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Abstract

We present LCollision, a learning-based method that synthe-
sizes collision-free 3D human poses. At the crux of our ap-
proach is a novel deep architecture that simultaneously de-
codes new human poses from the latent space and predicts
colliding body parts. These two components of our architec-
ture are used as the objective function and surrogate hard con-
straints in a constrained optimization for collision-free human
pose generation. A novel aspect of our approach is the use of
a bilevel autoencoder that decomposes whole-body collisions
into groups of collisions between localized body parts. By
solving the constrained optimizations, we show that a signif-
icant amount of collision artifacts can be resolved. Further-
more, in a large test set of 2.5 × 106 randomized poses from
SCAPE, our architecture achieves a collision-prediction ac-
curacy of 94.1% with 80× speedup over exact collision de-
tection algorithms. To the best of our knowledge, LCollision
is the first approach that accelerates collision detection and
resolves penetrations using a neural network.

1 Introduction
There has been considerable work on developing learning
algorithms for 3D objects represented as point clouds (Qi
et al. 2017), meshes (Hanocka et al. 2019), volumetric grids
(Wang, Liu, and Tong 2020), and physical objects (Li et al.
2019). Because these algorithms are used for different ap-
plications, a major challenge is accounting for user require-
ments and physics-based constraints. Considering these con-
straints can significantly improve the test-time robustness by
preserving some known criteria of “correct” predictions. For
example, we need to consider various forces and dynamics
constraints for differentiable simulation (Qiao et al. 2020)
and cloth embedding (Tan et al. 2020), and a reliable robot
motion planner should preserve a clearance distance from
obstacles (Pham, De Magistris, and Tachibana 2018).

In this paper, we tackle the problem of collision-free hu-
man pose generation. Recently, 3D mesh representations
have been used for learning-based human pose synthesis
(Tretschk et al. 2020; Bouritsas et al. 2019; Ranjan et al.
2018; Bagautdinov et al. 2018; Tan et al. 2018a). These
methods learn a manifold of plausible human poses from
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a dataset, represented as the latent space of a deep au-
toencoder. Such autoencoders can be trained for applica-
tions including interactive rigging, human pose recognition
from images and videos, and VR games. However, current
learning-based methods do not account for any physics-
based requirements such as (self-)collision-free constraint,
thereby resulting in penetrations or other artifacts (Tretschk
et al. 2020; Bouritsas et al. 2019; Ranjan et al. 2018;
Bagautdinov et al. 2018; Tan et al. 2018a). By compari-
son, non-learning-based methods for character rigging (Shi
et al. 2007) and physics-based simulation (Barbič and James
2010) can detect and explicitly handle the collisions us-
ing numerical methods. Our goal is to equip learned-based
methods with similar collision-handling capabilities.

Although 3D data representations explicitly allow the
modeling of collision-free constraints, satisfying these hard
constraints in an end-to-end learning system is an open prob-
lem. Prior works have tried one of three ways to incorporate
hard constraints in a learning system. First, classical second-
order methods (Boggs and Tolle 1995) for constrained opti-
mization can enforce exact hard constraints on the parame-
ters of the neural network. Second, variants of the stochastic
projected gradient descend (Márquez-Neila, Salzmann, and
Fua 2017; Kervadec et al. 2019) have been proposed to ap-
proximately satisfy the constraints on the neural network pa-
rameters. Finally, differentiable optimization layers (Pham,
De Magistris, and Tachibana 2018; Agrawal et al. 2019) can
modify the neural network output to satisfy such constraints.
However, these methods are either limited to convex con-
straints, impractical for large networks, or do not provide
sufficient accuracy in terms constraint satisfaction.

Main Results: We present LCollision, a new learning al-
gorithm to generate human poses that satisfy collision-free
constraints. Our approach incorporates the non-penetration
constraints by solving a general constrained optimization
during the test time, where the feasible domain correspond-
ing to these hard constraints is learned during the training
time. The novel components of our approach include:

• Constrained Optimization Using Neural Network
Function Approximation: Instead of using exact
collision-response, learning the feasible domain using
a neural network provides approximate sub-gradients
via back-propagation, which is much faster than exact
collision-checking algorithms.
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• Collision Decomposition: A collision only affects local
regions of the human body, and we design our collision
predictor to respect these local effects. Each point on the
human body is softly assigned to a set of local body parts,
and the collision loss is decomposed to these local do-
mains, accordingly.

