
Rejection Sampling for Weighted Jaccard Similarity Revisited

Xiaoyun Li, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA
{lixiaoyun996, pingli98}@gmail.com

Abstract

Efficiently1 computing the weighted Jaccard similarity has
become an active research topic in machine learning and the-
ory. For sparse data, the standard technique is based on the
consistent weighed sampling (CWS). For dense data, how-
ever, methods based on rejection sampling (RS) can be much
more efficient. Nevertheless, existing RS methods are still
slow for practical purposes. In this paper, we propose to im-
prove RS by a strategy, which we call efficient rejection sam-
pling (ERS), based on “early stopping + densification”. We
analyze the statistical property of ERS and provide experi-
mental results to compare ERS with RS and other algorithms
for hashing weighted Jaccard. The results demonstrate that
ERS significantly improves the existing methods for estimat-
ing the weighted Jaccard similarity in relatively dense data.

Introduction
The Jaccard is a similarity measure in machine learning
such as classification tasks (Li 2017, 2018). Given two non-
negative data vectors v,w ∈ RD

+ , the Jaccard is defined as

J(v,w) =

∑D
i=1 min{vi, wi}∑D
i=1 max{vi, wi}

. (1)

To deal with data with negative entries, Li (2017, 2018) pro-
posed the “generalized min-max (GMM)” kernel. See the
experiments which considered data with negative entries.

For binary (0/1) data, (1) is also known as the re-
semblance, which is an important metric in numerous ap-
plications. The standard hashing algorithm for computing
the resemblance is based minwise hashing (Broder et al.
1997, 1998; Li and König 2011). In the past two or three
decades, the resemblance and minwise hashing have found
numerous practical applications (Fetterly et al. 2003; Jin-
dal and Liu 2008; Buehrer and Chellapilla 2008; Urvoy
et al. 2008; Dourisboure, Geraci, and Pellegrini 2009; For-
man, Eshghi, and Suermondt 2009; Pandey et al. 2009;
Cherkasova et al. 2009; Chierichetti et al. 2009; Gollapudi
and Sharma 2009; Najork, Gollapudi, and Panigrahy 2009;
Bendersky and Croft 2009; Li et al. 2011; Shrivastava and
Li 2012; Schubert, Weiler, and Kriegel 2014; Fu et al. 2015;

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We sincerely thank the constructive comments from Reviewers.
The work was initially submitted in February 2020 to ICML’20.

Pewny et al. 2015; Manzoor, Milajerdi, and Akoglu 2016;
Raff and Nicholas 2017; Zhu et al. 2019; Lei et al. 2020).

For general non-binary data, the Jaccard similarity and ef-
ficient computational methods have been extensively stud-
ied (Kleinberg and Tardos 1999; Charikar 2002; Gollapudi
and Panigrahy 2006; Chierichetti et al. 2010; Hadjielefthe-
riou and Srivastava 2010; Ioffe 2010; Manasse, McSherry,
and Talwar 2010; Bollegala, Matsuo, and Ishizuka 2011;
Delgado et al. 2014; Wang et al. 2014; Li 2015; Shrivastava
2016; Ertl 2018; Bag, Kumar, and Tiwari 2019; Li, Li, and
Zhang 2019; Pouget-Abadie et al. 2019; Yang et al. 2019;
Fuchs et al. 2020; Li et al. 2021). Generally speaking, there
are two categories of hashing methods which are commonly
used for efficiently computing the Jaccard similarity.

The first category is the consistent weighted sampling
(CWS) (Manasse, McSherry, and Talwar 2010; Ioffe 2010;
Li 2015), which is suitable for sparse data. To generate K
hash samples, CWS has O(Kd) complexity where d is the
number of non-zero elements in the vector. Thus, CWS is
efficient when data are very sparse. Some recent work (e.g.,
BagMinHash (Ertl 2018), DartMinHash (Christiani 2020))
improves CWS in some cases, but the complexity is still in-
creasing with d. The work on “0-bit CWS” (Li 2015) pro-
vided a practical (and heuristic) simplification of CWS and
the more recent work (Li et al. 2021) developed the rigorous
theory from the perspective of extremal processes.

The second category of methods for hashing weighted
Jaccard similarity is the rejection sampling (RS) (Kleinberg
and Tardos 1999; Charikar 2002; Shrivastava 2016). In par-
ticular, the algorithm in Shrivastava (2016) involves repeat-
edly sampling random sequences until some criteria is sat-
isfied (more details will be introduced later on). The com-
plexity of RS relies on a totally different quantity named
effective sparsity. In some sense, RS hits the opposite side
of CWS, since it runs very fast on dense data, but possibly
very slowly on sparse data. Moreover, the time complexity
of RS is unbounded in the worst case, which may lead to
a huge computational cost. In this paper, we revisit the RS
algorithm and propose a variant that makes RS much more
efficient for practical applications.

Rejection Sampling (RS) for Weighted Jaccard
Setting. Suppose we have a non-negative data vector v ∈
RD

+ , and we know the upper bound of the data entries for
every dimension. Let us denote these upper limits bymi, i =

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

4197

𝒗

𝒘

𝑣1 𝑣3

𝑤1 𝑤3 𝑤4 𝑤5

𝑀1 𝑀2 𝑀3 𝑀4

𝑟1 𝑟3 𝑟2

𝑣2 𝑣4

𝒛 𝑧3 𝑧5

𝑀5

𝑧2

Figure 1: Illustration of RS algorithm: v = (v1, v2, v3, v4, 0)
w = (w1, 0, w3, w4, w5) and z = (0, z2, z3, 0, z5). The
hash samples are h(v) = 3, h(w) = 2 and h(z) = 3.

