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Abstract

We study the classic stochastic linear bandit problem under
the restriction that each arm may be selected for limited num-
ber of times. This simple constraint, which we call disposabil-
ity, captures a common restriction that occurs in recommen-
dation problems from a diverse array of applications rang-
ing from personalized styling services to dating platforms.
We show that the regret for this problem is characterized
by a previously-unstudied function of the reward distribution
among optimal arms. Algorithmically, our upper bound relies
on an optimism-based policy which, while computationally
intractable, lends itself to approximation via a fast alternat-
ing heuristic initialized with a classic similarity score. Exper-
iments show that our policy dominates a set of benchmarks
which includes algorithms known to be optimal for the linear
bandit without disposability, along with natural modifications
to these algorithms for the disposable setting.

Introduction
Consider the stochastic linear bandit problem: given a set of
“arms” 01, . . . , 0 ∈ R3 , the task is to select a single arm
in each of a sequence of time periods so as to maximize the
total reward gained. The rewards are random, but there exists
some (unknown) \∗ ∈ R3 such that the mean reward when
an arm 08 is chosen is equal to 〈08 , \∗〉. Algorithms known to
be theoretically optimal (in a sense we will review later on)
for this problem successfully balance the trade-off between
arms that are known to yield high reward, with arms that
may reveal more information about the unknown \∗.

These algorithms are now a core component of most mod-
ern recommender systems, as the linear bandit model pro-
vides an extremely close fit to a common problem in recom-
mendations: the cold-start problem. Succinctly, this is the
problem of making recommendations to newer users whose
amount of activity is insufficient to accurately estimate their
preferences. To map the cold-start problem to the linear
bandit model: the 08’s encode the “features” for each item,
which have been previously estimated using past data, and
\∗ encodes the unknown features of the new user. The linear
form of the mean reward matches the underlying preference
model of a variety of recommendation algorithms including
those based on matrix factorization.
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The key problem we seek to address is for a particular
subset of recommender systems in which the number of rec-
ommendations of an item made to a person may not exceed
a certain limit, a property we will refer to as disposability.
One natural example of disposability in practice is person-
alized styling services (e.g. Stitch Fix, BeautyFIX, Trunk
Club) which by and large operate by sending personalized
“boxes” of items to users. Users can choose to purchase any
subset of the box, and these companies do not re-send an
item to the same user. Another application area is online dat-
ing where some online dating platforms do not want to show
the same person multiple times to a user.

This Paper: Thus motivated, we study the linear bandit
problem under the additional rule that each arm may be se-
lected at most a certain amount for each user. Our primary
observation is that this disposability constraint impacts both
(a) the performance of algorithms known to be optimal when
disposability is not imposed, and (b) the nature of algorithms
that achieve meaningful theoretical (regret) guarantees. Our
specific contributions are as follows:

1. We prove a minimax lower bound of Ω(q3
√
)) on the

regret of the disposable linear bandit problem which sug-
gests that disposability should allow for lower regret than
the standard linear bandit. In particular, while the depen-
dence on the dimensionality 3 and time horizon ) re-
mains the same as in the standard linear bandit, a new
term q ∈ [0, 1] loosely captures the ‘spread’ of the opti-
mal set of arms.

2. We propose an optimism-based algorithm, which general-
izes the optimal upper confidence bound algorithm (called
LinUCB) for the standard linear bandit. We prove an up-
per bound of $ (

√
W3
√
)) on its regret, where W is a pa-

rameter that again encodes a notion of the spread of the
optimal arm set. Noting that our algorithm involves a
computationally hard optimization formulation, we pro-
pose a fast alternating heuristic. While this heuristic is not
guaranteed to find the true optimum, we observe that it
performs well in practice when combined with a clever
initialization based on similarity scores.

3. We evaluate our algorithm’s performance on a recommen-
dation task based on synthetically generated data. Com-
pared to a number of benchmarks, including LinUCB and
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a natural modification of Thompson sampling, our al-
gorithm (solved via the preceding heuristic) achieves as
much as 10% lower regret against all competing algo-
rithms.

Previous Work: There are mainly two types of filtering
recommender systems use, content based filtering such as in
(Gómez Hidalgo et al. 2006), (Lang 1995) and (Mooney and
Roy 2000) and collaborative filtering (Sarwar et al. 2001).
Collaborative filtering makes use of the idea that similar peo-
ple will also prefer similar products.

