The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

The Power of Literal Equivalence in Model Counting*

Yong Lai,' > Kuldeep S. Meel,” Roland H. C. Yap’

! Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, China
2 School of Computing, National University of Singapore

Abstract

The past two decades have seen the significant improve-
ments of the scalability of practical model counters, which
have been influential in many applications from artificial in-
telligence to formal verification. While most of exact coun-
ters fall into two categories, search-based and compilation-
based, Huang and Darwiche’s remarkable observation ties
these two categories: the trace of a search-based exact model
counter corresponds to a Decision-DNNF formula. Taking
advantage of literal equivalences, this paper designs an ef-
ficient model counting technique such that its trace is a gen-
eralization of Decision-DNNF. We first propose a general-
ization of Decision-DNNF, called CCDD, to capture literal
equivalences, then show that CCDD supports model count-
ing in linear time, and finally design a model counter, called
ExactMC, whose trace corresponds to CCDD. We perform
an extensive experimental evaluation over a comprehensive
set of benchmarks and conduct performance comparison of
ExactMC vis-a-vis the state of the art counters, c2d, Dsharp,
miniC2D, D4, ADDMC, and Ganak. Our empirical evalua-
tion demonstrates ExactMC can solve 885 instances while
the prior state of the art solved only 843 instances, represent-
ing a significant improvement of 42 instances.

1 Introduction

Given a propositional formula ¢, the problem of model
counting (#SAT), seeks to compute the number of satis-
fying assignments of ¢. Model counting is a fundamental
problem with a wide variety of applications ranging from
probabilistic inference (Roth 1996; Chavira and Darwiche
2008), neural network verification (Baluta et al. 2019), net-
work reliability (Duenas-Osorio et al. 2017), computational
biology, and the like. Given the fundamental nature of the
problem, there has been a sustained investigation from theo-
reticians and practitioners alike over the past three decades.
Valiant (1979) showed that the problem of model counting
is #P-complete, which was subsequently followed by Toda’s
seminal work showing that PH C P#¥ (Toda 1989).

From the practitioner’s perspective, the earliest ap-
proaches to propositional model counting focused on ex-

“The author list has been sorted alphabetically by last name;
this should not be used to determine the extent of authors’ contri-
butions.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3851

tensions of the DPLL framework via smarter enumeration
of partial solutions (Birnbaum and Lozinskii 1999). Subse-
quently, Bayardo and Pehoushek (2000) introduced the no-
tion of component caching to capture the observation that
if a formula ¢ can be partitioned into a subset of clauses,
called components, {C1, Cs, ..., C,}, such that each of the
components is defined over a mutually exclusive set of vari-
ables, then the solutions of the ¢ is simply the product of
the solutions of the individual components C;. Bayardo and
Pehsouhek (2000) observed that components reappear in dif-
ferent parts of the search space, and therefore, one can rely
on the caching of components to achieve efficiency. Since
the early 2000s, three major approaches to the design of
scalable model counters have emerged: (1) search-based, (2)
compilation-based, and (3) variable elimination-based meth-
ods.

The search-based techniques predominately focus on the
combination of component caching with Conflict Driven
clause learning, an idea that was pioneered by Sang et
al (2004; 2005), in their model counter Cachet. Subse-
quently, Thurley (2006) proposed improved component en-
coding schemes along with enhanced decision heuristics in
his model counter, sharpSAT. Recently, Sharma et al. (2019)
in their counter Ganak further improved upon sharpSAT via
probabilistic caching, improved decision heuristics aided by
the utilization of independent support.

The compilation-based techniques rely on the paradigm
of knowledge compilation, which focuses on the compila-
tion of models represented in an input language to a target
language such that the resulting target language supports the
desired range of queries such as model counting efficiently.
A target language of interest is deterministic Decomposable
Negation Normal Form (d-DNNF), which supports model
counting in polynomial time (in the compiled size). In prac-
tice, binary decision is an important property to impose de-
terminism in the design of a compiler (see e.g., D4 (Lagniez
and Marquis 2017)), and the resulting subset of d-DNNF
is called Decision-DNNF (Oztok and Darwiche 2014). The
state of the art model counters based on knowledge com-
pilation focus on compilation to Decision-DNNF and then
compute the model count.

Recently, variable elimination-based techniques have
been proposed that seek to combine the techniques of Bou-
quet’s method and bucket elimination with compact repre-

sentation offered by Algebraic Decision Diagrams, namely
the counter ADDMC by Dudek et al. (2020). Hecher et
al. (2020) developed a scalable hybrid tool called nestHDB
which combines search-based and variable elimination-
based counting methods.

While the development of search-based model counters
and knowledge compilation techniques emerged indepen-
dently to a large extent, Huang and Darwiche’s remarkable
observation ties the two approaches (Huang and Darwiche
2007). In particular, they observed that the trace of a search-
based exact model counter corresponds to d-DNNF (in de-
tail, Decision-DNNF). Huang and Darwiche’s observation
motivated Muise et al. (2012) to design a state of the art
(at the time) Decision-DNNF compiler based on the exact
model counter, sharpSAT. The starting point of our work is
to investigate the following natural question: Can we design
an efficient model counting technique such that its trace is a
generalization of Decision-DNNF?

The primary contribution of our work is an affirmative an-
swer to the above question. As a first step, we observe that
the widely employed restrictions, in the context of knowl-
edge compilation, on the internal nodes, decomposability,
and determinism, are not expressive enough to capture lit-
eral equivalences.