1, ..., D. Denote the cumulative sum Mi =
∑i

d=1md. As
demonstrated in Figure 1, we split the area into two regions.
The green region represents the parts covered by the data
values, and the red region otherwise. More specifically, the
two regions are defined as

Green =

d⋃
i=1

[Mi−1,Mi−1+vi], Red =

d⋃
i=1

[Mi−1+vi,Mi].

Algorithm. The RS algorithm (Shrivastava 2016) is sum-
marized in Algorithm 1. The function ISGREEN(r,v)
checks if a number r falls into the green region formu-
lated by vector v, which could be reduced to constant time
complexity by constructing an extra hash map. To generate
one hash sample, we generate a uniform random number on
[0,MD] and check if it belongs to the green region. If not, we
continue with the another random number. The hash sample,
h(v), is simply the number of attempts until a random jump
hits the green region. An example is provided in Figure 1.
By fundamental probabilistic argument, we can show that

P [h(v) = h(w)] = J(v,w). (2)

Algorithm 1 Rejection Sampling (RS) for Weighted Jaccard

Input: data v ∈ RD
+ , MD =

∑D
d=1md, random seed[]

Initialize: hash samples h[]
For k = 1 to K

randseed = seed[k]
While true

h[k] = h[k] + 1
r = MD × Uniform[0, 1]
If ISGREEN(r,v)

break;
End If
randseed = dr × 106e

End While
End For
Output:K hash samples h[]

Thus, an unbiased estimator of J(v,w) can be constructed
by independently repeating the procedure for K times,

ĴRS(v,w) =
1

K

K∑
k=1

1{hk(v) = hk(w)}. (3)

Time Complexity. The running time of RS algorithm es-
sentially depends on the following quantity.

Definition 1. The effective sparsity of a data vector v is
defined as

sv =
S(Green)

S(Green) + S(Red)
=

∑D
i=1 vi
MD

, (4)

where S(·) denotes the size of red or green region.

In this paper, “sparsity” will refer to this definition. It is
easy to show that E[h(v)] = 1/sv , i.e., the computational
cost decreases as sv increases. In applications where the ef-
fective sparsity sv is small, we will need a large number
of jumps before stopping. Therefore, the rejection sampling
scheme may run slowly on sparse datasets. On the other
hand, for relatively dense data, RS can be very efficient.

From Random Seeds to Tabulation

The key to ensure the unbiasedness of ĴRS is the consis-
tency of the random numbers, meaning that for all data vec-
tors we should use the same set of random ri’s. In hashing
algorithms such as CWS, the common practical implemen-
tation to achieve consistency is to pre-generate (tabulate) all
the random numbers a priori, and read from the fixed tables
throughout the hashing process, which is called tabulation.
In general, as table look-up is faster than generating seeded
random numbers iteratively, tabulation is a useful trick for
practical speedup. For example, CWS with tabulation con-
sistently runs faster than standard implementation (Chris-
tiani 2020). In Algorithm 1, the consistency is ensured by re-
peatedly sampling random numbers based on (pseudo-fixed)
random seeds on the fly, until one number hits the green re-
gion. Compared to tabulation, this strategy is slow.

There are challenges if we hope to apply tabulation ideas
in RS. Consider tabulating down a K × L random matrix
with uniform [0,MD] entries, from which we use the i-th
row (a fixed length-L sequence) to generate the i-th hash
sample. One critical problem we confront is that, for any
data vector v with sparsity sv 6= 1, since h(v) follows a
geometric distribution which is unbounded, there is always
a non-zero probability that the random jump does not fall
into green region within L steps. This causes the problem
of invalid hash sample that we have to deal with. In other
words, we have to establish an “early stopping” mechanism
for RS. Indeed, since invalid hash samples are always pos-
sible to appear whenever we choose to fix the random num-
bers beforehand (i.e., tabulation), a specific construction of
such mechanism is indispensable for rigorous algorithm de-
sign, to make the algorithm self-contained. After that, we
can safely use fast tabulation trick in rejection sampling.

4198

Our Contributions
• We propose Efficient Rejection Sampling (ERS) based on

an “early stopping + densification” scheme to handle the
invalid hash samples, which only requires pre-generating
fixed-length random sequences.

• We provide the theoretical analysis on the mean and vari-
ance of the ERS Jaccard estimator. In particular, under our
tabulated ERS framework, the estimator is always slightly
biased upwards, though negligibly small in most cases.

• Experiments are conducted to compare the efficiency of
different hashing methods, showing that ERS can be sig-
nificantly faster in common scenarios when data are not
extremely sparse. In particular, ERS substantially acceler-
ates the original RS (Algorithm 1). We provide empirical
evidence on the proper choice of sequence length L that
brings two sources of acceleration (one from early stop-
ping and one from tabulation), and meanwhile maintains
good estimation and learning performance.

Efficient Rejection Sampling (ERS) with
Tabulation: Early Stop + Densification

As explained earlier, if we wish to read from tabulated tables
during the hashing process of RS, invalid hash samples are
always possible. This issue will not be fixed even if we tabu-
late down very long random sequences. To tackle this prob-
lem, we propose a scheme called Efficient Rejection Sam-
pling (ERS) based on early stopping + densification.

