph convolutional networks. In International
Conference on Machine Learning, 4212–4221.

Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node
Classification. In ICLR 2020 : Eighth International Confer-
ence on Learning Representations.

Shang, J.; Qu, M.; Liu, J.; Kaplan, L. M.; Han, J.; and Peng,
J. 2016. Meta-path guided embedding for similarity search
in large-scale heterogeneous information networks. arXiv
preprint arXiv:1610.09769 .

Sun, Y.; and Han, J. 2012. Mining heterogeneous infor-
mation networks: principles and methodologies. Synthesis
Lectures on Data Mining and Knowledge Discovery 3(2):
1–159.

Sun, Y.; Han, J.; Yan, X.; Yu, P. S.; and Wu, T. 2011. Path-
sim: Meta path-based top-k similarity search in heteroge-
neous information networks. Proceedings of the VLDB En-
dowment 4(11): 992–1003.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. In ICLR
2018 : International Conference on Learning Representa-
tions 2018.

Wang, C.; Song, Y.; Li, H.; Zhang, M.; and Han, J. 2018.
Unsupervised meta-path selection for text similarity mea-
sure based on heterogeneous information networks. Data
Mining and Knowledge Discovery 32(6): 1735–1767.

Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; and Yu,
P. S. 2019. Heterogeneous graph attention network. In The
World Wide Web Conference, 2022–2032.

Wei, X.; Liu, Z.; Sun, L.; and Yu, P. S. 2018. Unsu-
pervised meta-path reduction on heterogeneous information
networks. arXiv preprint arXiv:1810.12503 .

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks. In ICLR 2019 : 7th
International Conference on Learning Representations.

Yang, C.; Liu, M.; He, F.; Zhang, X.; Peng, J.; and Han, J.
2018. Similarity Modeling on Heterogeneous Networks via
Automatic Path Discovery. In European Conference on Ma-
chine Learning and Principles and Practice of Knowledge
Discovery in Databases, ECML-PKDD 2018, 37–54.

Yang, C.; Xiao, Y.; Zhang, Y.; Sun, Y.; and Han, J.
2020. Heterogeneous Network Representation Learning:
Survey, Benchmark, Evaluation, and Beyond. arXiv preprint
arXiv:2004.00216 .

Yang, C.; Zhang, J.; and Han, J. 2019. Neural Embedding
Propagation on Heterogeneous Networks. In 2019 IEEE In-
ternational Conference on Data Mining (ICDM), 698–707.

Yun, S.; Jeong, M.; Kim, R.; Kang, J.; and Kim, H. J. 2019.
Graph transformer networks. In Advances in Neural Infor-
mation Processing Systems, 11983–11993.

Zhang, C.; Song, D.; Huang, C.; Swami, A.; and Chawla,
N. V. 2019. Heterogeneous graph neural network. In Pro-
ceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, 793–803.
Zhang, Y.; Xiong, Y.; Kong, X.; Li, S.; Mi, J.; and Zhu, Y.
2018. Deep collective classification in heterogeneous infor-
mation networks. In Proceedings of the 2018 World Wide
Web Conference, 399–408.

4214