• Hybrid Ranking, Potential Energy, and Entropy Loss:
Although exact hard constraints correspond to a binary
loss (violation or non-violation), this loss should be differ-
entiable so that constrained optimizations can be guided
by gradient information. We propose a penetration-depth-
based formulation (Zhang et al. 2007) as a collision metric
to offer gradient direction, combined with the ranking loss
to maintain the relative penetration depth between a pair
of samples.

We have evaluated our method on the SCAPE dataset
(Anguelov et al. 2005), the MIT-Swing dataset (Vlasic et al.
2008), and the MIT Jumping dataset (Vlasic et al. 2008).
Combining these techniques, we achieve an accuracy of
94.1%, a false positive rate of 6.1%, and a false negative rate
of 5.7% when predicting collisions for 2.5×106 randomized
human poses sampled from these datasets. After learning
the feasible domain, solving a constrained optimization for
a collision-free human pose with 2161 vertices takes 2.095
iterations and 0.25s on average. Moreover, our learned col-
lision detector is 80× faster than prior exact collision detec-
tion methods running on a CPU (Pan, Chitta, and Manocha
2012).

2 Related Work
We review related works on human pose estimation and syn-
thesis, collision detection and response, and deep network
training with hard constraints.

Human Pose Estimation & Synthesis: There is consid-
erable work on human pose estimation and synthesis. Ear-
lier methods (Leibe, Seemann, and Schiele 2005) represent
a pedestrian as a bounding box. An improved algorithm
was proposed in (Agarwal and Triggs 2005), and this algo-
rithm predicts the 55-D joint angles for a skeletal human
pose. More accurate prediction results have been proposed
in (Rogez et al. 2008) using random forests and in (Toshev
and Szegedy 2014) using convolutional neural networks.
Our approach is based on recent learning methods (Tan
et al. 2018a; Tretschk et al. 2020) that use 3D meshes to
generate detailed human poses. Mesh-based representations
are inherently difficult to learn due to the intrinsic high-
dimensionality, and the algorithm can produce sub-optimal
results with various artifacts such as self-penetrations, noisy
mesh surfaces, and flipped meshes. In view of these prob-
lems, (Villegas et al. 2018) only computes skeletal poses
using learning and then uses skinning to recover the mesh-
based representation. However, this approach requires ad-
ditional skeleton-mesh correspondence information, which
is typically unavailable in many datasets, including SCAPE
(Anguelov et al. 2005).

Collision Detection & Response: An important crite-
rion of “correct” human body shapes is that they are (self-
) collision-free, i.e. elements of the mesh do not penetrate

each other. Collision detection and response computations
have been well-studied, with many practical algorithms pro-
posed for large-scale 3D meshes (Pan, Chitta, and Manocha
2012; Kim, Lin, and Manocha 2018) that can be used to re-
solve penetrations. Collisions can be handled in a discrete
or continuous manner. Discrete collision handling (Kim,
Lin, and Manocha 2018) assumes that meshes can occasion-
ally reach an invalid status with penetrations and therefore
checks for collisions at fixed time intervals. In contrast, con-
tinuous collision detection algorithms estimate the time in-
stance corresponding to the first contact and thereby main-
tain non-penetration configurations. These continuous col-
lision detection (CCD) methods (Tang et al. 2009; Brid-
son, Fedkiw, and Anderson 2002; Tang, Manocha, and Tong
2010) make some assumptions about the interpolating mo-
tion between two time instances and use analytic methods to
predict the time of the collision. Many of these methods can
be accelerated using GPU parallelism (Govindaraju, Lin,
and Manocha 2005). In theory, we can use different colli-
sion handling methods to avoid penetrations in a 3D mesh of
a human pose. However, there are two practical challenges.
First, collision response is a physical behavior tightly cou-
pled with a physics-based model of the human body. How-
ever, modeling the physical deformations of a human body
can be computationally expensive. The running time for sim-
ulating one timestep of a human body can be more than 20
seconds (Smith, Goes, and Kim 2018), which is intractable
for interactive applications. Second, collision handling algo-
rithms require a volumetric mesh, while many applications
of human pose synthesis rely on surface meshes. Techniques
have also been proposed to estimate the extent of penetra-
tions between complex 3D geometric models, e.g., penetra-
tion depth (Zhang et al. 2007; Kim et al. 2002; Burgard,
Brock, and Stachniss 2008). However, these formulations
can be non-smooth and expensive to compute.