Indeed, pre-/in-processing techniques are an important
step in modern SAT solvers (Marques-Silva, Lynce, and Ma-
lik 2009). We then first propose a generalization of Decision-
DNNF, called CCDD, to capture literal equivalence, and
show that CCDD supports model counting in linear time.
Guided by our motivation, we now design a model counter,
called ExactMC, whose trace corresponds to CCDD. To em-
pirically measure the effectiveness of ExactMC, we perform
an extensive experimental evaluation over a comprehensive
set of benchmarks and conduct performance comparison of
ExactMC vis-a-vis the state of the art counters, c2d (Dar-
wiche 2004), Dsharp (Muise et al. 2012), miniC2D (Oztok
and Darwiche 2015), D4 (Lagniez and Marquis 2017), AD-
DMC (Dudek, Phan, and Vardi 2020), and Ganak (Sharma
et al. 2019). Our empirical evaluation demonstrates while
the most number of instances solved among the prior state
of the art techniques is 843 (Ganak), ExactMC solves 885,
representing a significant improvement of 42 instances.
Since the developments in model counting techniques have
demonstrated the significance of engineering improvements,
we believe that the significant performance improvements of
ExactMC open up directions of future research in the im-
provement of decision heuristics, caching schemes, and the
like for counters whose trace corresponds to CCDD.

The rest of the paper is organized as follows: We present
notations and preliminaries in Section 2. We introduce
CCDD in Section 3 to capture literal equivalence. In Sec-
tion 4, we present the model counter, ExactMC, whose trace
corresponds to CCDD. Next, we present detailed empirical
evaluation in Section 5. Finally, we conclude in Section 7.

2 Notations and Background

In a formula or the representations discussed, x denotes a
propositional variable, and literal [is a variable x or its
negation -z, where var(l) denotes the variable. PV

3852

{zo,x1,...,Zn,...} denotes a set of propositional vari-
ables. A formula is constructed from constants true, false
and propositional variables using negation operator —, con-
junction operator A, disjunction operator V, and equality op-
erator <». A clause C (resp. term T') is a set of literals rep-
resenting their disjunction (resp. conjunction). A formula in
conjunctive normal form (CNF) is a set of clauses repre-
senting their conjunction. Given a formula ¢, a variable z,
and a constant b, a substitution p[x > b] is a transformed
formula by replacing x by b in . An assignment w over a
variable set X is a mapping from X to {¢true, false}. The
set of all assignments over X is denoted by 2%. A model
of ¢ is an assignment over Vars(y) that satisfies ¢; that
is, the substitution of ¢ on the model equals to true. Let
sol() C 2% represent the set of models of ¢, and ¢ |=) iff
sol(p) C sol(%). Given a formula ¢, the problem of model
counting is to compute |sol(p)].

Compilation In this work, we will concern ourselves with

the subsets of Negation Normal Form (NNF) wherein the
internal nodes are labeled with conjunction (A) or disjunc-
tion (V) while the leaf nodes are labeled with | (false), T
(true), or a literal. For a node v, let 9(v) and Vars(v) de-
note the formula represented by the DAG rooted at v, and the
variables that label the descendants of v, respectively. We
define the well-known decomposed conjunction (Darwiche
and Marquis 2002) as follows:

Definition 1. A conjunction node v is called a decomposed
conjunction if its children (also known as conjuncts of v) do
not share variables. That is, for each pair of children w and
w’ of v, we have Vars(w) N Vars(w') = 0.

If each conjunction node is decomposed, we say the for-
mula is in Decomposable NNF (DNNF) (Darwiche 2001).
DNNF does not support tractable model counting, but the
following subset does:

Definition 2. A disjunction node v is called deterministic if
each two disjuncts of v are logically contradictory. That is,
any two different children w and w’ of v satisfy that J(w) A

Hw') E false.

If each disjunction node of a DNNF formula is deter-
ministic, we say the formula is in deterministic DNNF
(d-DNNF). Binary decision is a practical property to im-
pose determinism in the design of a compiler (see e.g.,
D4 (Lagniez and Marquis 2017)). Essentially, each decision
node with one variable x and two children is equivalent to
a disjunction node of the form (—z A) V (x A v)), where
, 1 represent the formulas corresponding to the children.
If each disjunction node is a decision node, the formula is
in Decision-DNNF. Each Decision-DNNF formula satisfies
the read-once property: each decision variable appears at
most once on a path from the root to a leaf.

Search-Based Counters and Compilation As mentioned
in Section 1, we focus on the design of search-based model
counters. To this end, we first present the skeleton of a

Algorithm 1: SearchCounter(y)

—

if ¢ = false then return 0

if ¢ = true then return 2/~

if Cache(y) # nil then return Cache(y)
¥ < DECOMPOSE(y)

if [¥| > 1 then

¢ < [I ey SearchCounter(v))
return Cache(p) + Srwr=m=T

else

=T R L R)

x < PICKGOODVAR(¢p)
co < SearchCounter(p[z — false])
¢1 + SearchCounter(p[z — true])

return Cache(p) + <0F<L

end

general search-based model counter in Algorithm 1.! The
algorithms often maintain a cache that stores the residual
sub-formulas along with their corresponding model count.
The component-based decomposition, represented in line 4,
seeks to partition the ¢ into sub-formulas, referred to as
components, such that each of the components is defined
over a mutually disjoint set of variables. Else, we pick a
variable in line 9 and recursively compute the exact model
count. Huang and Darwiche observed that the trace of the
execution of such a model counter could be viewed to corre-
spond to a Decision-DNNF, a negation normal form that has
been well studied in the knowledge compilation community.
In this context, it is worth emphasizing that Decision-DNNF
supports linear time model counting, which is reflected in
simple constant time computations in lines 7 and 12 during
each step of the recursions wherein every step of the recur-
sion would correspond to a node in Decision-DNNF captur-
ing the trace of the execution of SearchCounter.

Remark on Approximate Model Counting While this
work focuses on exact model counting, it is worth remarking
that there has been a long line of work in the design of effi-
cient hashing-based approximate model counters that seek to
provide (g,)-guarantees (Stockmeyer 1983; Gomes, Sab-
harwal, and Selman 2006; Chakraborty, Meel, and Vardi
2013, 2016; Soos and Meel 2019; Soos, Gocht, and Meel
2020).