As shown in Algorithm 2, the idea is simple: we use inde-
pendent random sequences with fixed-length L for K hash
samples, which is pre-generated a priori. Here L can be cho-
sen flexibly. When L→∞, the ERS approximates the orig-
inal RS method (because the probability of getting invalid
hash samples goes to 0). When L is set relatively small, dur-
ing the hashing process, if the sequence does not fall into
the green region till the end (i.e., within L random jumps),
we record an “E” representing an empty hash. After go-
ing through K independent sequences, we obtain a vector
of hash samples denoted as h′, possibly containing empty
hashes. As the second step, h′ is processed with a densifi-
cation procedure, where we replace each “E” with a non-
empty hash chosen uniformly at random. This algorithm is

Algorithm 2 Efficient Rejection Sampling (ERS)

Input: data vector v ∈ RD
+ , MD =

∑D
d=1md, random

Uniform[0,MD] matrix R ∈ RK×L

Initialize: h′[] = E
For k = 1 to K

For i = 1 to L
If ISGREEN(R[k, i],v)

h′[k] = i
End If

End For
End For
h∗[] = Densification(h′[])
Output: Hash vector h∗[]

Algorithm 3 Densification for ERS method
Input: hash samples h′[], 2-U hashing functionH(·, ·)
Initialize: h∗[] = 0
For k = 1 to K

If h′[k] 6= E
h∗[k] = h′[k]

Else
attempt = 1
next = H(k, attempt)
While h′[next] = E

attempt = attempt+ 1
next = H(k, attempt)

End While
h∗[k] = h′[next]

End If
End For
Output: The densified hash vector h∗[]

described in Algorithm 3, which was introduced to densify
the bin-wise min-hashing (Shrivastava and Li 2014; Shrivas-
tava 2017; Li, Li, and Zhang 2019). Here, the 2-universal
hashing function H : [K] × N → [K] realizes the goal
of choosing a non-empty hash uniformly at random, while
avoiding cycles. The second input ofH(·, ·) counts the num-
ber of attempts made so far to find a non-empty hash.

Time Complexity. The theoretical expected complexity to
generate K hash samples of ERS for vector v is

O
(
K

(
min(L,

1

sv
) +

Nemp

K −Nemp

))
,

where Nemp is the number of empty hashes. Here, the sec-
ond term is usually small if we choose L properly such that
there is a sufficient number of non-empty hashes. Thus, the
worst complexity is in general upper bounded by O(KL).
As a comparison, recall that the running time of the orig-
inal RS is O(K/sv) and O(Kd) for CWS where d is the
number of non-zero elements in v. As we can see, when L
is set to be smaller than 1/sv and d, ERS is theoretically
more efficient than the original RS and CWS. Importantly,
we clarify that this acceleration comes from reduced theo-
retical complexity brought by the “early stopping” strategy.
Since tabulation provides additional acceleration in terms of
practical implementation, we consequently expect a signifi-
cant acceleration of ERS over RS in practice.

Theoretical Analysis
Suppose v and w are two non-negative data vectors with ef-
fective sparsity sv and sw respectively, and the Jaccard sim-
ilarity equals to J . Without loss of generality, we scale ev-
erything by 1/MD. Then the area of intersection is precisely

δ =
J

1 + J
(sv + sw). (5)

To estimate the Jaccard similarity using our proposed
scheme, we define the ERS estimator

ĴERS(v,w) =
1

K

K∑
k=1

1{h∗k(v) = h∗k(w)}, (6)

4199

where h∗ is the output after densification (Algorithm 3).

Theorem 1. For data vector v, denote m as the expected
number of non-empty hash samples in ERS (Algorithm 2).
Then L should satisfy L ≥ log(1−m/K)

log(1−sv) .

In Theorem 1, m/K is the fraction of non-empty hash
samples before densification, which should not be too small
(otherwise there is too little information). We can show that
if a data vector has sparsity sv = 10−p, then L = 1

sv
= 10p

would make m/K ≈ 0.65, and L = 1
2sv

gives m/K ≈ 0.4.

Expectation
We can classify a pair of hash samples (h(v), h(w)) into
four categories:

• Type 0: (�,�), both hash samples are non-empty.

• Type 1v: (E,�), only h(v) = E; Type 1w: (�, E), only
h(w) = E.

• Type 2: (E,E), both hash samples are empty.

The next lemma gives some useful probabilistic results.

Lemma 1. Let p0, p1 and p2 be the probability of one pair
of hash samples being type 0, 1v, 1w and 2, respectively.
Let δ = J

1+J (sv + sw), pv = 1 − (1 − sv)L and pw =

1− (1− sw)L. We have

p1v = (1− pv)

[
1−

(
1− sv − sw + δ

1− sv

)L
]
,

p1w = (1− pw)

[
1−

(
1− sv − sw + δ

1− sw

)L
]
,

p2 = (1− sv − sw + δ)
L
, p0 = 1− p1v − p1w − p2.

In Shrivastava (2016), it was shown that the original RS
estimator ĴRS is unbiased. However, this is under the as-
sumption that the length of random sequence can be infinite
(L = ∞ as Algorithm 1). As we will show next, with our
early stopping strategy, the estimator ĴERS becomes biased
due to the possible accidental collision in the densification
process. The precise result is provided as follows.

Theorem 2. Suppose v and w are two non-negative vec-
tors with Jaccard J and effective sparsity sv and sw, re-
spectively. Then,

E[ĴERS] = J +
p1
pvpw

svsw
sv + sw − svsw

, (7)

where pv , pw and p1 = p1v + p1w are given by Lemma 1.

Remark 1. When L → ∞ (the original RS algorithm), we
have p1 → 0, pv, pw → 1 and thus E[ĴERS]→ J .

Theorem 2 says that when tabulation is used, the ERS es-
timator is always biased upwards. This is a crucial differ-
ence between ERS (Algorithm 2) and the original RS (Al-
gorithm 1). The theoretical biases plotted in Figure 2 show:

Figure 2: Bias of ĴERS with different sv , sw and J . Left
panel: L = 1000. Right panel: L = 10000.

• The bias decreases as L or J increases.

• Even for very sparse vectors, e.g., sv = sw = 10−5 such
that 1/s = 105, the bias is already negligibly small (less
than 10−3) with L merely equals to 1000.

