
On Continuous Local BDD-Based Search for Hybrid SAT Solving*

Anastasios Kyrillidis, Moshe Vardi, Zhiwei Zhang
Rice University, 6100 Main Street, Houston, TX, USA

{anastasios, vardi, zhiwei}@rice.edu

Abstract

We explore the potential of continuous local search (CLS)
in SAT solving by proposing a novel approach for finding
a solution of a hybrid system of Boolean constraints. The
algorithm is based on CLS combined with belief propaga-
tion on binary decision diagrams (BDDs). Our framework
accepts all Boolean constraints that admit compact BDDs, in-
cluding symmetric Boolean constraints and small-coefficient
pseudo-Boolean constraints as interesting families. We pro-
pose a novel algorithm for efficiently computing the gradient
needed by CLS. We study the capabilities and limitations of
our versatile CLS solver, GradSAT, by applying it on many
benchmark instances. The experimental results indicate that
GradSAT can be a useful addition to the portfolio of exist-
ing SAT and MaxSAT solvers for solving Boolean satisfiabil-
ity and optimization problems.

Introduction
Constraint-satisfaction problems (CSPs) are fundamental in
mathematics, physics, and computer science. The Boolean
SATisfiability problem (SAT) is a paradigmatic class of
CSPs, where each variable takes value from the binary set
{True,False}. Solving SAT efficiently is of utmost sig-
nificance in computer science, both from a theoretical and a
practical perspective. As a special case of SAT, formulas in
conjunctive normal form (CNFs) are a conjunction (and-
ing) of disjunctions (or-ing) of literals. Despite the NP-
completeness of CNF-SAT, there has been dramatic progress
on the engineering side of CNF-SAT solvers (Vardi 2014).
SAT solvers can be classified into complete and incom-
plete ones: a complete SAT solver will return a solution if
there exists one or prove unsatisfiability if no solution ex-
ists, while an incomplete algorithm is not guaranteed to find
a satisfying assignment nor can it prove unsatisfiability.

Most modern complete SAT solvers are based on the
the Conflict-Driven Clause Learning (CDCL) algorithm in-
troduced in GRASP (Marques-Silva and Sakallah 1999),
an evolution of the backtracking Davis-Putnam-Logemann-
Loveland (DPLL) algorithm (Davis and Putnam 1960;

*The author list has been sorted alphabetically by last name;
this should not be used to determine the extent of authors’ contri-
butions. Corresponding author: Zhiwei Zhang.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Davis, Logemann, and Loveland 1962). Examples of highly
efficient complete SAT solvers include Chaff (Moskewicz
et al. 2001), MiniSat (Eén and Sörensson 2003), PicoSAT
(Biere 2008), Lingeling 1, Glucose (Audemard and Simon
2014), and machine learning-enhanced MapleSAT (Liang
2018). Overall, CDCL-based SAT solvers constitute a huge
success for SAT problems, and have been dominating in the
research of SAT solving.

Discrete local search (DLS) methods are used in incom-
plete SAT solvers. The number of unsatisfied constraints is
often regarded as the objective function. DLS algorithms in-
clude greedy local search (GSAT) (Selman, Levesque, and
Mitchell 1992) and random walk GSAT (WSAT) (Selman,
Kautz, and Cohen 1999). Several efficient variants of GSAT
and WSAT have been proposed, such as NSAT (McAllester,
Selman, and Kautz 1997), Novelty+ (Hoos and Stützle
2000), SAPS (Hutter, Tompkins, and Hoos 2002), ProbSAT
(Balint and Schöning 2012), and CCAnr (Cai, Luo, and Su
2015). While practical DLS solvers could be slower than
CDCL solvers, they are useful for solving certain classes of
instances, e.g., hard random 3-CNF and MaxSAT (Selman,
Levesque, and Mitchell 1992).