3 Capturing Literal Equivalences by CCDD

To seek an answer to the natural question of designing a
counter whose trace is a generalization of Decision-DNNF,
we first investigate appropriate generalizations of Decision-
DNNF. To this end, we turn to the literal equivalences, a
powerful technique in SAT solving, and we design a new
representation language that seeks to utilize literal equiva-
lences. We first discuss how to capture literal equivalence
from the knowledge compilation perspective, which is then
manifested into a corresponding new tractable language,

!To improve readability, we slightly modified the fashion of cal-
culating the current count to be consistent with our ExactMC algo-
rithm. X is the set of variables in the original formula.

3853

called CCDD. We finally show that CCDD supports linear
model counting, which serves as motivation for us to design
a counter whose trace corresponds to CCDD.

3.1 Capturing Literal Equivalences

Given two literals [and I’, we use [<> I’ to denote literal
equivalence of [and I’. Given a set of literal equivalences E,
let B/ = {l <+ l',-l <> —l' | | <> I € E}; and then we de-
fine semantic closure of F, denoted by [E'], as equivalence
closure of E’. Now for every literal [under [E], let [I] de-
note the equivalence class of /. Given F, a unique equivalent
representation of F, denoted by | | and called prime literal
equivalences, is defined as follows:

|E| = U {z=l|lex],l#x}
z€PV min[z]=x
where min[z| is the minimum variable appearing in [x]
over the lexicographic order <. It can be shown that [E'| =
2.

Let ¢ be a formula and let E' be a set of prime literal
equivalences implied by ¢. We can obtain another formula
¢’ by performing a literal-substitution: replace each [(resp.
=l) in ¢ with x (resp. —x) for each x <> | € E. Note that,

e=0'"NN\siepx & L

Example 1. Given E = {—x; <> 23,724 <> T3, T2
-, T5 <> x5}, we have |E| = {z1 < —a3,z1 <
Zyg, Ty > 26} Given p = (21 VzgVaygVar)A(z VgV
.135) A (_‘331 <~ 333) A (—\564 s .5!73) A (".132 <~ —\566) A (335 <~
x5), each literal equivalence in |E| is implied. We can
use | E| to perform a literal-substitution to simplify ¢ as
(.1‘1 vV .567) A /\LEJ

We propose a new notion on conjunction nodes to repre-
sent literal equivalences:

Definition 3. A kernelized conjunction node v is a conjunc-

tion node consisting of a distinguished child, we call the core

child, denoted by ch .ore(v), and a set of remaining children

which define equivalences, denoted by Chy.e,n, (v), such that:

1. Every w; € Chyem(v) describes a literal equivalence, i.e.,
w; = (x <>) and the union of ¥(w;), denoted by E,,
represents a set of prime literal equivalences.

For each literal equivalence = «+ | € E,, var(l) ¢
Vars(cheore (V).

We now show how the model count of a kernelization
of formula is related to its core. For simplicity, we use a
sightly more general definition for model in Propositions 1—
2. Given a formula ¢ and a set of variables X 2 Vars(y), a
model of ¢ over X is an assignment over X that satisfies .
In practice, when we want to count models for (, we only
need to make X = Vars(y).

Proposition 1. For a kernelized conjunction v over X,
if H(cheore(v)) has m models over X, then 9(v) has
STCHrem o Mmodels over X.

Proof. Given each kernelized conjunction ¢ A (z;, <> l;,) A
<o« N (zg,, ¢ 1;,), we can rewrite it as a recursive form

e A @i, 0 LOVA (A2, & L)) A= | A (@i, 0 ,):

Next we show given a kernelized conjunction ¢ = Y A (z <
1) over X, if v) has m models over X, then ¢ has %5 models
over X. By induction, we get Proposition 1. Without loss of
generality, assume [= 2’. As this is a kernalized conjuction,
' ¢ Vars(y). Letw U {2’ = false} and w U {2’ = true}
be two assignments over X, where w is a model of v over
X \ {z'}. Since z +> 2/, exactly one of the two assignments
can be a model of ¢, so half of the models of 1 are the
models of . O

3.2 Defining CCDD

We begin with the widely used idea of augmenting de-
cision diagram with conjunction in knowledge compila-
tion (Fargier and Marquis 2006; Oztok and Darwiche 2014;
Bart et al. 2014; Lai, Liu, and Yin 2017). This idea is re-
stated in a general form, Conjunction & Decision Diagram,
to cover our kernelization-integrated languages:

Definition 4. A Conjunction & Decision Diagram (CDD)
is a rooted DAG wherein each node v is labeled with a
symbol sym(v). If v is a leaf, sym(v) = L or T. Oth-
erwise, sym(v) is a variable (v is called a decision node)
or operator A (called a conjunction node). Each internal
node v has a set of children Ch(v). For a decision node,
Ch(v) = {lo(u), hi(u)}, where lo(u) (hi(u)) is connected
by a dashed (solid) edge. The formula represented by a CDD
rooted at u is defined as follows:

false sym(u) = L
true sym(u) =T
Iu) = Noecn) (V) sym(u) =A (1)
[—sym(u) A ¥(lo(u))] V i
otherwise

[sym(u) A D(hi(u))]

Hereafter we denote a leaf node by (_L) or (T), an internal
node by (sym(v), Ch(v)); and sometimes a decision node
is denoted by (sym(v),lo(v), hi(v)). Given a CDD rooted
at v (denoted by D,), its size |D,| is defined as the num-
ber of its edges, similar to other languages in the knowledge
compilation literature. If we admit only read-once decisions
and decomposed conjunctions, then the subset of CDD is
Decision-DNNF. We are now ready to describe an extension
of Decision-DNNF that captures literal equivalence, by im-
posing a different constraint on conjunction:

Definition 5 (Constrained CDD, CCDD). A CDD is called
constrained if each decision node u and its decision descen-
dant v satisfy sym(u) # sym(v), and each conjunction
node v is either: (i) decomposed; or (ii) kernelized. The lan-
guage of all constrained CDDs is called CCDD.