The important message of above analysis is that, when L is
chosen not too small (depending on different sparsity level),
the bias of ERS estimator is usually negligible.

Mean Squared Error (MSE)
The estimation accuracy of an estimator Ĵ is can be mea-
sured by Mean Squared Error (MSE), which is defined as

MSE(Ĵ) = E[(Ĵ − J)2].

In the sequel, we study the MSE of ĴERS . Note that for com-
pleteness, we consider a more flexible setting where we may
choose to use the first K ′ ≤ K hash samples for estimation,
although in total K hash samples are generated.

Theorem 3. Under the same setting and notations as
Lemma 1 and Theorem 2, denote µ = E[ĴERS] and let
p = 1 − (1 − sv − sw + δ)L. The Mean Squared Error
(MSE) of ĴERS is given by

MSE(ĴERS) =
µ

K ′
− 2µJ + J2+

K′∑
j=0

[
j(j − 1)Ẽ0 + (K ′ − j)(K ′ + j − 1)Ẽ1

] B(K ′, j, p)

K ′2
,

where B(K ′, j, p) =
(
K′

j

)
pj(1 − p)K

′−j is the binomial
density. Let p1v and p1w be defined in Lemma (1). We have

Ẽ0 =
K∑

m=1

[
J2 +

p21vΘ1v,1v(m)

(p0 + p1)2
+
p21wΘ1w,1w(m)

(p0 + p1)2

+
2p0p1vΘ0,1v(m)

(p0 + p1)2
+

2p0p1wΘ0,1w(m)

(p0 + p1)2

+
2p1vp1wΘ1v,1w(m)

(p0 + p1)2

]
B(K,m, p0 + p1)

,
K∑

m=1

Vdf (m)B(K,m, p0 + p1),

4200

Ẽ1 =
K∑

m=1

[1

m
Vsm(m) +

m− 1

m
Vdf (m)

]
B(K,m, p0 + p1),

where

Vsm(m) = J +
p1vΘ1v

p0 + p1
+
p1wΘ1w

p0 + p1
.

Let p̃0v = p0 + p1v , p̃0w = p0 + p1w, p̃ = p0 + p1. We have

Θ1v,1v(m) =
m−2∑
j=1

[G1v2w

j
+
j − 1

j
42
]
B(m− 2, j, p̃0w),

Θ1w,1w(m) =
m−2∑
j=1

[G1w2v

j
+
j − 1

j
42
]
B(m− 2, j, p̃0v),

Θ0,1v(m) =
m−2∑
j=0

[G0,1v

j + 1
+

j

j + 1

p̃

p0
J4
]
B(m− 2, j, p̃0w),

Θ0,1w(m) =
m−2∑
j=0

[G0,1w

j + 1
+

j

j + 1

p̃

p0
J4
]
B(m− 2, j, p̃0v),

Θ1v,1w(m)

=
∑

x+y+z=m−2
x,y,z≥0

px0p
y
1vp

z
1w

(m− 2)!

x!y!z!

{ 4
nvnw

+
nv − 1

nvnw
G1w2v

+
nw − 1

nvnw
G1v2w + [1− nv + nw − 1

nvnw
]42

}
,

Θ1v =

m−1∑
j=1

[
1

j
4+

j − 1

j
G1w2v

]
B(m− 1, j, p̃0w),

Θ1w =
m−1∑
j=1

[
1

j
4+

j − 1

j
G1v2w

]
B(m− 1, j, p̃0v),

where nv = x+ z + 1 and nw = x+ y + 1. In addition,

4 =
svsw
pvpw

1− (1− sv − sw + svsw)L

sv + sw − svsw
,

G1v2w =
svs

2
w

pvp2w

1− (1− sv)L(1− sw)2L

1− (1− sv)(1− sw)2
,

G1w2v =
s2vsw
p2vpw

1− (1− sv)2L(1− sw)L

1− (1− sv)2(1− sw)
,

G0,1v =
δsw
p0pw

1− (1− sv − sw + δ)L(1− sw)L

1− (1− sv − sw + δ)(1− sw)
,

G0,1w =
δswv

p0pv

1− (1− sv − sw + δ)L(1− sv)L

1− (1− sv − sw + δ)(1− sv)
.

Remark 2. As L → ∞, p0 → 1 and p1, p2 → 0. We can
verify that MSE(ĴERS)→ J(1−J)

K′ = MSE(ĴRS).
The theoretical bias and MSE of ERS will be empirically

validated in next section (see Figure 3).

Experiments
In this section, we test the efficiency and estimation qual-
ity of ERS. In addition, we also show that it works well in
linearized kernel learning, a potential application of ERS.

Running Time Comparison
There have been several hashing algorithms proposed for
weighted Jaccard similarity in recent years. However, a com-
prehensive comparison of efficiency is still missing in litera-
ture, particularly for rejection sampling methods. In the fol-
lowing, we compare the running time of ERS with various
hashing methods, to confirm its significant efficiency advan-
tage when data are not extremely sparse. All the tests are
run using C++ on an Intel(R) Xeon(R) Platinum 8276 CPU
2.20GHz server with optimization flag -O3 enabled. Un-
less specifically stated, the pseudo-random number gener-
ator (PRNG) is the Mersenne Twister (mt19937) generator.
For competing methods CWS, BagMinHash and DartMin-
Hash, we use the same source code as in Christiani (2020).
Specifically, the codes are optimized to have fast practical
speed. Interestingly, tabulation is also used in these imple-
mentations for acceleration.

CWS. We implement an optimized version. In particular,
the random numbers are tabulated down and the use of loga-
rithm, exponential and division is minimized. The logarithm
of data v is computed only once for all K hash samples.