The problem of recommendation becomes more compli-
cated when a new user is in the network, which is called
the cold-start problem. (Bobadilla et al. 2012) , (Wei et al.
2017), (Lika, Kolomvatsos, and Hadjiefthymiades 2014) and
many more focused especially on algorithms improving this
problem. Our paper also contributes to this stream of re-
search, albeit using bandit algorithms.

Another method used to learn about user preferences
is Multi-Armed Bandits. The classical multi-armed bandit
problem was introduced by (Robbins 1952). The problem is
well studied for a couple of decades now, pioneered and put
together by (Gittins 1979), who introduced the all-time fa-
mous Gittins Index. The known best algorithm for the classic
simple MAB is the Upper Confidence Bound (UCB) algo-
rithm by (Lai and Robbins 1985). How to use certain MAB
techniques for recommendations are studied before, such as
in (Bouneffouf, Bouzeghoub, and Gançarski 2012), (Zeng
et al. 2016). In recommendations setting, however, learning
a user’s preference is most sought-after, so linear bandits,
first introduced in (Auer 2002), then used in recommenda-
tions in (Li et al. 2010) are also a recent popular tool.

Introduced by (Basu et al. 2019) and then extended to the
contextual version by (Basu et al. 2020), blocking bandits
represent the case for which the arms become unavailable
for a deterministic amount of time after they are played.
A similar bandit model to ours is budgeted bandits. Bud-
geted bandits have been studied in both classic MAB and
linear models in (Xia et al. 2017), Thompson Sampling on
budgeted bandits in (Xia et al. 2015), cost-aware cascading
bandits (Gan et al. 2020). In all of these models, however,
the budget is a common budget on all of the resources that
arms might consume, whereas in our case, we consider inde-
pendent budgets on arms. In (Slivkins 2013; Combes, Jiang,
and Srikant 2015), the model is a classical, not linear, MAB
model except that each arm has an individual certain bud-
get. Bandits-with-Knapsacks, as studied in (Badanidiyuru,
Kleinberg, and Slivkins 2013; Agrawal and Devanur 2016),
are the types of bandits that consume a set of resources each
time they are played.

Bandits that deteriorate or vanish by time have been stud-
ied in (Farias and Madan 2011; Chakrabarti et al. 2009;
Levine, Crammer, and Mannor 2017; Seznec et al. 2019). In
(Farias and Madan 2011), the agent can either keep playing
an arm or decide to discard it. (Chakrabarti et al. 2009) has
a stochastic time until when an arm is exhausted. (Levine,
Crammer, and Mannor 2017) bandits have a decaying re-
ward function depending on the number of times an arm is

pulled. (Kleinberg, Niculescu-Mizil, and Sharma 2010) has
varying arm-sets over time, however, the structure differ sig-
nificantly from ours, since we do not allow an unavailable
action to be available again in the future. None of the above
models has extensively studied the problem of budgeted lin-
ear bandits the way we model in this paper.

Model: Disposable Linear Bandits
We begin by formally defining the disposable linear ban-
dit problem that we will study. First, recall the well-studied
(stochastic) linear bandit problem, which we will refer to
here as the “non-disposable” problem: we have a set � ⊂ R3
of available actions, or arms. At each of ) discrete time peri-
ods, we select exactly one arm, and a reward is observed and
received. The reward from selecting any arm 0 ∈ � is drawn
independently according to a distribution 〈0, \∗〉 + [, where
\∗ ∈ R3 is an (unknown) vector that we seek to learn over
time, and [ is some mean-zero noise. The goal is, loosely,
to collect as much total reward as possible within the ) time
periods. We quickly summarize some standard assumptions
and notation that will be needed:

1. Bounded arms: ‖0‖ ≤ ! for all 0 ∈ �
2. Bounded \∗: ‖\∗‖ ≤ !
3. Sub-Gaussian1 noise: ‖[‖k2 ≤ f
4. Finite arm set: � = {01, . . . , 0 }
5. Non-negative mean rewards: 〈0, \∗〉 ≥ 0 for all 0 ∈ �
The fact that the same ! is used in the first two assumptions
is not necessary, and done purely to save on notation. Simi-
larly, the fifth assumption is not necessary, but allows us to
avoid problems in which it may be preferable to not select
any arm. From an applications standpoint, the typical map-
ping to the recommendation setting is to treat \∗ as the cold
user, the arms as items to recommend, and reward as some
form of conversion. The embedding of the user and items in
some inner-product space is estimated from previous data,
e.g. with collaborative filtering via matrix factorization (for
example, see (Koren, Bell, and Volinsky 2009)).