We use Ay and A to denote decomposed and kernelized
conjunctions respectively. Figure 1 depicts a CCDD. Since
Decision-DNNF is a subset of CCDD and is known to be
complete, we obtain the following result on the complete-
ness of CCDD:

Theorem 1. Given a formula, there is at least one CCDD to
represent it.

3854

Figure 1: A diagram in CCDD representing (z5 <> xg) A
|:[“1’1/\%5/\[("LL‘Q/\.I’4)\/($2/\((E3 & —wg))] |V [z A (23

—z4) A (x3 <> ms)]} , where the core child of the root is the
child on the left hand side

3.3 Linear Model Counting

Now we are ready to show how CCDD supports model
counting in linear time:

Proposition 2. Given a node v in CCDD with Vars(u) C X
and a node v in Dy, we use C'T (v) to denote the model count
of 9(v) over X. Then CT(u) can be recursively computed
in linear time in |D,|:

0 or 21X w is a leaf
c - HvGCh(u) CT(U) w is a Ng-node
= T
CT(u) = CQSZ—)‘@ wis @ Anode
CT(lo(u)) + CT(hi(u))

otherwise

2

where ¢ = 2(ChwW[=1)-1X],

Proof. 1t is easy to see the case for the leaf nodes. The
case for kernelized conjunctions was discussed in Propo-
sition 1. For a decision node u, we can see that there are
only half of the models over X of its low (resp. high) child
satisfying —sym(u) A 9(u) (resp. sym(u) A 9(u)), since
sym(u) does not appear in ¥(lo(u)) (resp. ¥ (hi(u))). Now
we discuss the case for decomposed conjunctions. Given a
decomposed conjunction u, we show that this proposition
holds when |Ch(u)| 2. For the cases |Ch(u)| > 2,
we only need to iteratively use the conclusion of the case
|Ch(u)| = 2. Assume that Ch(u) = {v, w}. We can divide
X into three disjoint sets X; = Vars(v), Xo = Vars(w),
and X3 = X\ (X7 UX>5). Assume that ¢¥(v) and ¥(w) have
my and my models over X; and X5, respectively. Then ¥(v)
and 9(w) have my - 21X21+1Xsl and my - 21X11+1Xs] models
over X, respectively. J(u) has m; -ms models over X;UXo,
and has m; - ms - 2131 models over X. It is easy to see the
following equation:

my - 21X+ Xl Ly, L ol X+ X

X|
my - my - 21560 =
1 M2 oIX]

4 ExactMC: A Scalable Model Counter

As discussed in Section 3, CCDD has two key proper-
ties: CCDD is complete, i.e., every formula can be repre-
sented using CCDD and it supports linear model counting.
These two properties motivate us to design a model counter,
ExactMC, whose trace corresponds to CCDD. Algorithm 2,
ExactMC, takes in a CNF formula ¢ and the set of variables
X (initialized to Vars(y)), and returns |sol(¢)|. ExactMC
is based on the architecture of search-based model counters,
as shown in Algorithm 1. We remark that in the context of
knowledge compilation, there are some other languages that
are generalizations of Decision-DNNF (see e.g., Sym-DDG
(Bart et al. 2014)). As far as we know, however, there are no
scalable model counters reported, based on these languages.

We first handle the base cases lines 1-2 corresponding
to the first case in Proposition 2. Since we are interested in
computing the number of satisfying assignments over X, we
return 21X in line 2 in case ¢ is true. We then turn to the
discovery and usage of literal equivalences in the formula
to perform model counting as presented in lines 4—-11. We
use a heuristic, SHOULDKERNELIZE, to determine whether
we should spend time in detecting and using literal equiv-
alence because those steps are themselves possibly costly.
We discuss SHOULDKERNELIZE further in Section 4.1.
When SHOULDKERNELIZE returns true, we turn to DE-
TECTLITEQU to discover literal equivalences in the formula
in line 5 and if a non-trivial literal equivalence is discov-
ered, we proceed to perform exact model counting with re-
spect to kernelized conjunction in lines 7-9 (corresponding
to the third case in Proposition 2, where || E || is equal to the
number of children minus one). In particular, we first invoke
CONSTRUCTCORE to perform literal-substitution (see Sec-
tion 3.1) to obtain the formula, ¢, corresponding to the core
child, and then recursively call ExactMC over .

If no non-trivial literal equivalence is found in line 5, then
the rest of the algorithm follows the template of search-
based model counters. We first invoke DECOMPOSE in
line 12 to determine if the formula ¢ can be decomposed into
components. If such a decomposition is not found, we pick
a variable x and recursively invoke ExactMC on the residual
formulas [z — false] and @[z — true]. We remark that
lines 14—15 and lines 17-20 correspond to the second and
fourth cases in Proposition 2, respectively.

We now employ a simple example to show how kerneliza-
tion helps us to reduce the search space. For simplicity, we
assume PICKGOODVAR gives variables in the lexicographic
order, and SHOULDKERNELIZE always returns true or al-
ways returns false.

Example 2. Consider the CNF formula ¢:
o= (—x1 V-xaVas)A(—z VaV-xs)
A\ ($1 V —z9 V —|I3) A\ (561 V xo V xg) A (—|£Z}1 \Y —‘1174)
A\ (.’,El V I4) A (—\562 \Y —\x5) N (1‘2 \Y :Z}5)
with X = {z1,...,x5}. Now, there are two cases:

Without Kernelization If SHOULDKERNELIZE is false,
the trace of ExactMC will correspond to the CCDD in
Figure 2a.