Training Deep Networks with Hard Constraints: An
additional layer of challenge is to incorporate collision han-
dling into a deep learning framework. In particular, state-
of-the-art deep learning methods are unable to handle such
hard constraints. Constraints on neural network parame-
ters (Ravi et al. 2019) are used for regularizing the net-
work training and can be approximately enforced using
variants of the projected gradient descend algorithm. On
the other hand, constraints on neural network output are
used to model application-specific requirements such as
collision-free constraints. Prior works (Pham, De Magistris,
and Tachibana 2018; Agrawal et al. 2019; Márquez-Neila,
Salzmann, and Fua 2017; Nandwani et al. 2019) use a simi-
lar approach to enforce hard constraints: converting the con-
strained optimization into an unconstrained min-max opti-
mization, which can be solved approximately by updating
the primal and dual variables. A special case arises when the
hard constraints are convex; then the constrained optimiza-
tion can be solved efficiently with exact constraint enforce-
ment (Pham, De Magistris, and Tachibana 2018; Agrawal
et al. 2019). However, the collision-free constraints in our
applications are neither convex nor smooth.
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Figure 1: Our network architecture combines the domain-decomposed human pose embedding framework (green) and a novel
collision state estimator (gray). Given an input pose, we use a weight-shared, level-1 autoencoder to learn a global shape
embedding. The error on each domain is further reduced using a set of level-2 autoencoders. Both the level-1 and level-2
autoencoders’ latent codes are used to predict a global collision state. Finally, the latent code of each level-2 autoencoder is
compared against the global collision state to infer a localized penetration depth. These inferred penetrations are used in hard
constraints of a constrained optimization framework for collision handling.

3 Human Pose & Collision-Free Constraints
Recent methods (Tretschk et al. 2020; Bouritsas et al. 2019;
Ranjan et al. 2018; Bagautdinov et al. 2018; Tan et al. 2018a)
have used neural networks to generate new poses from a
small set of examples via shape embedding. In this section,
we give an overview of the process of computing the em-
bedding space for human pose generation and highlight the
collision-free constraints that LCollision tries to satisfy.

3.1 Human Pose Embedding
Our method uses the algorithm in (Tan et al. 2018b; Yang
et al. 2020), which has the ability to extract local defor-
mation components (more details given in the appendix).
We represent human models as triangle meshes – a special
graph G =< V,E >, with V being a set of vertices and E
being a set of edges. In our datasets, all the models share
the same topology, i.e. E is the same over all the meshes,
while V differs. We transform V to the as-consistent-as-
possible (ACAP) feature space (Gao et al. 2019), denoted as
X ∈ R9×∣V ∣, to handle large deformations. We use a bilevel
autoencoder to embed X in a latent space. Both levels of
the autoencoder involve one graph convolutional layer and
one fully connected layer. The fully-connected layer maps
the feature to a K-dimensional latent code, with weights de-
noted as C ∈ RK×9×∣V ∣. A sparsity loss is used to ensure
that each dimension of C only accounts for a group of local
points.

Domain Decomposition via Attention: We use a bilevel
architecture because we want the level-2 autoencoder to
learn a decomposed domain of the original mesh, i.e. each
level-2 autoencoder only reduces the level-1 residual on a
subset of V . The learned domain decomposition not only
enhances the reusability and explainability of the neural net-
work but is also used to model the local collisions between

Figure 2: We show decomposed domains on the SCAPE
dataset using the learned attention mask Mki, highlighted
in different colors. The darkness of a given color represents
the weight of the soft assignment. These weights are used
for localized collision computations.

body sub-parts, as explained in Section 3.3.
Each autoencoder maps some input feature X to a latent

code Z and then reconstructs Z to feature X̄ . We use sub-
scripts to denote the index of an autoencoder, e.g., X0, Z0,
and X̄0 are the input, latent code, and output of the level-
1 autoencoder, respectively. We assume that each entry of
level-1 latent code corresponds to a sub-domain of the hu-
man body on which the residual is further reduced using
one level-2 autoencoder, so there are altogether ∣Z0∣ + 1
autoencoders. The kth level-2 autoencoder is responsible
for representing a subset of residual X0 − X̄0. To deter-
mine the subset, an attention mask is computed as:Mki =
∑9

j=1C
kji2/∑∣Z0∣

k=1∑
9
j=1C

kji2. In addition, the input to the
kth level-2 autoencoder is X i

k = Mki(X i
0 − X̄ i

0). The soft
assignment induced by the attention mask conducts the do-
main decomposition in our network. We illustrate some hu-
man body parts decomposed usingMki in Figure 2.