The above problem is made disposable by imposing just
one additional constraint: each arm can only be selected at
most once. Implicitly, this also requires assuming that the
number of arms  is at least ) , though in our target applica-
tions it is typically the case that  � ) .

Note that we have not required the arms in � to be
unique.2 so this problem includes as special cases: the origi-
nal non-disposable problem, and versions with arm-specific
restrictions on selection such as so-called budgeted bandits
(Slivkins 2013).

Let c denote any policy, i.e. a collection of functions

cC : ( [ ] × R)C−1 → [ ],
which at each time C, map the previously selected arms and
observed rewards to the next selected arm (the notation [ ]

1The sub-Gaussian norm of a random variable - is defined as
‖- ‖k2 ≡ inf{1 > 0 : E[exp( |- |2/12)] ≤ 2}.

2The set � should thus technically be referred to as a multiset,
though we will continue to use the shorter term “set.”
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refers to the set {1, . . . ,  }). We measure the performance
of a policy c via its regret with respect to the offline optimal
policy which knows \∗. Specifically, the regret Reg(c) is
defined as

Reg(c) ≡ max
(⊂[ ], |( |=)

∑
B∈(
〈0B , \∗〉 − E

[
)∑
C=1
〈0cC , \∗〉

]
, (1)

where the first term is the maximum achievable expected
reward, and the second term is the expected reward of c.

To summarize so far, our goal is to construct a policy c
which both (a) satisfies the disposability constraint, and (b)
achieves low regret. Before describing our policy, we will
state a lower bound on the regret of any policy. Comparing
this lower bound with known results for the non-disposable
problem will serve to highlight the effect of the disposability
constraint. Before proceeding, we conclude this section by
defining some additional notation that will be needed.

Notation:
• For any subset of arms ( ⊂ �, let ((8) denote the arm

in ( with the 8th highest mean reward, with ties broken
arbitrarily. In other words,

〈((1), \∗〉 ≥ 〈((2), \∗〉 ≥ · · ·

• For any subset of arms (, define the averaged arm (̄ as

(̄ =
1
|( |

∑
0∈(

0.

• For any policy c and time C, let �cC denote the subset of
arms remaining (i.e. not selected in the first C − 1 periods)
under policy c.

Lower Regret Bound
Our first result is the following minimax lower bound for our
disposable linear bandit:
Proposition 1. Let � = {−1, 1}3 (and thus ) ≤ |�| = 23).
For every policy c, there exists \∗ ∈ [−1, 1]3 such that

Reg(c) ≥ � (3 − :)
√
),

where � is a universal constant, and : is defined to be the
minimum integer in [0, 3] satisfying

:∑
9=1

(
3

9

)
≥ ).

It may be useful to compare this lower bound vis-à-vis
existing results for the non-disposable linear bandit: simi-
lar results (e.g. Theorem 24.1 in (Lattimore and Szepesvári
2020)) show that the minimax regret for the non-disposable
setting isΩ(3

√
)). Compared to this, Proposition 1 suggests

that lower regret may be achievable under disposability. The√
) scaling remains, but the effect of the ambient dimension
3 might be reduced. The reduction in regret is dependent on
the size of ) relative to |�|: as ) increases, : increases, and
thus the lower bound on regret decreases.

Setting Greedy LinUCB
Non-disposable 100% 52.9%
Disposable 100% 89.91%

Table 1: Average regret relative to greedy under non-
disposable and disposable settings. Experiments were con-
ducted with ) = 200, with synthetically generated arms and
\∗, and with Bernoulli rewards. Reported values are aver-
aged over 2000 replications.

Another useful interpretation of : is via the relative differ-
ence in rewards among the optimal set of arms. Let q be the
ratio between the lowest and highest mean rewards among
the set of ) optimal arms, i.e.

q =
〈�()), \∗〉
〈�(1), \∗〉 .