3855

Algorithm 2: ExactMC(p, X)

1 if ¢ = false then return 0

2 if ¢ = true then return 2! Xl

3 if Cache(yp) # nil then return Cache(y)
4 if SHOULDKERNELIZE(y) then

5 E < DETECTLITEQU(p)

6 if || E]|| > 0 then

7 % < CONSTRUCTCORE(¢p, | E])
8 ¢ + ExactMC(p, X)

9 return Cache(p) < 5%

10 end

1 end

12 ¥ < DECOMPOSE(yp)

13 if [¥]| > 1 then

14 e« [cp{ExactMC(y, X)}

15 return Cache () < qer=m7xT
16 else
17 x < PICKGOODVAR(y)

18 co ExactMC(yp[x — false], X)
19 c1 < ExactMC(yp[x — true], X)
20 return Cache(p) + <1<t

21 end

With Kernelization If SHOULDKERNELIZE is {rue, we
can detect two literal equivalences x1 <+ —xz4 and xo <+
—z5, and thus the residual sub-formula is equivalent to
(1 ® z2 ® x5 = 1). After running lines 18-20, we have
two other literal equivalences x5 <+ —x3 and x2 < 3.
The trace corresponds to the CCDD in Figure 2b. When
backtracking to the call corresponding to the root, we

know the core child has 16 models over {z1,...,z5},
then ¢ has ;—Q = 4 models.

4.1 Implementation

Since the core contribution of our work lies in the on-the-
fly construction and usage of kernelized conjunction nodes,
we now discuss the implementation details that are crucial
for runtime efficiency. As is the case for most heuristics in
SAT solving and related communities, we selected param-
eters empirically and detailed analysis for different choices
of parameters is left to future work. Given the original for-
mula ¢, we will use # NonUnitVars to denote the number
of variables appearing in the non-unit clauses of (.

SHOULDKERNELIZE As mentioned earlier, the detection
and usage of literal equivalences can be significantly ad-
vantageous but our preliminary experiments indicated the
need for caution. In particular, we observed that the im-
plicit construction of kernelized conjunction node over
the trace was not helpful for easy instances. To this
end, we rely on the number of variables as a proxy for
the hardness of a formula, in particular at every level
of recursion, we classify a formula ¢ to be easy if
[Vars(p)| < easy_bound, where easy_bound is defined
by min (128, # NonUnit Vars/2). If the formula ¢ is clas-
sified as easy, then SHOULDKERNELIZE returns false.
Else, we consider the search path from the last kerneliza-
tion (if no kernelization, then the root) to the current node.

(b) CCDD with kernelization

Figure 2: DAGs corresponding to counting of ¢. The num-
ber labeled beside a node denotes its model count on

{1’1,...,585}

If the number of unit clauses on the path is greater than 48
and also greater than twice the number of decisions on the
path, SHOULDKERNELIZE returns true. The intuition be-
hind the usage of unit clauses is that unit clauses are often
useful to simplify the current sub-formula and thus possi-
bly lead to many literal equivalences. In the other cases,
SHOULDKERNELIZE returns false. We empirically de-
termine the heuristic to have good performance.

DETECTLITEQU Recall, we need to check for a chosen
pair of literals [; and lo, whether [<> [5 is a literal equiv-
alence implied by ¢ at line 5 in DETECTLITEQU. For an
efficient check, we rely on using implicit Boolean Con-
straint Propagation (i-BCP) for the assignments I; A =l
and —l; Alo. The usage of i-BCP in model counting dates
back to sharpSAT (Thurley 2006). We perform some sim-
plications on each component in order to detect more lit-
eral equivalences which includes removing literals from
clauses, and unnecessary clauses. In particular, we de-
signed a pre-processor called PreLite? to perform the ini-
tial kernalization on the original formula.

Prime Literal Equivalences We employ union-find sets to
represent prime literal equivalences, which allows us to
efficiently compute prime literal equivalences from a set
of literal equivalences.

Decision Heuristics We combine the widely used heuris-

2We remark that the design of PreLite is similar to the pmc
(Lagniez and Marquis 2014) pre-processor.

3856

tic minfill (Darwiche 2009) and a new dynamic ordering,
which we call dynamic combined largest product (DLCP)
to pick good variables. Given a variable, the DLCP value
is the product of the weighted sum of negative appear-
ances and positive appearances of the variable. Given an
appearance, the heuristic considers the following cases:
() if it is in an original binary clause, the weight is 2;
(ii) if it is in a learnt binary clause, the weight is 1;
(iii) if it is in an original non-binary clause with m lit-
erals, the weight is %; otherwise, (iv) the weight is 0. If
the minfill treewidth is greater than a crossover constant
min(128, #NonUnitVars/T), we use DLCP, otherwise,
minfill. We observed in the experiments that for an in-
stance with high treewidth, DLCP is often useful to lead
to a sub-formula with many literal equivalences after as-
signing some variables.

S Experiments

We implemented a prototype of ExactMC in C++ * and eval-
uated it on a comprehensive set of 1114 benchmarks # from a
wide range of application areas, including automated plan-
ning, Bayesian networks, configuration, combinatorial cir-
cuits, inductive inference, model checking, program synthe-
sis, and quantitative information flow (QIF) analysis. These
instances have been employed in the past to evaluate model
counting and knowledge compilation techniques (Lagniez
and Marquis 2017; Lai, Liu, and Wang 2013; Lai, Liu, and
Yin 2017; Soos and Meel 2019; Fremont, Rabe, and Seshia
2017). The experiments were run on a cluster’ where each
node has 2xE5-2690v3 CPUs with 24 cores and 96GB of
RAM. Each instance was run on a single core with a timeout
of 3600 seconds and 4GB memory.