3.2 Collision-Free Constraints
A pivotal requirement of plausible human poses is that they
are collision-free, i.e. triangles on the surface mesh do not
penetrate each other. However, this constraint is ignored
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by previous neural-network-based human pose generation
methods. We define a self-collision as an intersection be-
tween two topologically disjointed triangles, i.e. two trian-
gles that do not share any edges. We use the following con-
dition to indicate a collision: tp∩tq ≠ ∅, where tp and tq are
two triangles. Penetration depth (PD) is a notion that mea-
sures the extent of collision constraint violations between
two objects. We define the local PD for triangle pair (tp, tq)
as:

PDp,q =min{∥d∥2 ∶ (tp + d) ∩ tq = ∅},
where PDp,q is the minimum distance to move tp such that
tp and tq have no overlap. The collision-free constraint can
be reformulated as the constraint that PDp,q = 0 for any
(p, q) pairs. Conceptually, collision constraints can be sat-
isfied by solving the following constrained optimization:

min goal

s.t. PDp,q = 0, (p, q) disjoint,
where goal is the objective (e.g., as close as possible to a
user-desired pose). Prior works solve the constrained opti-
mization by computing PDp,q for all (p, q) pairs and treating
each colliding (tp, tq) as a standalone constraint, leading to
large problem sizes and high computational costs. Instead,
we use a neural network to speed up the computation.

3.3 Locality of Self-collisions
Our method is inspired by the subspace self-collision
culling algorithm (SSCC) (Barbič and James 2010) and
the learning-based collision simplification algorithm (Teng,
Otaduy, and Kim 2014). In SSCC, the authors observe that
collisions usually occur between pairs of triangles that are
originally close to one another on the template mesh. Pairs
of distant triangles penetrate only when the mesh has under-
gone sufficient deformation. The observation made by SSCC
suggests the use of mesh decompositions as described in 3.1.

It is worth noting that both works (Barbič and James 2010;
Teng, Otaduy, and Kim 2014) use learned linear subspaces
to accelerate collision detection and culling. However, the
expressivity of linear subspaces is rather limited, so SSCC
can only model deformations that are near the neutral pose
and cannot represent larger deformations. Further, it is as-
sumed in (Teng, Otaduy, and Kim 2014) that a domain de-
composition is provided by users. Our work unifies and ex-
tends these ideas into a collision prediction algorithm that
works for large deformations and does not require any addi-
tional data from users.

4 LCollision: Overall Learning Algorithm
Our overall learning architecture is illustrated in Figure 1.
Our method augments a normal mesh embedding autoen-
coder with an additional component to classify the collision
status. Given a latent code Zall defined as:

Zall = (Z0
T ,Z1

T ,⋯T ,Z∣Z0∣

T )T ,
we output a collision probability MLPclassifier. We as-
sume that the 0.5 sub-level set of MLPclassifier corre-
sponds to collision-free meshes so that many constraints of
the form PDi,j = 0 can be replaced by a single constraint
MLPclassifier < 0.5, which reduces the computational cost.

4.1 Collision Detection Architecture
In this subsection, we explain our network architecture to
cope with the locality of self-collisions illustrated in gray
blocks of Figure 1, including the collision state encoder and
the collision predictor.