Intuitively, a larger value of q corresponds to problems
where the optimal offline set of arms is “closer” together,
and thus disposability has less of an effect and the achievable
regret should be higher. This plays out precisely in Proposi-
tion 1 where q ∼ (3 − :)/3, and so the lower bound can
be re-written as Ω(q3

√
)). Similarly, q = 1 for any non-

disposable problem, so the corresponding lower bounds can
also be written as Ω(q3

√
)).

Practical Effect of Disposability: Proposition 1 serves as
theoretical evidence that disposability may alter the achiev-
able performance in a given problem. Before moving on to
describing our policy, it is worth investigating experimen-
tally whether existing algorithms for the non-disposable set-
ting succeed. A more-expanded version of these experiments
is described in the Experiments section, but for now we
briefly touch on the performance of a policy known to be
regret-optimal under non-disposability: Linear UCB (Lin-
UCB).

We performed a set of synthetic experiments under both
non-disposable and disposable settings, compared the aver-
age regret of LinUCB to that of a greedy policy (both poli-
cies will be described in detail later). The results are given
in Table 1. The main takeaway is that while LinUCB per-
formed better than the greedy policy in both settings, its rel-
ative performance significantly decreased under disposabil-
ity. This suggests (though it does not guarantee) that better
policies may exist. We will propose such a policy now.

Our Algorithm: Generalized UCB
The algorithm we propose generalizes the previously-
mentioned LinUCB algorithm (Auer 2002; Dani, Hayes,
and Kakade 2008; Li et al. 2010; Abbasi-Yadkori, Pál, and
Szepesvári 2011) to the disposable setting. It will be neces-
sary first to recall the details of that algorithm, and in partic-
ular the construction of confidence sets on \∗, as we will use
the same in our own algorithm.
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Confidence Sets and LinUCB: The LinUCB algorithm
relies on using previously-observed rewards to construct
carefully tuned confidence sets on \∗. The following con-
struction is based on that of (Abbasi-Yadkori, Pál, and
Szepesvári 2011): Let _ > 0 be an arbitrary constant (in
practice, this can be treated as a tuning parameter). Suppose
at the beginning of time period C+1, the policy c has selected
arms 0c1 , . . . , 0cC and observed rewards A1, . . . , AC . We de-
fine the matrix +C as

+C =

C∑
8=1

0c80c8
> + _�,

where � is the identity matrix. Then letting \̂C denote the
regularized least-squares estimator of \∗, we have

\̂C ≡ +−1
C

C∑
8=1

0c8A8 ,

and finally, the confidence set used in the LinUCB algorithm
is the following ellipsoid:

ΘC = {\ ∈ R3 : ‖\ − \̂C ‖+C ≤ VC }, (2)

where ‖G‖2
+
= G>+G for any G ∈ R3 , and where

VC = f

√
2 log) + 3 log

3_ + )!2

3_
+
√
_!. (3)

The LinUCB algorithm, then, selects the arm that has the
highest “potential” reward over all \ ∈ ΘC , i.e. it selects

argmax
0∈�

max
\ ∈ΘC

〈0, \〉.

As a side note, implementing this is tractable (unless � is
large or infinite) because the ellipsoidal form of ΘC enables
a closed-form expression for the inner maximization above:

UCBC (0) ≡ max
\ ∈ΘC

〈0, \〉 = 〈0, \̂C 〉 + VC ‖0‖+ −1
C
. (4)

Generalized UCB: The guiding principle behind Lin-
UCB, and in fact optimism-based algorithms in general, can
be viewed as selecting the action which has the highest
optimistic (within reason) reward. For the non-disposable
linear bandit, “within reason” is precisely encoded by the
previously-described uncertainty sets ΘC , and the “actions”
are simply the arms. From this lens, it seems the natural gen-
eralization of LinUCB to the disposable setting is to keep the
same uncertainty sets, but to treat an “action” as a plan for
the set of arms that will be selected in the remaining periods.
That is, at any time C, there are ) − C + 1 selections remain-
ing, and so we should choose optimistically from among the
subsets of ) − C + 1 arms. This is precisely the idea behind
our algorithm, Generalized UCB (UCBG).