Continuous local search (CLS) algorithms are much less
studied in SAT community, compared with CDCL and DLS
methods. In (Kamath et al. 1990), the SAT problem is re-
garded as an integer linear programming (ILP) problem and
is solved by interior point method after relaxing the prob-
lem to linear programming (LP). Another work (Jun Gu
1994) converts SAT into an unconstrained global minimiza-
tion problem and applies coordinate descent. Those meth-
ods, however, are only able to solve relatively easy ran-
dom CNF instances and fail to provide interesting theoret-
ical guarantees regarding rounding and convergence.

Non-CNF constraints are playing important roles in
computer science and other engineering areas, e.g., XOR
constraints in cryptography (Bogdanov, Khovratovich, and
Rechberger 2011), as well as Pseudo-Boolean constraints
and Not-all-equal (NAE) constraints in discrete optimiza-
tion (Costa et al. 2009; Dinur, Regev, and Smyth 2005). The
combination of different types of constraints enhances the
expressive power of Boolean formulas. Nevertheless, com-

1A. Biere, Lingeling , Plingeling , PicoSAT and PrecoSAT at
SAT Race 2010

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3841

pared to that of CNF-SAT solving, efficient SAT solvers that
can handle non-CNF constraints are less well studied.

There are two main approaches to handle hybrid Boolean
systems, i.e., instances with non-CNF constraints: 1) CNF
encoding and 2) extensions of existing SAT solvers. For the
first approach, different encodings differ in size, the abil-
ity to detect inconsistencies by unit propagation (arc consis-
tency), and solution density (Prestwich 2009). It is generally
observed that the running time of SAT solvers relies heav-
ily on the detail of encodings. Finding the best encoding for
a solver usually requires considerable testing and compari-
son (Martins, Manquinho, and Lynce 2011). In addition, the
encodings of different constraints generally do not share ex-
tra variables, which increases the number of variables. The
second approach often requires different techniques for var-
ious types of constraints, e.g., cryptoMiniSAT (Soos, Nohl,
and Castelluccia 2009) uses Gaussian Elimination to handle
XOR constraints, while Pueblo (Sheini and Sakallah 2006)
leverages cutting plane to take care of pseudo-Boolean con-
straints. Despite the efforts of Dixon et a. (Dixon et al. 2011)
to develop a general satisfiability framework based on group
theory, the study of a uniform approach for solving hybrid
constraints is far from mature.

Recently, an algebraic framework named FourierSAT
(Kyrillidis et al. 2020) attempted to address the issues with
handling non-CNF constraints, bringing CLS methods back
to the view of SAT community. As an algorithmic applica-
tion of Walsh-Fourier analysis of Boolean functions, Fouri-
erSAT transforms Boolean constraints into multilinear poly-
nomials, which are then used to construct the objective func-
tion, where a solution is found by applying vector-wise
gradient-based local search in the real cube [−1, 1]n. In this
framework, different constraints are handled uniformly in
the sense that they are all treated as polynomials. Compared
with the earlier CLS algorithm (Jun Gu 1994), FourierSAT
is able to handle more types of constraints than just random
CNF formulas. Moreover, FourierSAT provides interesting
theoretical properties of rounding as well as global conver-
gence speed thanks to a better-behaved objective function. In
addition, taking advantage of the infrastructure for training
neural networks, including software libraries and hardware,
to solve discrete problems has become a hot topic recently
(Dudek and Vardi 2020). The gradient descent-based frame-
work of FourierSAT provides the SAT community a possible
way of benefiting from machine-learning methods and tools.

Though FourierSAT does bring attention back to CLS
methods, it still has some limitations. First, as a CLS ap-
proach, FourierSAT suffers from inefficient gradient com-
putation. Specifically, computing the gradient of n coordi-
nates can take O(n) function evaluations. Second, the types
of constraints accepted by FourierSAT are still somehow
limited—only constraints with closed-form Walsh-Fourier
expansions can be handled. Third, FourierSAT uses random
restart when getting stuck in a local optimum, and the infor-
mation of the previous local optima is not leveraged.