Naive Subdivision: Our level-2 autoencoders inherently
decompose the mesh into ∣Z0∣ sub-domains. Therefore, if
collisions occur within the kth sub-domain, then collisions
should be inferred from Zk alone, and we use a collision
predictor (CP) in the form of a multilayer perceptron (MLP)
to map Zk to some collision indicator. If a pair of trian-
gles belongs to two sub-domains, e.g., Zk and Zk′ , then
a possible solution is to use another MLP that takes both
(Zk

T ,Zk′
T )T . However, this approach requires O(∣Z0∣2)

CPs with an excessively large number of weights, and the
latent codes of level-2 autoencoders only represent the rela-
tive residual X0 − X̄0, while the absolute information X0 is
lost. Our Method: To avoid issues with naive subdivision,
we propose using a collision state encoder (CSE) that en-
codes both relative and absolute information over all mesh
sub-domains. CSE is an MLP that takes Zall and brings
Zall through three latent layers with (512, 256, 256) neu-
rons and ReLU activation. Finally, CSE outputs a latent code
referred to as the global collision state, or S0 = CSE(Zall)
for short. S0 and Zk are then fed into a CP to obtain the col-
lision indicator related to the kth sub-domain, i.e. collisions
between pairs of triangles where at least one of the trian-
gles belongs to the kth sub-domain. There are altogether ∣Z0∣
CPs, where the kth CP maps (S0T ,Zk

T )T through four la-
tent layers with (512, 256, 256, 128) neurons and ReLU ac-
tivation. Finally, CP outputs a scalar collision indicator Sk,
i.e. Sk = CP(S0,Zk).

4.2 Collision Predictor Based on Penetration
We need the collision indicators Sk and groundtruth labels
Si to be compatible with numerical optimization. Since we
use gradient-based numerical optimization, we need to pro-
vide valid gradient information. To this end, Sk should not
only be a collision indicator but also a collision violation
metric. In other words, if S ′k > Sk ≥ 0, then we must have
S ′k correspond to a mesh with more collisions than Sk, for
which we use the notion of penetration depth. Given a mesh
G, we use the FCL library (Pan, Chitta, and Manocha 2012)
to compute the squared penetration depth PD2

p,q of each col-
liding triangle pair. This colliding pair correlates 6 vertices
in V , and we add PD2

p,q/6 to each vertex as the vertex-wise
collision violation. After processing all colliding triangle
pairs, we have a penetration depth energy vector PDe ∈ R∣V ∣.
The overall computation is described by Algorithm 1.

After computing the PDe, we use the following domain-
decomposed data loss to train Si:

LPD =
∣Z ∣0

∑
k=1

∥Sk −
∣V ∣

∑
i=1

MkiPDei∥2 + ∥Ssum − PDe-sum∥,

where PDe-sum = ∑∣V ∣i=1 PDei is the ground truth total pen-
etration energy and Ssum = ∑∣Z ∣0k=1 Sk is the neural network
prediction. Here, we use the same attention maskMki de-

3916



Figure 3: We illustrate 20 representative results of collision responses, where the poses on the left are the original poses directly generated
using (Yang et al. 2020), and the poses on the right are the ones after collision responses. We highlight the adjusted body parts using black
boxes. In all the examples, our method can successfully avoid penetrations. However, in two cases (red boxes), our adjusted poses drift
severely from the original poses.

Algorithm 1 Generating Penetration Energy Vector PDe

1: Init PDe = 0⃗ ∈ R∣V ∣
2: Run FCL finding the set of all collided disjoint triangle paris

as T̂
3: for (tp, tq) ∈ T̂ and the corresponding PDp,q do
4: for Vertex i belongs to tp and tq do
5: PDei += PD2

p,q/6
6: end for
7: end for

fined in Section 3.1 to decompose the collision energy into
body parts. Note that we do not have any loss terms related to
S0. However, a neural network is known to suffer from over-
fitting when learning exact distance functions (Hoffer and
Ailon 2015; Burges et al. 2005), including those correspond-
ing to PD. Further, it is inherently difficult to train a perfect
regression model for values like collision penetration depth
with a long-tail distribution (Wang, Ramanan, and Hebert
2017). We avoid over-fitting by using the marginal ranking
loss. Given two meshes, G and Ĝ (with approximated total
penetration energy denoted as Ssum and Ŝsum) randomly
sampled from the dataset, if Ĝ has a higher collision viola-
tion than G in terms of the total penetration energy, then we
define:

Lrank =max(0, α − (Ŝsum − Ssum)),
and vice versa. Here, α is used as a margin to enforce rank-
ing strictness. We choose α as the mean energy difference of

the given dataset.
With the above training technique, we can predict

S1,S∣Z0∣
and use them as hard constraints by letting Si = 0,

resulting in ∣Z0∣ constraints. We can further reduce the on-
line computational cost by reducing the number of con-
straints to only one. To perform this computation, we train
a single classifier MLPclassifier(S1,⋯,S∣Z0∣

) to summarize
the information and predict whether there are any collisions
throughout the human body, i.e. MLPclassifier is an indica-
tor of whether Ssum = 0. To make sure that the 0.5 sub-level
set is the collision-free subset, we use the cross entropy loss:

Lentropy = − I(PDe-sum > 0)log(MLPclassifier)
− I(PDe-sum = 0)log(1 −MLPclassifier).