Recall that we use �UCBG
C to denote the remaining (i.e.

not yet selected) arms at the beginning of time C. Then the
optimistic subset of arms is chosen according to:

(UCBG
C ≡ argmax

(⊂�UCBG
C

|( |=) −C+1

max
\ ∈ΘC−1

∑
0∈(
〈0, \〉. (5)

Algorithm 1: Generalized LINUCB (UCBG)
Input: _ > 0
Initialization: +0 = _�, \̂0 = [0]3
Calculate Θ0 according to (2).
for C = 1, 2, . . . ) do

Calculate (UCBG
C according to (5)

Select arm 0UCBGC
= argmax
0∈(UCBG

C

UCBC−1 (0)

Observe reward AC
Calculate +C = +C−1 + 0UCBGC

(0UCBGC
)>

Calculate ΘC according to (2).
end

The actual arm selected by UCBG, denoted 0UCBGC
, is cho-

sen optimistically from this subset:

0UCBGC
≡ argmax
0∈(UCBG

C

UCBC−1 (0),

with UCBC (0) defined as in (4). The UCBG algorithm is
described fully in Algorithm 1.

Our Guarantee
Next we prove an upper bound on the regret of our algo-
rithm. To summarize briefly, UCBG achieves $̃ (

√
W3
√
))

regret, which is a reduction of the $̃ (3
√
)) regret for non-

disposable linear bandits. This reduction depends on the
quantity W, which averages, over time, a certain shrinkage
factor that loosely captures the difference in rewards among
the best arms.

Shrinkage Factor: Fix any time period C. Note that at time
C, there are ) − C +1 selections remaining, and irrespective of
the previous selections, there are  − C + 1 remaining arms
from which to select. For any such set of remaining arms,
we can compute the ratio between the () − C + 1)th highest
mean reward and the average mean reward across the best
) − C + 1 arms. We define WC to be an upper bound on this
ratio across all such subsets:

〈(() − C + 1), \∗〉〈 1
) −C+1

∑) −C+1
8=1 ((8), \∗

〉 ≤ WC for all ( ⊂ �, |( | =  − C + 1

(6)
Notice that WC ≤ 1 for all C, and is in general smaller
when the arms are more “spread out.” As a special case, any
non-disposable problem, when represented in the disposable
framework, has WC = 1.

With WC defined, we can now state our regret bound:
Theorem 1. With probability at least 1 − $ (1/)), the ex-
pected regret of UCBG satisfies

Reg(UCBG) = $̃
(√
W3
√
)

)
,

where W = 1
)

∑)
C=1 WC and WC is defined according to (6).

Proof Sketch of Theorem 1. Our proof relies on a frame-
work similar to that used to upper bound the regret for the
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LinUCB policy. The key challenge in adapting that frame-
work is that the disposable setting misses an important prop-
erty – the optimal arm at each time period is a single “best”
arm, and so the regret analysis can be almost entirely de-
composed over time. On the other hand, in our disposable
setting, the optimal sequence of arm is unique only up to
permutation, which prevents the same decomposition if the
usual method for regret “book-keeping” is applied. To deal
with this, we prove the following key lemma, which sug-
gests that there is an alternative book-keeping, with a differ-
ent form of instantaneous regret, that allows for decomposi-
tion over time.

Lemma 1.

Reg(c) =
)∑
C=1

(
〈�cC () − C + 1), \∗〉 − 〈0cC , \∗〉

)+

A Fast Heuristic
So far, we have proposed and analyzed the UCBG policy,
and while it enjoys the theoretical regret guarantee given in
Theorem 1, there is the computational issue of solving (5) at
each time step. That is, we need to maximize a function of
the form

5 (\, () ≡
∑
0∈(
〈0, \〉,

where \ ranges over ellipsoidal confidence sets, and ( ranges
over subsets of �. So even though the “inner” maximization
over \ can be done in closed form, the “outer” maximization
is still over exponentially many subsets (.

In this section, we propose a heuristic for dealing with this
(this heuristic will be the algorithm we test in the coming
experiments). To simplify the notation, assume that all of the
arms in � and \∗ lie on the unit-ball (these have already been
assumed to be bounded, so the extra assumption is that they
are of the same size; taking ! = 1 is done without loss of
generality). Our heuristic is based on the idea that if the arms
are fairly dense on the unit-ball (a reasonable assumption in
our target applications), then whatever \∗ is, there is likely
to be an arm “close” to it, where closeness is measured in
Euclidean distance.