Contributions. We point out here that the core of CLS meth-
ods for SAT solving is the ability of efficiently evaluat-
ing and differentiating (computing the gradient) the objec-

tive, independent of the representations we use for Boolean
constraints. We show that the evaluation and differentia-
tion problem in the framework of FourierSAT are equiva-
lent with weighted model counting and circuit-output prob-
ability. Model counting and circuit-output probability are
hard computational problems for general Boolean functions
(Valiant 1979). Nevertheless, if a Boolean function can be
compactly represented by certain structures, e.g., Binary
Decision Diagram (BDD) (Bryant 1995), then those tasks
can be done efficiently. As a widely-used representation of
Boolean constraints, BDD has applications in synthesis, ver-
ification and counting. Thus practical packages for handling
BDDs, e.g., CUDD 2 have been developed. Such packages
provide sub-function sharing between individual BDDs so
that a set of BDDs can be stored compactly.

We propose a novel algorithm for computing the gradient
of the objective based on belief propagation on BDDs. We
prove that by our algorithm, the complexity of computing
the gradient is linear in terms of the size of shared BDDs.
In fact, computing gradient for n coordinates is as cheap as
evaluating the objective function.

We then extend FourierSAT to a more versatile incom-
plete SAT solver, which we call GradSAT by using a more
general data structure, BDDs, rather than the Walsh-Fourier
expansions. As interesting families of Boolean functions
that have compact BDDs, pseudo-Boolean constraints and
symmetric Boolean constraints, including CNF, XOR and
cardinality constraints, have abundant applications. We en-
hance the performance of GradSAT in a variety of ways.
We borrow the idea of adaptive weighting form DLS (Mor-
ris 1993) and Discrete Lagrange Method (Wah and Shang
1996) to make use of solving history and search the contin-
uous space more systematically. We also take advantage of
a portfolio of continuous optimizers and parallelization.

In the experimental section, we aim to demonstrate the
capabilities and limitations of CLS approaches represented
by our tool, GradSAT. On one hand, our method owns
nice versatility and can outperform CDCL and DLS solvers
on certain problems, showing the power of CLS and hy-
brid Boolean encodings instead of pure CNF. On the other
hand, we observe that on certain benchmarks, e.g., formu-
las with XORs, CDCL solvers still offer better performance,
revealing potential limitations of CLS methods for handling
instances with solution-space shattering. We conclude that
CLS methods can be a useful complement to strengthen
the SAT-solver portfolio. In addition, since local search-
based SAT solvers can be naturally used to solve MaxSAT
problems (Kautz, Sabharwal, and Selman 2009), we apply
GradSAT to many MaxSAT instances and obtain encour-
aging results.

Preliminaries
Boolean Formulas, Constraints and BDDs
Let X = (x1, ..., xn) be a sequence of n Boolean variables.
A Boolean function f(x) is a mapping from a Boolean vec-
tor {True,False}n to {True,False}. In this paper, we

2CUDD: CU Decision Diagram Package Release 3.0.0

3842

define a Boolean function by f : {±1}n → {0, 1}, where
for variables, −1 stands for True and +1 for False and
for the value, 1 stands for True and 0 for False. A vector
a ∈ {−1, 1}n is called an assignment. A literal li is either a
variable xi or its negation ¬xi. In the rest of this paper, we
focus on the case where f = c1 ∧ c2 ∧ · · · ∧ cm. In other
words, f is the logical-AND of m Boolean functions, where
each ci is called a constraint.
• Symmetric Boolean constraints: Assume every literal

appears at most once in a constraint. Let c(l1 · · · lnc)
be a constraint determined by literals (l1 · · · lnc). c is
called symmetric if c(l1 · · · lnc

) ≡ c(δ(l1), · · · , δ(lnc
))

holds for every permutation δ on (l1 · · · lnc
). Disjunctive

clauses are symmetric. For example, (x1 ∨ ¬x2 ∨ x3) ≡
(¬x2 ∨ x3 ∨ x1). Other interesting classes of symmetric
constraints include cardinality constraints (CARD), e.g.,
x1 + x2 + x3 ≥ 2; XOR, e.g., x1 ⊕ x2 ⊕ x3; Not-all-
equal constraints (NAE), which are satisfied when not all
the variables have the same value.