4.3 Solving Constrained Optimization
Our collision response solver takes a constrained optimiza-
tion in the following form:

argmin
Zall

∥Zall −Z∗all∥2

s.t. MLPclassifier (S1,⋯, S∣Z0∣ ) ≤ 0.5.
(1)

The idea is to provide a desired pose Z∗all for the bilevel de-
coder, and Equation 1 solves for a collision-free Zall that
is as close to Z∗all as possible. We solve Equation 1 using
the augmented Lagrangian method implemented in LOQO
(Vanderbei 1999), with all the gradient information com-
puted via back-propagation through the neural network. This
augmented Lagrangian method can start from an infeasi-
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ble domain, which means that LOQO allows the hard con-
straints to be temporarily violated between the iterations. As
a result, LOQO uses gradient information to pull the solution
back to the feasible sub-manifold.

5 Evaluation
We implement our method using PyTorch (Paszke et al.
2017). All the training and testing are performed on a sin-
gle desktop machine with a 4-core CPU, 32GB memory,
and an NVIDIA GTX 1080Ti GPU. The training is decom-
posed into two stages. During the first stage, we train the
two-level human pose embedding architecture using a set of
N meshes. This training would optimize only the ∣Z0∣+1 au-
toencoders and the attention mechanics. After this first stage,
we generate a much larger dataset of M ≫ N meshes by
sampling the latent code Zall uniformly in the range:

[1.2min(Zall),1.2max(Zall)]∣Zall∣,

where min(Zallk) < 0, max(Zallk) > 0, and min,max
are elementwise over all mesh samples.

We train our collision predictor and classifier on the aug-
mented dataset while fixing the ∣Z0∣ + 1 autoencoders and
the attention mechanics. This stage uses the loss:
L = wPDLPD +wrankLrank +wentropyLentropy,

which is configured withwPD = 5,wrank = 2,wentropy = 2,
and trained using a learning rate of 0.001 and a batch size
of 32 over 30 epochs. We evaluate our method on three
datasets: the SCAPE dataset (Anguelov et al. 2005) with
N = 71 meshes, the MIT Swing dataset (Vlasic et al. 2008)
with N = 150 meshes, and the MIT Jumping dataset (Vla-
sic et al. 2008) with N = 150 meshes. For each dataset, we
use all the meshes to train the embedding space during the
first stage, where we set ∣Z0∣ = 10 for SCAPE and ∣Z0∣ = 12
for Swing and Jumping. During the second stage, we use
0.7M samples of the augmented dataset for training and
0.3M samples for validation. We use two settings, one with
M = 5 × 104 and the other with M = 2.5 × 106.

Baseline MSE RANK CLASSIFY

Ours 6.72 × 10−4 6.5 × 10−3 82.8%
Lentropy +LPD 5.06 × 10−4 9.4 × 10−3 81.1%
Lentropy +Lrank - 4.7 × 10−3 80.7%
Lentropy - - 80.4%
ND 6.9 × 10−4 6.7 × 10−3 80.2%

Table 1: We compare our method (Ours) with 4 baselines:
Lentropy + LPD, Lentropy + Lrank, Lentropy , and ND (no
collision decomposition). For each method, we train on the
smaller dataset with M = 5 × 104 meshes, and we compare
their accuracy in terms of predicting penetration depth en-
ergies (MSE), ranking penetration depth energies (RANK),
and classifying collision-free meshes (CLASSIFY). The re-
sult shows that our hybrid loss improves the overall accu-
racy of collision predictions. Especially, the improvement
over ND demonstrates the effectiveness of decomposing a
collision into body parts.