To be more precise, consider functions 6(\) of the form

6(\) ≡ max
(⊂�
|( |=:

∑
0∈(
〈0, \〉,

and for any given vector E ∈ R3 , let 08 (E) be the 8th closest
arm (from the set �) to E in Euclidean distance. Then, 6(\)
is equivalently

6(\) =
:∑
8=1
〈08 (\), \〉.

By holding out the first term, and making the (approximate)

substitution 01 (\) ≈ \ twice, we have

6(\) = 〈01 (\), \〉 +
:∑
8=2
〈08 (\), \〉

≈ 〈01 (\), \〉 +
:∑
8=2
〈08 (01 (\)), \〉

≈ 〈01 (\), \〉 +
:∑
8=2
〈08 (01 (\)), 01 (\)〉 (7)

The key property we use from the final expression above is
that the “nearest arm” operations (01 (·), 02 (·), . . .) are only
applied to 01 (\). Indeed, the second term in (7) depends
only on the set of arms (i.e. not on \), and can be precom-
puted for each 0 ∈ �. We call this term the similarity score
of an arm (this is indeed the usual cosine similarity).

This enables the following heuristic: instead of maximiz-
ing 6(\) over an ellipsoid, we iterate over all of the arms,
computing the maximum of (7) over this same ellipsoid
(which can be done in closed-form). Another lens toward
this heuristic is that it balances the usual objectives of ex-
ploration and exploitation with a third objective, which is
to select arms for which there are other similar arms. This
makes sense intuitive sense in the disposable setting: there
is little reason to learn the mean reward of an arm if there
are not similar arms to leverage later on.

To formally state the method, we must define two
functions: Similarity(E, �, B) and Closest(E, �, B).
Similarity(E, �, B) is the cumulative similarity score of
vector E with the set of arms that are closest to it in
cosine-similarity measure. Closest(E, �, B) gives a subset of
arms of size B from � with the highest inner products with
vector E.

Similarity(E, �, B) = max
(⊂�, |( |=B

∑
0∈(
〈E, 0〉

Closest(E, �, B) = argmax
(⊂�, |( |=B

∑
0∈(
〈E, 0〉

Our heuristic, which we call the Alternating Heuris-
tic, works as follows. We first choose the arm 0̃ with
the highest sum UCB + Similarity. Intuitively this corre-
sponds to an arm which has a high reward estimate and
a high number of arms close to it. Then, we find the set
of closest arms to this arm, which we denote as (AH

C .
Note that the \ (from the uncertainty set) that will maxi-
mize the optimistic reward for (AH

C is different from that
of 0̃. Let \UCB (0) = argmax\ ∈ΘC−1

〈\, 0〉 and \UCBG (() =
argmax\ ∈ΘC−1

∑
0∈( 〈\, 0〉. We find the \̃ ∈ ΘC−1 that max-

imizes 〈(AH
C , \̃〉. Here we use the fact that maximizing

UCB((AH
C ) is equivalent to maximizing UCBG((AH

C ):

\UCBG (() = argmax
\ ∈ΘC−1

∑
0∈(
〈0, \〉 = argmax

\ ∈ΘC−1

〈(̄, \〉 = \UCB ((̄).

For a fixed \, we can compute 6(\) by finding a set of
arms closest to it, where we denote this set as (\C . We iterate
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Algorithm 2: Alternating Heuristic
Input: _, U, 2 > 0
Initialization: + = _�; \̂0 = [0]3; -,. = []
for C := 1, 2, . . . ) do

0̃ = argmax
0∈�AH

C

〈\̂C−1, 0〉 + 2‖0‖+ −1
C−1
+

U Similarity(0, �AH
C , ) − C)

(AH
C = Closest(0̃, �AH

C , ) − C + 1)
\̃ = \UCB ((AH

C )
(\C = Closest(\̃, �AH

C , ) − C + 1)
while (��C ≠ (\C do

(AH
C = Closest((\C , �AH

C , ) − C + 1)
\̃ = \UCB ((AH

C )
(\C = Closest(\̃, �AH

C , ) − C + 1)
end
Play the arm 0AHC

= argmax
0∈(AH

C

〈\̂C−1, 0〉 + 2‖0‖+ −1
C−1

Observe reward AC
+C = +C−1 + 0AHC

(0AHC
)>

- = [- 0AHC
]