BagMinHash. The implementation is from the original
source code of Ertl (2018). We choose to use version “Bag-
MinHash2” since it is faster. The PRNG is XXHash64.

DartMinHash. We use the implementation provided
by Christiani (2020). Some pre-computed tables are used
to make the code faster. Also, the code uses fast tabulation
hashing (Zobrist 1990) to simulate random draws.

RS. For the original RS algorithm, we strictly follow the
architecture in Algorithm 1, where random numbers are suc-
cessively produced until a random jump hits the green re-
gion. In implementation, we do not need to reset the seed
for every single random number inside the WHILE since the
mt19937 generator naturally produces the same sequence of
random numbers once the initial seed is the same. We ob-
serve that it indeed accelerates the algorithm by 1∼2x.

ERS. We implement ERS (Algorithm 2) with various L.
It is convenient to measure L in terms of 1/s (recall s is the
effective sparsity). We test L = α 1

s with α = 0.5, 1, 5.
Following e.g., Ertl (2018), we will use synthetic data to

flexibly control the data statistics (e.g., norm and sparsity).
The dimensionality is set to D = 216 = 65, 536, and we
vary the number of non-zeros d. Each non-zero entry is i.i.d.
standard uniform. Notably, DartMH is fastest when ‖v‖1 =
1. Thus, for DartMH we normalize the data vector to have
unit l1 norm to favor DartMH. We randomly generate 100
data vectors and report the average time for generating K =
{256, 512, 1024} hash samples. Table 1 shows that:

• ERS is fastest when d ≥ 210, and significantly so as d gets
larger. It can be 10∼40x faster than the best competitor
DartMH, and 100∼1000x faster than CWS. Note that d =
210 corresponds to d/D ≈ 1.5%, which is already fairly
sparse in terms of non-zeros.

• ERS with α = 5 is substantially faster than vanilla RS
(∼5x), which demonstrates the practical speedup of us-

4201

d K CWS BagMH DartMH RS ERS α = 0.5 α = 1 α = 5
512 256 2.61 10.44 0.44 6.24 0.36 1.06 1.38
512 512 4.97 19.69 0.68 12.57 1.16 1.96 3.11
512 1024 10.11 42.27 1.26 26.65 2.59 4.27 6.48

1024 256 4.61 11.23 0.58 2.83 0.16 0.34 0.58
1024 512 9.44 22.42 0.86 6.61 0.39 0.90 1.48
1024 1024 19.14 45.69 1.48 13.76 1.34 2.26 3.49
2048 256 5.76 12.20 0.70 2.44 0.10 0.15 0.48
2048 512 12.89 22.83 1.02 5.34 0.19 0.39 1.26
2048 1024 27.74 47.12 1.84 10.61 0.61 1.30 2.59
4096 256 18.05 18.39 0.90 0.80 0.06 0.08 0.14
4096 512 35.77 30.17 1.54 1.59 0.11 0.20 0.28
4096 1024 71.26 55.82 2.27 3.74 0.22 0.43 0.88
8192 256 22.12 19.84 1.60 0.71 0.04 0.06 0.11
8192 512 49.44 34.40 2.01 1.39 0.08 0.11 0.25
8192 1024 105.51 61.87 3.03 3.08 0.15 0.22 0.61
16384 256 70.93 33.65 2.79 0.46 0.03 0.04 0.04
16384 512 140.02 52.68 3.29 0.79 0.05 0.08 0.10
16384 1024 278.05 89.01 4.13 1.73 0.10 0.14 0.23

Table 1: Running time (ms) of different algorithms. The results are averaged over 100 random and independent repetitions.

ing tabulation (since α = 5 is large enough to mimic Al-
gorithm 1 with tabulation only). Also, ERS is more ef-
ficient with smaller α. This acceleration comes from re-
duced complexity brought by early stopping in ERS.

Inevitably, by the nature of rejection sampling technique,
ERS will become slower in sparser data. Nevertheless, as
demonstrated by our results, ERS is the most efficient
method as long as the data are not extremely sparse. For rel-
atively dense data, ERS can be faster by magnitudes.

Estimation and Learning
We validate the results in Theorem 2 and Theorem 3, and
provide experiments on two applications: Jaccard estima-
tion and kernel learning. We use the Words dataset (Li and
Church 2005) and Caltech101 (Li, Fergus, and Perona 2007)
(which was also used in Shrivastava (2016)). The Words
dataset contains 2702 samples, and each instance is a word
count in 216 different documents. The average number of
non-zeros is 2.11 × 103 and the average reciprocal of spar-
sity (i.e., the expected number of jumps) is 2.04× 103. This
dataset is in general fairly sparse. For Caltech101, we use
the gray scale pixel values as the data samples, randomly se-
lected from 11 classes of images for Jaccard estimation. On
average, D = 485, 640, d = 66, 390 and 1/s ≈ 17.

Jaccard Estimation. In Figure 3, we validate our theoret-
ical formulas from Theorem 2 and Theorem 3 with empir-
ical mean and MSE on word pair AGAIN-AGAINST. The
Jaccard similarity is J = 0.147, while the sparsity s is
4.6 × 10−3, 4.1 × 10−3 for two word vectors, respectively.
The number of non-zeros d is 3,655 and 2,945, respectively.
We see that the empirical value overlaps the theory.