Accuracy of Collision Prediction: We consider sev-
eral baselines that are essentially simplified variants of our

pipeline in Figure 1. We notice that the constrained opti-
mization Equation 1 only needs the output of MLPclassifier

to be correct, which is the goal Lentropy . Therefore, we
consider retaining only Lentropy while removing Lrank and
LPD, leading to three baselines: Lentropy+LPD, Lentropy+
Lrank, and Lentropy , where we use the same weights for
the retained terms. In order to demonstrate the power of
collision decomposition, we also compare our LCollision
with a simplified network architecture that does not decom-
pose the collision into body parts. For this baseline, we sim-
ply use S0 to predict total penetration energy Ssum and
classify collision status, and we modify LPD to only have
∥Ssum−PDe-sum∥. The other two losses LPD and Lentropy

remain the same. This baseline is denoted as ND (no de-
composition).

In Table 1, we compare the accuracy of baselines in terms
of predicting penetration depth energies, ranking penetration
depth energies, and classifying collision-free meshes. To en-
sure that our predicted penetration depth energies are accu-
rate, we use the mean squared error (MSE) of total penetra-
tion depth energy averaged over the 0.3M test meshes. To
ensure the accuracy of the ranking penetration depth ener-
gies, we randomly formulate a pair for each sample in the
0.3M test meshes, and we record the average ranking mar-
gin (RANK). To classify collision-free meshes, we use the
rate of success (CLASSIFY) over the 0.3M test meshes.

From this ablation study, we compare ND and our
method to find that penetration decomposition can improve
the accuracy of collision predictions, which also suggests
that using the two parts of the LPD could better inform the
network of collision locality. Using penetration depth en-
ergy in the system not only provides gradient information for
optimization but can also boost performance through LPD.
Lrank does help improve performance, but its effect is rela-
tively minor compared to LPD.

M Dataset MSE RANK CLASSIFY

5 × 104
SCAPE 6.72 × 10−4 6.5 × 10−3 82.8%
Swing 7.27 × 10−4 3.38 × 10−3 91.2%

Jumping 6.74 × 10−4 5.29 × 10−3 91.6%

2.5 × 106
SCAPE 7.80 × 10−4 2.60 × 10−3 94.1%
Swing 2.57 × 10−4 2.34 × 10−3 96.2%

Jumping 6.34 × 10−4 5.43 × 10−3 95.4%

Table 2: We study the robustness of our method in terms
of dataset sizes. Increasing the dataset size M can signifi-
cantly boost the collision detection accuracy (CLASSIFY).
This result implies that learning to predict collisions is chal-
lenging, and a larger training dataset can help improve the
overall results.

Our second study inspects the robustness of our network
architecture in terms of the size of the dataset. As shown in
Table 2, we tested our method trained using two different
M . Increasing M from 5×104 to 2.5×106 can significantly
boost the collision detection accuracy (CLASSIFY). This re-
sult implies that learning to predict collisions is challenging,
and a larger training dataset can help improve the overall
results.
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Dataset Time (Pan et al.) Time (ours) Speedup
CPU GPU CPU GPU

SCAPE 1min 23s 3.99s 1.02s 21x 81x
Swing 5min 12s 3.78s 0.91s 82x 342x

Jumping 5min 19s 4.23s 1.13s 75x 282x

Table 3: We compare LCollision with (Pan, Chitta, and
Manocha 2012) in terms of the computational cost for col-
lision detection. (Pan, Chitta, and Manocha 2012) only sup-
ports the CPU version, while we tested both the CPU and
the GPU versions of our method. All datasets have 1.5×104

samples (0.3M validation samples forM = 5×104). Meshes
in the Swing and Jumping datasets have more vertices (9971
and 10002) than SCAPE (2261), and the complexity of
(Pan, Chitta, and Manocha 2012) depends on the number
of points; thus, exact collision checking (Pan, Chitta, and
Manocha 2012) takes more time. However, they all share the
same level of latent space size with SCAPE, and the running
times of our method are almost identical.
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Figure 4: The joint histogram of the number of iterations
(Y-axis) and the computational time (X-axis) used for solv-
ing the constrained optimization (Equation 1) for the Swing
dataset. The average number of iterations is 5.44 and the av-
erage computation time is 1.29s.