We compared ExactMC with state-of-the-art from
exact counters from each of the three paradigms:
compilation-based, search-based or variable elimination-
based. Compilation-based counters used the following tar-
get languages: (i) miniC2D on SDD (Oztok and Darwiche
2015); (ii) c2d (Darwiche 2004), Dsharp (Muise et al. 2012),
and D4 (Lagniez and Marquis 2017) on d-DNNF. For
search-based counters, we compared with a state of the art
tool called Ganak (Sharma et al. 2019), which is a recent
probabilistic exact model counter that implicitly combines
Decision-DNNF approach with probabilistic hashing to pro-
vide exact model count with a given confidence 1 — § (we
used the default § = 0.05). Note that probabilistic exact
is a stronger notion than another related notion of proba-
bilistic approximate counting (Chakraborty, Meel, and Vardi
2019). Also, perhaps it is worth remarking that Ganak builds
on and was shown to significantly improve upon the prior

3ExactMC and PreLite are available at https:/github.com/
meelgroup/KCBox

“The benchmarks are from the following sites:
https://www.cril.univ-artois.fr/KC/benchmarks.html
https://github.com/meelgroup/sampling-benchmarks
https://github.com/dfremont/counting-benchmarks
https://www.cs.ubc.ca’/hoos/S ATLIB/benchm.html

5The cluster is a typical HPC cluster where jobs are run through
a job queue.

3600 l
ExactMC]{ ‘
3000 {- Ganak ’ |
e e) I |
g miniC2D i l
o= T { ¢
o 18001 Dsharp ¢
£ ADDMC f I
3 [I
8 1200
600 '/]J I
0 I S e - 4;/:7;,;7,;'..
700 725 750 775 800 825 850 875 900

instances

Figure 3: Cactus plot comparing the solving time of different
counters. (Best viewed in color)

state of the art search-based counter, sharpSAT. For vari-
able elimination-based counters, we compared with AD-
DMC (Dudek, Phan, and Vardi 2020).

We used the widely employed pre-processing tool
B+E (Lagniez, Lonca, and Marquis 2016) for all the in-
stances, which was shown very powerful in model counting
(Lagniez, Lonca, and Marquis 2016; Sharma et al. 2019).
We remark that B+E can often simplify almost all of the
literal equivalences in the original formula detected by i-
BCP. We emphasize that the literal equivalences in ExactMC
is a “in-processing technology”, and since B+E is already
used, the literal equivalences used in ExactMC are basically
the ones appearing in the sub-formulas. Consistent with re-
cent studies, we excluded the preprocessing time from the
solving time for each tool as preprocessed instances were
used on all solvers. We emphasize that the usage of pre-
processing favors other competing tools than ExactMC. In
detail, Ganak, c2d, Dsharp, miniC2D, D4, ADDMC, and
ExactMC solved 173, 117, 244, 170, 95, 283, and 54 less
instances without the pre-processing, respectively. We em-
ployed the minfill heuristic for variable ordering in miniC2D
and c2d, which has been shown to significantly improve run-
time and space performance (Muise et al. 2012; Lai, Liu, and
Yin 2017). D4 and Ganak employ their own custom variable
ordering heuristics, which were shown to improve their per-
formance (Lagniez and Marquis 2017; Sharma et al. 2019).

Table 1 shows the performance of the six counters. Over-
all, ExactMC solved 42, 47, 50, 99, and 132 more instances
than Ganak, c2d, D4, miniC2D, and ADDMC, respectively.
Upon closer inspection of the performance of various tools
across different domains, we observe that ExactMC per-
formed the best on seven out of nine domains. Figure 3
shows the cactus plot for runtime for all the seven tools. The
z-axis gives the number of benchmarks; and the y-axis is
running time, i.e., a point (z,y) in Figure 3 shows that x
benchmarks took less than or equal to y seconds to solving.
The results show that ExactMC can improve the state-of-
the-art model counting across all three paradigms.

We remark that all of c2d, miniC2D, D4, and Ganak per-
form searches with respect to Decision-DNNF. In order to
show the effect of kernelization, we compared ExactMC

3857

with the virtual best solver of c2d, Dsharp, miniC2D, D4,
and Ganak (VBS-DecDNNF). We found that even in such an
extreme case, ExactMC solved 9 more instances than VBS-
DecDNNEF.

We present the effect of kernelization on some selected
instances and solving times in Table 2. The experimental re-
sults show that for some instances (e.g., blasted_case138),
even a small number of kernelizations are very useful to
accelerate solving. Furthermore, it is worth noticing that
we are able to perform a large number of kernelizations in
the benchmarks, showing that substantial literal equivalence
can occur in sub-formulas despite the use of pre-processing,
e.g. sygus_09A-1 (Program-Synthesis). We also conducted
experiments where kernelization was disabled in ExactMC
(without lines 4-11 in Algorithm 2). We found that the re-
sulting counter solved 17 less instances than the original ver-
sion of ExactMC, and the average PAR-2 score increased to
1613 from 1509.°

6 Discussion on Tractability of CCDD

Encouraged by the significant performance improvement at-
tained by ExactMC, we investigate further into the under-
lying language, CCDD. To this end, we study CCDD from
a knowledge compilation perspective and seek to character-
ize the tractability of CCDD. In this paper, our focus is on
improving the scalability of model counters. We refer the
reader to Darwiche and Marquis’s seminal work (Darwiche
and Marquis 2002) for definitions of different standard op-
erations in the literature. We focus on the five queries: im-
plicant check, model counting, consistency check, validity
check, and model enumeration.