To test the estimation accuracy, we perform evaluation
over whole datasets. In Figure 4, we draw the mean abso-
lute error (MAE) of ERS Jaccard estimator, over all sample-
pairs in Words and Caltech101 datasets, along with the time

ratio of ERS and RS over CWS. We see that with L = 103

(i.e., α ≈ 0.5), the error curve of ERS almost overlaps that
of CWS for Words, and L = 50 suffices for Caltech101. On
both datasets, with properly chosen L, ERS 1) improves RS
by a large factor (10∼50x), and 2) beats CWS in efficiency
(∼3x for Words and more than 1000x for Caltech101), while
providing the same estimation accuracy. Note that, a very
small L would greatly increase the chance of accidental col-
lision in densification of ERS, leading to poor estimates.
Consequently, when 1/s is very small, we recommend using
a larger L, e.g., α ≥ 50/17 ≈ 3 to ensure estimation quality.

100 101 102 103

K

0.146

0.15

0.154

0.158

M
ea

n

AGAIN - AGAINST
L=100

100 101 102 103

K

10-4

10-3

10-2

10-1

M
SE

AGAIN - AGAINST
L=100

100 101 102 103

K

0.147

0.148

0.149

0.15

M
ea

n

AGAIN - AGAINST
L=1000

100 101 102 103

K

10-4

10-3

10-2

10-1

M
SE

AGAIN - AGAINST
L=1000

Figure 3: Mean and MSE of ERS estimator of a word pair.
Blue dash curves are true J , and the black dotted curves are
the theoretical mean of ERS. Black solid curves are empiri-
cal mean and MSE, respectively.

4202

500 1000 3000 5000 10000 100000
L

0

0.5

1

1.5

Ti
m

e
R

at
io

Words

 26 27 28 29 210

K

0.01

0.02

0.03

0.04

0.05

Ab
so

lu
te

 e
rro

r

Caltech101

L=20
L=50
L=100
CWS

20 50 100 300 RS
L

10-3

10-2

Ti
m

e
R

at
io Caltech101

Figure 4: Words and Caltech101: MAE over all sample pairs,
and running time ratio of ERS and RS over CWS.

Classification. Li (2015, 2017); Li and Zhang (2017); Li
(2018) showed that using the Jaccard similarity as the ker-
nel often leads to much better classification accuracy than
using linear kernel. One can directly and (very efficiently)
use hash samples from CWS, RS, or ERS as linear kernel
to approximate the classification result from Jaccard kernel.
As Li (2015, 2017); Li and Zhang (2017); Li (2018) already
provided very exhaustive empirical results, here we only use
two datasets from the UCI repository2 as shown in Table 2 to
confirm the advantage of ERS. Both datasets are randomly
split 50/50 for training and testing. Data features are pre-
processed to have unit l2 norm.

n D C d 1/s
Dailysports 9120 11250 19 5590 294.6

PCMAC 1932 3289 2 47.9 628.2

Table 2: Statistics of datasets. C is the number of classes, d
is the average number of non-zeros and 1/s is the average
reciprocal of effective sparsity. Since Dailysports contains
negative entries, we apply the (GMM) transformation (Li
2017) to generate a new dataset which doubles the original
dimension and contains only non-negative entries.

Figure 5 reports the test accuracy of CWS and ERS
with different choice of L. On both datasets, we see that
the learning performance of ERS elevates as L increases.
For Dailysports (1/s ≈ 300), L =100∼300 gives accu-
racy very close to that of exact GMM kernel. On PCMAC
(1/s ≈ 650), L = 300 suffices. That said, setting L ≈ 1

2s
(i.e., α ≈ 0.5) is sufficient for matching the GMM base-
line in approximate kernel learning. Nevertheless, one may
also choose to use a more conservative (slightly larger) L in
practice for more robustness. This would make ERS slightly

2http://archive.ics.uci.edu/ml

 26 27 28 29 210

K

90

92

94

96

98

100

Te
st

 A
cc

ur
ac

y
(%

)

Dailysports

CWS
ERS L=100
ERS L=300
ERS L=500

 26 27 28 29 210

K

80

84

88

92

Te
st

 A
cc

ur
ac

y
(%

)

PCMAC
CWS
ERS L=100
ERS L=300
ERS L=500

Figure 5: Test accuracy of SVM classification, for compar-
ing ERS (L = {100, 300, 500}) with CWS. The dash line
denotes the accuracy from using the original kernel.

100 300 500 1000 5000 RS
L

10-2

100

102

Ti
m

e
R

at
io

Dailysports

PCMAC

Figure 6: The running time ratio of ERS and RS over CWS,
on two classification datasets.

slower than using a small L, but still much faster than RS.
Again, one may flexibly choose L to find a good balance.

In Figure 6, we observe similar trend of time ratio for
these datasets. On Dailysports which is relatively dense,
ERS with L = 300 is substantially faster than CWS and RS.
On PCMAC which is very sparse, note that CWS would run
628/48 ≈ 13 times faster than RS in principle. While with
L = 300, ERS only requires double running time as CWS.
This illustrates that on sparse data where CWS has a natural
speed advantage over RS, our fast ERS can be comparable
to CWS in terms of efficiency.

Conclusion

In this present paper, we mainly address the efficiency is-
sue of using rejection sampling (RS) in the hashing process
of weighted Jaccard similarity. We propose our ERS strategy
based on the “early stopping + densification” scheme, which
allows the use of fast tabulation trick to accelerate the origi-
nal RS algorithm in terms of both the practical implementa-
tion time and the theoretical complexity. We show how the
random sequence length L controls the efficiency-accuracy
trade-off in ERS, and a proper L in practice can provide
both fast speed and good estimation quality. Moreover, we
also provide comprehensive time comparison among vari-
ous hashing algorithms, confirming the superior efficiency
of ERS in the case when data are not extremely sparse.

4203

References
Bag, S.; Kumar, S. K.; and Tiwari, M. K. 2019. An efficient
recommendation generation using relevant Jaccard similar-
ity. Information Sciences 483: 53–64.