. = [.> AC ]>
Calculate \̂C = +−1

C ->.
end

until the two arm sets, (\C and (AH
C are equal. Finally, the arm

in the final subset with the maximum UCB index is selected.
Note that in each alternating step, the objective value 5 in-

creases. Thus, since the set of arms is finite, the heuristic is
guaranteed to converge. However, since 5 is non-convex, the
point of convergence is not guaranteed to be (UCBG

C . We find
in experiments that the choice of initialization is crucial to
the performance of the method. We investigated three differ-
ent methods to initialize this set, and compared both the fi-
nal objective values and the convergence rates. The data and
experiments are explained in detail in the Experiments sec-
tion, but in Figure 1, we provide the comparisons of the ob-
jective function between those different initial sets given to
the Alternating Heuristic. These trends were observed dur-
ing C = 5.

We tested three different initialization methods over the
arm set.

• Random: Choose ) − C +1 arms randomly and iterate until
convergence. As seen in the Figure 1, this method takes
more iterations to converge and converges to a lower value
of the objective function.

• UCB: Choose ) − C + 1 arms by

argmax
(∈�AH

C

|( |=) −C+1

∑
0∈(

UCB(0),

i.e. arms with the highest combined UCB values. This
method is significantly better than random initialization,
but still has a lower final value than that of Similarity ini-
tialization.

Figure 1: Performance and convergence rate of alternating
heuristic with three different initialization methods. Results
are averaged over 200 instances, all at period C = 5. Perfor-
mance (Solid): Objective function vs. iteration number. Con-
vergence Rate (Dashed): Gap fraction to converged value vs.
iteration number.

• Similarity: Choose ) − C + 1 arms by maximizing the sim-
ilarity score of one arm, and choosing ) − C arms closest
to it. This initialization not only has the highest function
value it converges, but also has a faster convergence than
random, similar to that of LinUCB.

Experiments
We tested our final algorithm (the alternating heuristic with
similarity score initialization) against a number of baseline
algorithms. These experiments reveal the following:

1. Bernoulli reward setting (see Table 2 top and Figure 2):
for all three time horizons tested, the alternating heuris-
tic outperformed all benchmarks in terms of average re-
gret. These benchmarks included LinUCB (with “perfect”
choice of tuning parameter) and the greedy algorithm.

2. Gaussian reward setting (see Table 2 bottom): the alter-
nating heuristic outperformed both methods again, despite
perfectly tune the parameters for LinUCB, but not for the
heuristic.

We begin by describing the experimental setup. We gen-
erated  arms, 8 = 1, . . . ,  in 3−dimensional space where
 = 5000 and 3 = 15. Similarly, we generated a set of \s
that lie in the same space, where the total number of \s is
5000. 3

As described in the Model section, the mean reward of
pulling arm 0 while having \ as the unknown vector is 〈0, \〉,
with the observed reward following the distribution:

A (0) = 〈0, \〉 + [

where [ is a mean-0 sub-Gaussian noise. We now give the
disposable adaptations of the benchmarks we use.

Disposable Setting Adaptations: The modification for all
benchmark algorithms to the disposable setting is straight-

3The corresponding data can be found in https://github.com/
MeldaKor/DisposableLinearBandits.
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Type Horizon Greedy LinUCB1 LinUCB2 LinUCB3 UCBG1 UCBG2 UCBG3 TS-Adapted

Bernoulli
50 100% 94.81% 94.36% 99.46% 94.82% 94.15% 88.15% -

100 100% 91.67% 87.66% 95.65% 86.94% 84.75% 78.97% -
200 100% 91.42% 89.91% 99.59% 93.4% 88.60% 83.07% -

Gaussian 50 100% 94.29% 88.97% 94.92% 86.13% 83.11% 79.67% 106.65%

Table 2: Final Regret Comparisons. We report the final regret with respect to the Greedy method. For all experiments, we set
the tuning parameter U for the heuristic the same as LinUCB’s 2. In experiments, U, 2 = (1/2)8 where 8 = 3, 4, 5.

forward: after playing an arm, we remove it from the fu-
ture available arm sets. The decision making procedures for
Greedy and LinUCB remain the same: LinUCB selects the
arm with the highest potential whereas Greedy plays the
arm with the highest expected potential, i.e. it uses the MLE
estimator for \. Both of these algorithms and Alternating
Heuristic could be run in either Bernoulli or Gaussian re-
ward functions.