We first show that CCDD supports tractable implicant
check:

Proposition 3. Given a consistent term T and a CCDD
node u, we use IM (T, u) to denote whether T' |= 9(u). Then
IM (T, u) can be recursively performed in linear time:

false sym(u) = L
true Sym(u) -7
IM(T,u) = ¢ IM(T,lo(u)) —sym(u) € T
IM(T, hi(u)) sym(u) € T
Novecnuy IM(T,v) otherwise

Proof. The constant, and decomposed and kernelized con-
junction cases are obvious, and thus we focus on the deci-
sion case. Note that a literal equivalence is a special decision
node. For the case where —sym(u) € T, each model of T is
not a model of sym(u) A ¥(hi(u)), and thus T' = 9(u) iff
T E ¥(lo(u)). The case where sym(u) € T is similar. Oth-
erwise, T' |= ¥(u) iff ~sym(u) AT |= —sym(u) AY(lo(w))
and sym(u) AT E sym(u) A 9(hi(uw)) iff T = d(lo(u))
and T = 9(hi(u)). O

Since CCDD supports model counting in linear time,
we obtain that CCDD supports consistency check, validity
check, and model enumeration in polynomial time.

®The average PAR-2 scoring scheme gives a penalized average
runtime, assigning a runtime of two times the time limit (instead of
a “unsolved” status) for each benchmark not solved by a tool.

probabilistic exact counter

exact counter

domain (#) _
Ganak c2d Dsharp miniC2D D4 ADDMC ExactMC

Bayesian-Networks (201) 170 183 168 183 179 191 186
BlastedSMT (200) 163 160 163 155 162 166 169
Circuit (56) 49 50 47 48 49 45 51
Configuration (35) 35 35 21 28 33 21 31
Inductive-Inference (41) 18 19 15 15 18 3 22
Model-Checking (78) 73 74 66 71 72 64 74
Planning (243) 207 209 192 201 206 187 212
Program-Synthesis (220) 96 76 84 68 90 52 108
QIF (40) 32 32 21 17 26 24 32
Total (1114) 843 838 777 786 835 753 885

Table 1: Comparative counting performance between Ganak, c2d, Dsharp, miniC2D, D4, ADDMC, and ExactMC, where each

cell below tool refers to the number of solved instances

domain instance Ganak c2d Dsharp miniC2D D4 . ExactMC

time kdepth #kers
Bayesian-Networks Grids_11 1239.5 - - - - 941.1 0 0
BlastedSMT blasted_case138 - - - - - 0.8 2 24
Circuit 2bitadd_11 - - - - - 2721.4 2 11580
Configuration C168_FW 338.6 14.0 - 23.1 68.3 - - -
Inductive-Inference 1i32d2 - - - - - 285.7 2 559
Model-Checking bmc-galileo-8 1.3 2145.9 4.6 - - 1.7 6 34
Planning logistics.c 2144 536.7 - - 173.5 30.8 5 7579
Program-Synthesis sygus_09A-1 - - - - - 150.0 18 21851
QIF min-2s 61.3 0.3 - 20.1 125.4 10.3 1 8

Table 2: Counting statistics on selected instances using Decision-DNNF-based and CCDD-based counters, where “—” denotes
timeout or out of memory, “kdepth” denotes the maximum number of kernelizations appearing in each path, “#kers” denotes
the total number of kernelizations, and the other columns are about solving time in seconds

Theorem 2. CCDD supports model counting, consistency
check, validity check, and implicant check in time polyno-
mial in the DAG size, and supports model enumeration in
time polynomial in both the DAG size and model count.

According to the notations in the knowledge compilation
map (Darwiche and Marquis 2002), we know that CCDD
satisfies CT, CO, VA, IM, and ME, respectively. We
mention that if we restrict the number of Ag-nodes in each
path from the root to a leaf, to be a constant ¢, we can ob-
tain a subset of CCDD. This subset is still a superset of
Decision-DNNF, and supports the same tractable operations
as Decision-DNNF. We remark that another representation
in the knowledge compilation literature called EADT (Ko-
riche et al. 2013) uses a generalization of literal equivalence;
however, EADT is not a generalization of Decision-DNNF.

7 Conclusion

In this paper, we proposed a new model counting method
ExactMC whose trace corresponds to CCDD, which is a
generalization of Decision-DNNF. To this end, we intro-
duced a new notion of kernelization to capture literal equiv-
alence. Experimental results show that the performance of
ExactMC is significantly better than the state-of-art counters
Ganak, c2d, miniC2D, D4, and ADDMC. We believe that
ExactMC opens up new directions of future research in im-

3858

provement of decision heuristics, caching schemes, and the
like for counters whose trace corresponds to CCDD. Since
the notion of kernelization is orthogonal to other notions
such as determinism, decomposability in knowledge com-
pilation, we also expect kernelization will help the knowl-
edge compilation community to identify more interesting
languages and develop more efficient compilers.

Acknowledgments

We are grateful to the anonymous reviewers for their con-
structive feedback. We thank Mate Soos and Arijit Shaw for
their help. This work was supported in part by the National
Research Foundation Singapore under its NRF Fellowship
Programme [NRF-NRFFAI1-2019-0004] and the AI Sin-
gapore Programme [AISG-RP-2018-005], NUS ODPRT9
Grant [R-252-000-685-13], Jilin Province Natural Science
Foundation [20190103005JH] and National Natural Sci-
ence Foundation of China [61806050]. The computational
resources were provided by the National Supercomputing
Centre, Singapore (https://www.nscc.sg).

References

Baluta, T.; Shen, S.; Shinde, S.; Meel, K. S.; and Saxena, P. 2019.
Quantitative verification of neural networks and its security appli-
cations. In Proc. of CCS, 1249-1264.

Bart, A.; Koriche, F.; Lagniez, J.; and Marquis, P. 2014. Symmetry-
Driven Decision Diagrams for Knowledge Compilation. In ECAI,
51-56.

Bayardo Jr, R. J.; and Pehoushek, J. D. 2000. Counting models
using connected components. In AAAI/IAAL 157-162.