Speedup Compared with Exact Collision Checking:
The goal of our method is to speed up the collision detection
process over prior, exact methods that are applied to mesh-
based representations. We compare the running time with
(Pan, Chitta, and Manocha 2012) on the test set of 5 × 104

samples (1.5 × 104 samples) for the SCAPE, Swing, and
Jumping datasets. The implementation of (Pan, Chitta, and
Manocha 2012) only supports CPU, while LCollision runs
on both CPU and GPU. To achieve the best performance for
(Pan, Chitta, and Manocha 2012), we run their method using
15 threads in parallel and stop when one collision occurs or
the mesh is reported to be collision-free. For our method, we
feed the network with 500 models at the same time. We op-
timize the hyper-parameters to obtain optimal performance.
We show the results in Table 3 and observe two orders of
magnitude speedup.

The Collision Response Solver: In Figure 3, we show 20
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Figure 5: The histogram of relative penetration energy
change for successful examples in the Swing dataset. Our
method achieves a success rate of 85.1%, and we observed
an average relative decrease of 94.3% in penetration energy.

results with successful collision responses for the SCAPE
dataset (more results on the other datasets given in the ap-
pendix). To profile the collision response solver quantita-
tively, we sample a set of 3000 random human poses by
randomizing Zall for both the SCAPE and Swing datasets.
Some of the models have self-collisions and are classified
correctly by our learning-based collision detection algo-
rithm. For each of these meshes, we solve Equation 1 and we
consider a solution successful if the augmented Lagrangian
algorithm returns a feasible solution. On the SCAPE dataset,
our method achieves a success rate of 85.6%, and we ob-
serve a relative decrease of 80.9% in penetration energy.
On the Swing dataset, our method achieves a success rate
of 85.1%, and we observe a relative decrease of 94.3%. In
Figure 4, we plot the number of iterations and computational
time used by the constrained optimizer until convergence for
the Swing dataset. The average iteration is 5.44 and the av-
erage time is 1.29s. For the SCAPE dataset, the average it-
eration is 2.09 and the average time is 0.25s. In Figure 5,
we highlight the distribution of relative penetration energy
change for successful collision response models.

6 Conclusion, Limitations, and Future Work
We present LCollision, a method for learning the collision-
free human pose sub-manifold. We use a mesh embedding
autoencoder to learn a full human pose manifold and aug-
ment it with additional components to classify the collision-
free meshes. Our method decomposes the mesh into sev-
eral sub-domains and learns the decision boundary of the
collision-free sub-manifold by reusing the decomposed sub-
domains. Specifically, we learn to predict the penetration
depths aggregated to each sub-domain and then use a binary
classifier to predict whether a given mesh has any collisions.
When evaluated on the SCAPE dataset, our method achieves
a success rate of 94.1% in predicting collisions and a success
rate of 85.6% in collision responses.

Our method has some limitations. Being a learning-based
method, our collision predictor cannot achieve a 100% suc-
cess rate, in contrast to exact collision detection algorithms.
This could pose a problem when our method is used to gen-
erate computer animations, where a few missed collisions
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can have a considerable impact on the overall simulation
accuracy. Moreover, our learning method can only be ap-
plied to models with fixed topology and requires additional
data collection and training for different mesh topologies.
In the future, we would like to consider active learning to
collect more data and improve the accuracy of the collision
predictor in a self-supervised manner, and thereby reduce
the need for large training datasets. A similar approach is
used in (Pan, Zhang, and Manocha 2013; He et al. 2015) for
rigid objects. A second issue is the use of a continuous con-
straint optimizer (Vanderbei 1999) for collision responses.
These solvers require twice-differentiable hard constraints,
which is not the case in our application because we use non-
differentiable ReLU activation units. It is worth exploring
new constraint optimization solvers that could work with
non-smooth constraints specified by a neural network. There
are many issues in terms of incorporating hard constraints
into a neural network. If only soft penalties are needed,
we can reformulate the hard constraint in Equation 1 as a
soft penalty term and solve the unconstrained problem via a
Newton-Type method, allowing users to adjust the penetra-
tion allowed in the final. We can extend our work by con-
sidering other types of hard constraints such as dynamics
and accurate collision response models. Finally, since our
method uses a hybrid loss, it may compromise the perfor-
mance in some metrics, e.g., the regression loss of the pene-
tration depth. Moreover, techniques based on parameter es-
timation can be used to improve the performance of such
learning methods (Wolinski et al. 2014).
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