• Pseudo-Boolean constraints (PB), e.g, 3x1 + 5¬x2 −
6x3 ≥ 2, where the coefficients are limited to be integers.
Let the set of constraints of f be Cf . Let m = |Cf | and

n be the number of variables of f . A solution of f is an
assignment that satisfies all the constraints in Cf .

A Binary Decision Diagram, or BDD, is a data struc-
ture that represents a Boolean function as a directed acyclic
graph B (Bryant 1995). We use B.V , B.E and S(B) =
|B.V | + |B.E| to denote the node set, edge set and size of
B. For a node v ∈ B.V , we use v.T , v.F and iv to denote
the True, False child and the variable index associated
with v, respectively. We use B.one and B.zero to denote
the terminal nodes with value 1 and 0, respectively. We also
use multi-rooted BDDs (MRBDDs) for representing a group
of Boolean functions, in which the BDD can have multi-
ple entries, stored in B.entry : Cf → B.V . Each entry
of the MRBDD is the root of the single-rooted BDD of one
Boolean function.

Walsh-Fourier Expansion of a Boolean Function
Walsh-Fourier Transform is a method for transforming a
Boolean function into a multilinear polynomial. The follow-
ing theorem states that every function defined on a Boolean
hyper-cube has an equivalent polynomial representation.
Theorem 1. ((O’Donnell 2014), Walsh-Fourier Expansion)
Given a function f : {±1}n → R, there is a unique way of
expressing f as a multilinear polynomial, where each term
corresponds to one subset of [n], according to:

f(x) =
∑

S⊆[n]

(
f̂(S) ·

∏
i∈S

xi

)
,

where f̂(S) ∈ R is called Walsh-Fourier coefficient, given
S, and computed as:

f̂(S) = E
x∼{±1}n

[
f(x) ·

∏
i∈S

xi

]
=

1

2n

∑
x∈{±1}n

(
f(x) ·

∏
i∈S

xi

)
x ∼ {±1}n indicates x is uniformly sampled from {±1}n.

The polynomial is called the Walsh-Fourier expansion of f .

c WFEc

x1 ∨ x2
3
4
− 1

4
x1 − 1

4
x2 − 1

4
x1x2

x1 ⊕ x2 ⊕ x3
1
2
− 1

2
x1x2x3

NAE(x1, x2, x3)
3
4
− 1

4
x1x2 − 1

4
x2x3 − 1

4
x1x3

Table 1: Examples of Walsh-Fourier Expansions

Given a formula f , for each constraint c of f , we use WFEc

to denote the Walsh-Fourier expansion of c. Table 1 shows
some examples of Walsh-Fourier expansions.

Weighted Model Counting and Circuit-Output
Probability
Definition 1. (Weighted model counting) Let f :
{−1, 1}n → {0, 1} be a Boolean function over a set X
of variables. Let W : {−1, 1}n → R be an arbitrary
function. The weighted model counting of f w.r.t. W is
W (f) =

∑
a∈{−1,1}n f(a) ·W (a).

W is called the weight function. In this work we fo-
cus on so-called literal-weight functions, where the weight
of an assignment can be expressed as the product of
weights associated with all satisfied literals: W (a) =∏

ai=−1W
T (xi) ·

∏
ai=1W

F (xi) for some literal weight
functions WT ,WF : X → R.