Birnbaum, E.; and Lozinskii, E. L. 1999. The good old Davis-
Putnam procedure helps counting models. Journal of Artificial In-
telligence Research 10: 457-4717.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013. A Scalable
Approximate Model Counter. In Proc. of CP, 200-216.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2016. Algorith-
mic Improvements in Approximate Counting for Probabilistic In-
ference: From Linear to Logarithmic SAT Calls. In Proc. of IJCAL

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2019. On the Hard-
ness of Probabilistic Inference Relaxations. In Proc. of AAAIL
7785-7792.

Chavira, M.; and Darwiche, A. 2008. On probabilistic inference by
weighted model counting. Artificial Intelligence 172(6-7): 772—
799.

Darwiche, A. 2001. Decomposable negation normal form. Journal
of the ACM 48(4): 608—647.

Darwiche, A. 2004. New Advances in Compiling CNF into De-
composable Negation Normal Form. In Proc. of ECAI, 328-332.

Darwiche, A. 2009. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press.

Darwiche, A.; and Marquis, P. 2002. A knowledge compilation
map. Journal of Artificial Intelligence Research 17: 229-264.

Dudek, J. M.; Phan, V.; and Vardi, M. Y. 2020. ADDMC: Weighted
Model Counting with Algebraic Decision Diagrams. In Proc. of
AAAI, 1468-1476.

Duenas-Osorio, L.; Meel, K. S.; Paredes, R.; and Vardi, M. Y. 2017.
Counting-Based Reliability Estimation for Power-Transmission
Grids. In Proc. of AAAL

Fargier, H.; and Marquis, P. 2006. On the use of partially ordered
decision graphs in knowledge compilation and quantified Boolean
formulae. In Proc. of AAAIL 42-47.

Fremont, D. J.; Rabe, M. N.; and Seshia, S. A. 2017. Maximum
Model Counting. In Singh, S. P.; and Markovitch, S., eds., Proc. of
AAAI, 3885-3892.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model count-
ing: A new strategy for obtaining good bounds. In Proc. of AAAI,
volume 21, 54-61.

Hecher, M.; Thier, P.; and Woltran, S. 2020. Taming High
Treewidth with Abstraction, Nested Dynamic Programming, and
Database Technology. In Pulina, L.; and Seidl, M., eds., Proc. of
SAT, 343-360.

Huang, J.; and Darwiche, A. 2007. The Language of Search. Jour-
nal of Artificial Intelligence Research 29: 191-219.

Koriche, F.; Lagniez, J.; Marquis, P.; and Thomas, S. 2013. Knowl-
edge Compilation for Model Counting: Affine Decision Trees. In
Proc. of IJCAI, 947-953.

Lagniez, J.; and Marquis, P. 2014. Preprocessing for Propositional
Model Counting. In Proc. of AAAI 2688-2694.

Lagniez, J.-M.; Lonca, E.; and Marquis, P. 2016. Improving Model
Counting by Leveraging Definability. In IJCAI, 751-757.

Lagniez, J.-M.; and Marquis, P. 2017. An Improved Decision-
DNNF Compiler. In Proc. of IJCAI, 667-673.

3859

Lai, Y.; Liu, D.; and Wang, S. 2013. Reduced Ordered Binary De-
cision Diagram with Implied Literals: A New Knowledge Compi-
lation Approach. Knowledge and Information Systems 35(3): 665—
712.

Lai, Y.; Liu, D.; and Yin, M. 2017. New Canonical Representations
by Augmenting OBDDs with Conjunctive Decomposition. Journal
of Artificial Intelligence Research 58: 453-521.

Marques-Silva, J. P.;; Lynce, I.; and Malik, S. 2009. Conflict-Driven
Clause Learning SAT Solvers. In Biere, A.; Heule, M.; van Maaren,
H.; and Walsh, T., eds., Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, 131-153. 10S
Press.

Muise, C. J.; Mcllraith, S. A.; Beck, J. C.; and Hsu, E. 1. 2012.
Dsharp: Fast d-DNNF Compilation with sharpSAT. In Proceedings
of the 25th Canadian Conference on Artificial Intelligence, 356—
361.

Oztok, U.; and Darwiche, A. 2014.
Decision-DNNF. In Proc. of CP, 42-57.

Oztok, U.; and Darwiche, A. 2015. A Top-Down Compiler for
Sentential Decision Diagrams. In Proc. of AAAI 3141-3148.

Roth, D. 1996. On the hardness of approximate reasoning. Artifi-
cial Intelligence 82: 273-302.

Sang, T.; Bacchus, F.; Beame, P.; Kautz, H.; and Pitassi, T. 2004.
Combining component caching and clause learning for effective
model counting. In Proc. of SAT.

On compiling CNF into

Sang, T.; Beame, P.; and Kautz, H. 2005. Performing Bayesian
inference by weighted model counting. In Prof. of AAAI, 475—481.

Sharma, S.; Roy, S.; Soos, M.; and Meel, K. S. 2019. GANAK: A
Scalable Probabilistic Exact Model Counter. In IJCAI, 1169-1176.

Soos, M.; Gocht, S.; and Meel, K. S. 2020. Tinted, Detached, and
Lazy CNF-XOR solving and its Applications to Counting and Sam-
pling. In Proc. of CAV.

Soos, M.; and Meel, K. S. 2019. BIRD: Engineering an Efficient
CNF-XOR SAT Solver and its Applications to Approximate Model
Counting. In Proc. of AAAL

Stockmeyer, L. 1983. The complexity of approximate counting. In
Proc. of STOC, 118-126.

Thurley, M. 2006. SharpSAT: counting models with advanced com-
ponent caching and implicit BCP. In Proc. of SAT, 424-429.

Toda, S. 1989. On the computational power of PP and (+)P. In
Proc. of FOCS, 514-519.

Valiant, L. 1979. The complexity of enumeration and reliability
problems. SIAM Journal on Computing 8(3): 410-421.