Bendersky, M.; and Croft, W. B. 2009. Finding text reuse on
the web. In Proceedings of the Second International Confer-
ence on Web Search and Web Data Mining (WSDM), 262–
271. Barcelona, Spain.

Bollegala, D.; Matsuo, Y.; and Ishizuka, M. 2011. A Web
Search Engine-Based Approach to Measure Semantic Simi-
larity between Words. IEEE Trans. Knowl. Data Eng. 23(7):
977–990.

Broder, A. Z.; Charikar, M.; Frieze, A. M.; and Mitzen-
macher, M. 1998. Min-Wise Independent Permutations. In
Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing (STOC), 327–336. Dallas, TX.

Broder, A. Z.; Glassman, S. C.; Manasse, M. S.; and Zweig,
G. 1997. Syntactic clustering of the Web. In WWW, 1157 –
1166. Santa Clara, CA.

Buehrer, G.; and Chellapilla, K. 2008. A scalable pattern
mining approach to web graph compression with communi-
ties. In Proceedings of the International Conference on Web
Search and Web Data Mining (WSDM), 95–106. Stanford,
CA.

Charikar, M. S. 2002. Similarity estimation techniques
from rounding algorithms. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing (STOC), 380–
388. Montreal, Canada.

Cherkasova, L.; Eshghi, K.; III, C. B. M.; Tucek, J.; and
Veitch, A. C. 2009. Applying syntactic similarity algorithms
for enterprise information management. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), 1087–1096. Paris,
France.

Chierichetti, F.; Kumar, R.; Lattanzi, S.; Mitzenmacher, M.;
Panconesi, A.; and Raghavan, P. 2009. On compressing so-
cial networks. In Proceedings of the 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD), 219–228. Paris, France.

Chierichetti, F.; Kumar, R.; Pandey, S.; and Vassilvitskii, S.
2010. Finding the Jaccard Median. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 293–311. Austin, TX.

Christiani, T. 2020. DartMinHash: Fast Sketching for
Weighted Sets. arXiv preprint arXiv:2005.11547 .

Delgado, A. D.; Martı́nez-Unanue, R.; Fresno-Fernández,
V.; and Montalvo, S. 2014. A Data Driven Approach for
Person Name Disambiguation in Web Search Results. In
Proceedings of the 25th International Conference on Com-
putational Linguistics (COLING), 301–310. Dublin, Ireland.

Dourisboure, Y.; Geraci, F.; and Pellegrini, M. 2009. Extrac-
tion and classification of dense implicit communities in the
Web graph. ACM Trans. Web 3(2): 1–36.

Ertl, O. 2018. BagMinHash - Minwise Hashing Algo-
rithm for Weighted Sets. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining (KDD), 1368–1377. London, UK.
Fetterly, D.; Manasse, M.; Najork, M.; and Wiener, J. L.
2003. A large-scale study of the evolution of web pages.
In Proceedings of the Twelfth International World Wide Web
Conference (WWW), 669–678. Budapest, Hungary.
Forman, G.; Eshghi, K.; and Suermondt, J. 2009. Efficient
detection of large-scale redundancy in enterprise file sys-
tems. SIGOPS Oper. Syst. Rev. 43(1): 84–91. ISSN 0163-
5980.
Fu, M.; Feng, D.; Hua, Y.; He, X.; Chen, Z.; Xia, W.; Zhang,
Y.; and Tan, Y. 2015. Design Tradeoffs for Data Deduplica-
tion Performance in Backup Workloads. In Proceedings of
the 13th USENIX Conference on File and Storage Technolo-
gies (FAST), 331–344. Santa Clara, CA.
Fuchs, G.; Acriche, Y.; Hasson, I.; and Petrov, P. 2020.
Intent-Driven Similarity in E-Commerce Listings. In Pro-
ceedings of the 29th ACM International Conference on
Information and Knowledge Management (CIKM), 2437–
2444. Virtual Event, Ireland.
Gollapudi, S.; and Panigrahy, R. 2006. Exploiting asymme-
try in hierarchical topic extraction. In Proceedings of the
2006 ACM CIKM International Conference on Information
and Knowledge Management (CIKM), 475–482. Arlington,
VA.
Gollapudi, S.; and Sharma, A. 2009. An axiomatic approach
for result diversification. In Proceedings of the 18th Inter-
national Conference on World Wide Web (WWW), 381–390.
Madrid, Spain.
Hadjieleftheriou, M.; and Srivastava, D. 2010. Weighted
Set-Based String Similarity. IEEE Data Eng. Bull. 33(1):
25–36.
Ioffe, S. 2010. Improved Consistent Sampling, Weighted
Minhash and L1 Sketching. In Proceedings of the 10th
IEEE International Conference on Data Mining (ICDM),
246–255. Sydney, AU.
Jindal, N.; and Liu, B. 2008. Opinion spam and analysis. In
Proceedings of the International Conference on Web Search
and Web Data Mining (WSDM), 219–230. Palo Alto, CA.
Kleinberg, J.; and Tardos, E. 1999. Approximation Algo-
rithms for Classification Problems with Pairwise Relation-
ships: Metric Labeling and Markov Random Fields. In Pro-
ceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), 14–23. New York, NY.
Lei, Y.; Huang, Q.; Kankanhalli, M. S.; and Tung, A. K. H.
2020. Locality-Sensitive Hashing Scheme based on Longest
Circular Co-Substring. In Proceedings of the 2020 Inter-
national Conference on Management of Data (SIGMOD),
2589–2599. Online conference [Portland, OR, USA].
Li, F.; Fergus, R.; and Perona, P. 2007. Learning generative
visual models from few training examples: An incremental
Bayesian approach tested on 101 object categories. Comput.
Vis. Image Underst. 106(1): 59–70.