In the Gaussian setting, we also test a version of Thomp-
son Sampling that is given the (true) multivariate Gaussian
prior, similar to that studied in (Agrawal and Goyal 2013).
Formally, we assume that rewards are drawn according to
A (0) = 〈\, 0〉 + [ where [ ∼ N

(
0, f2) , and that \∗ is

drawn fromN(\0, Σ0). We propose the following adaptation
for Thompson Sampling in the disposable setting:choose an
arm, uniformly at random, from among the closest ) − C + 1
arms to \TS

C , which is sampled from the running posterior
distribution.

Results
We ran two sets of experiments with a modification on the
reward function: when the reward function has an underly-
ing Gaussian distribution and Bernoulli distribution. Both
means are, naturally, 〈0, \〉 when an arm 0 is pulled with
the unknown parameter \ is present. We ran the experi-
ments with 5000 arms with horizons of ) = 50, 100, 200.
The number of instances, i.e. different \ values we worked
with, ranges from 200 to 2500. The immediate pseudo regret
was calculated as in Lemma 1 using the new book-keeping
method for disposable bandits. The regret value of each in-
stance was averaged over 10 runs, and the final results were
averaged over all instances.

1. Gaussian Reward: The reason we work with Gaussian re-
ward distribution, even though it is more realistic that
the matching rewards come from Bernoulli distribution
in online platforms, is that we know the posterior of a
Gaussian prior in linear Thompson Sampling. The poste-
rior is calculated as given in the previous subsection. The
methods we implement are Thompson Sampling Adapta-
tion, Greedy, LinUCB and Alternating Heuristic. To give
Thompson Sampling the benefit of the doubt, we sample
\ ∈ R3 from the standard multivariate normal distribution
N([0]3 , �3). However, the arms 08 ∈ R3 , 8 = 1, . . . , 5000
are as generated. So, for an arm 08 the reward we observe
becomes A (08) = 〈08 , \〉 + [ where [ ∼ N(0, 1).

2. Bernoulli Reward: In Bernoulli case, the reward we ob-

serve from pulling an arm 08 has an underlying distri-
bution of Bernoulli(〈08 , \〉). The methods we test are
Greedy, LinUCB and Alternating Heuristic.

Figure 2: The tuned parameter for LinUCB and the corre-
sponding Heuristic parameter were chosen.

In Figure 2, we work with Bernoulli-type feedback, and we
provide a point-wise comparison of each instance based on
the final regret value. For each horizon value, we plotted 200
different randomly chosen instances. Alternating Heuristic
outperforms LinUCB in majority of the instances for all
those 3 horizons implemented.

In Table 2, we give the final regret fraction of these meth-
ods with varying parameters and horizons comparing to that
of the Greedy Algorithm. In both cases of Gaussian and
Bernoulli, we see that even though we did not perfectly tune
the Similarity parameter U and took it equal to that of Lin-
UCB, 2, Alternating Heuristic outperforms all other bench-
marks. In the Gaussian case, the main purpose of which was
to test the computationally tractable adaptation of Thomp-
son Sampling, surprisingly, we see that the TS adaptation
had a higher regret averaged over the instances compared to
other methods.

Conclusion
We tackled the problem of making budgeted recommenda-
tions using linear bandits. We first introduced an ideal gen-
eralization of the LinUCB algorithm, and due to its compu-
tational difficulty, we gave an alternating heuristic approxi-
mated from UCBG-index. We tested the heuristic along with
other methods on synthetically generated data, and saw that
it outperforms all others when arms are disposable.
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Ethics Statement
The primary motivation for this work is recommender sys-
tems. Such systems are in broad use, and so it is impossible
to predict all future ethical and societal issues that may arise
from their use. One foreseeable issue is that these systems
may introduce biases against certain groups.
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