4204

Li, P. 2015. 0-Bit Consistent Weighted Sampling. In Pro-
ceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
665–674. Sydney, Australia.

Li, P. 2017. Linearized GMM Kernels and Normalized Ran-
dom Fourier Features. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD), 315–324.

Li, P. 2018. Several Tunable GMM Kernels. arXiv preprint
arXiv:1805.02830 .

Li, P.; and Church, K. W. 2005. Using Sketches to Es-
timate Associations. In Proceedings of the 2005 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 708–715. Vancouver, Canada.

Li, P.; and König, A. C. 2011. Theory and applications of
b-bit minwise hashing. Commun. ACM 54(8): 101–109.

Li, P.; Li, X.; Samorodnitsky, G.; and Zhao, W. 2021. Con-
sistent Sampling Through Extremal Process. In Proceedings
of the Web Conference (WWW). Virtual.

Li, P.; Li, X.; and Zhang, C.-H. 2019. Re-randomized Den-
sification for One Permutation Hashing and Bin-wise Con-
sistent Weighted Sampling. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 15900–15910. Vancou-
ver, Canada.

Li, P.; Shrivastava, A.; Moore, J.; and König, A. C. 2011.
Hashing Algorithms for Large-Scale Learning. In Advances
in Neural Information Processing Systems (NIPS), 2672–
2680. Granada, Spain.

Li, P.; and Zhang, C.-H. 2017. Theory of the GMM Ker-
nel. In Proceedings of the 26th International Conference on
World Wide Web (WWW), 1053–1062. Perth, Australia.

Manasse, M.; McSherry, F.; and Talwar, K. 2010. Consistent
Weighted Sampling. Technical Report MSR-TR-2010-73.

Manzoor, E. A.; Milajerdi, S. M.; and Akoglu, L. 2016.
Fast Memory-efficient Anomaly Detection in Streaming
Heterogeneous Graphs. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD), 1035–1044. San Francisco,
CA.

Najork, M.; Gollapudi, S.; and Panigrahy, R. 2009. Less
is more: sampling the neighborhood graph makes SALSA
better and faster. In Proceedings of the Second International
Conference on Web Search and Web Data Mining (WSDM),
242–251. Barcelona, Spain.

Pandey, S.; Broder, A.; Chierichetti, F.; Josifovski, V.; Ku-
mar, R.; and Vassilvitskii, S. 2009. Nearest-neighbor
caching for content-match applications. In Proceedings
of the 18th International Conference on World Wide Web
(WWW), 441–450. Madrid, Spain.

Pewny, J.; Garmany, B.; Gawlik, R.; Rossow, C.; and Holz,
T. 2015. Cross-Architecture Bug Search in Binary Executa-
bles. In Proceedings of the 2015 IEEE Symposium on Secu-
rity and Privacy (SP), 709–724. San Jose, CA.

Pouget-Abadie, J.; Aydin, K.; Schudy, W.; Brodersen, K.;
and Mirrokni, V. S. 2019. Variance Reduction in Bipartite
Experiments through Correlation Clustering. In Advances in
Neural Information Processing Systems (NeurIPS), 13288–
13298. Vancouver, Canada.
Raff, E.; and Nicholas, C. K. 2017. An Alternative to NCD
for Large Sequences, Lempel-Ziv Jaccard Distance. In Pro-
ceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
1007–1015. Halifax, Canada.
Schubert, E.; Weiler, M.; and Kriegel, H. 2014. SigniTrend:
scalable detection of emerging topics in textual streams
by hashed significance thresholds. In Proceedings of the
20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), 871–880. New
York, NY.
Shrivastava, A. 2016. Simple and Efficient Weighted Min-
wise Hashing. In Neural Information Processing Systems
(NIPS), 1498–1506. Barcelona, Spain.
Shrivastava, A. 2017. Optimal Densification for Fast and
Accurate Minwise Hashing. In Proceedings of the 34th
International Conference on Machine Learning (ICML),
3154–3163. Sydney, Australia.
Shrivastava, A.; and Li, P. 2012. Fast Near Neighbor Search
in High-Dimensional Binary Data. In Proceedings of Euro-
pean Conference on Machine Learning and Knowledge Dis-
covery in Databases (ECML-PKDD), 474–489. Bristol, UK.
Shrivastava, A.; and Li, P. 2014. Densifying One Permuta-
tion Hashing via Rotation for Fast Near Neighbor Search.
In Proceedings of the 31th International Conference on Ma-
chine Learning (ICML). Beijing, China.
Urvoy, T.; Chauveau, E.; Filoche, P.; and Lavergne, T. 2008.
Tracking Web spam with HTML style similarities. ACM
Trans. Web 2(1): 1–28.
Wang, J.; Song, Y.; Leung, T.; Rosenberg, C.; Wang, J.;
Philbin, J.; Chen, B.; and Wu, Y. 2014. Learning Fine-
Grained Image Similarity with Deep Ranking. In Proceed-
ings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 1386–1393. Columbus, OH.
Yang, D.; Rosso, P.; Li, B.; and Cudré-Mauroux, P. 2019.
NodeSketch: Highly-Efficient Graph Embeddings via Re-
cursive Sketching. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining (KDD), 1162–1172. Anchorage, AK.
Zhu, E.; Deng, D.; Nargesian, F.; and Miller, R. J. 2019.
JOSIE: Overlap Set Similarity Search for Finding Joinable
Tables in Data Lakes. In Proceedings of the 2019 Inter-
national Conference on Management of Data (SIGMOD),
847–864. Amsterdam, The Netherlands.
Zobrist, A. L. 1990. A new hashing method with application
for game playing. ICGA Journal 13(2): 69–73.

4205