When the literal weight functions satisfy WT (xi) +
WF (xi) = 1 and WT (xi),W

F (xi) ≥ 0 for each variable
xi, the literal weighted model counting problem reduces to
the circuit-output probability problem.
Definition 2. (Circuit-output probability) Let f be a
Boolean function over a set X of variables. Let P : X →
[0, 1] be the variable input probability. The circuit-output-
probability problem of f w.r.t. P , denoted by COP(P, f) is
the probability of f outputting 1 (True) given the value of
each variable independently sampled from the binary distri-
bution with probability P[xi = −1] = P (xi), i.e.,

COP(P, f) =
∑

a∈{±1}|X|

f(a) ·
∏

ai=−1

P (xi) ·
∏
ai=1

(1− P (xi))

Theoretical Framework
In this section, we first recap a previous CLS framework,
FourierSAT and give a weighted adaptation of it. Then we
show how our new CLS-based method, GradSAT, can ac-
cept an abundant set of different types of constraints and run
efficiently due to fast gradient computation. Proofs are de-
layed to the supplemental material 3.

Recap of FourierSAT and a Weighted Adaptation
The basic framework of FourierSAT (Kyrillidis et al. 2020)
is as follows. Given a formula f , the objective function
w.r.t f , denoted by Ff : [−1, 1]n → R+, is the sum
of Walsh-Fourier expansions of f ’s constraints, i.e., Ff =∑

c∈Cf
WFEc, where WFEc is the Walsh-Fourier expansion

3available at https://github.com/vardigroup/GradSAT/blob/
master/Appendix.pdf

3843

Algorithm 1: FourierSAT, a CLS-based SAT Solver.
Input : Boolean formula f with constraint set Cf

Output: A discrete assignment x ∈ {−1, 1}n

1 for j = 1, . . . , J do
2 Randomly sample x0 uniformly from [−1, 1]n.
3 Search for a local maximum x∗j of Ff in [−1, 1]n,

starting from x0.
4 if Ff (x

∗
j) = |Cf | then return x∗j ;

5 return x∗j with the highest Ff (x
∗
j) after J iterators

of constraint c. The following theorem reduces SAT to a
multivariate optimization problem over [−1, 1]n.

Theorem 2. (Kyrillidis et al. 2020) 4 A Boolean formula f
is satisfiable if and only if max

x∈[−1,1]n
Ff (x) = |Cf |.

Theorem 2 suggests that we can search inside of the
Boolean cube instead of only on vertices. Then a continu-
ous optimizer is applied for finding the global maximum of
the objective. The objective built by Walsh-Fourier expan-
sions is multilinear, which is better-behaved than higher or-
der polynomials. When getting stuck in a local maximum,
FourierSAT simply invokes random restart, as Alg. 1 shows.

A limitation of Theorem 2 is that different relative im-
portance of constraints is not taken into account. For ex-
ample, constraints with low solution density are generally
harder to satisfy than those with high solution density. We
address this issue by involving a constraint-weight function
w : Cf → R+. We define the new objective as follows.

Definition 3. (Objective) The objective function w.r.t. the
formula f and constraint-weight function w, denoted by
Ff,w : [−1, 1]n → R is defined as Ff,w =

∑
c∈Cf

w(c) ·WFEc.

We have the weighted analogue of Theorem 2 as follows.

Theorem 3. Given a constraint weight function w : Cf →
R+, a Boolean formula f is satisfiable if and only if

max
x∈[−1,1]n

Ff,w(x) =
∑
c∈Cf

w(c).

Based on Theorem 3, we can design a CLS framework
similar to Alg. 1 to search for a maximum of Ff,w.

Computing Gradients is Critical for CLS Methods
After constructing the objective function, a CLS approach
has to find a global optimum. Global optimization on non-
convex functions is NP-hard (Jain and Kar 2017), so con-
verging to local optima and checking if any of them is global
is more practical, as long as global optima can be identi-
fied efficiently. Algorithms that aim to find local optima can
be categorized into several classes of local-search methods,
such as gradient-free algorithms, gradient-based algorithms

4In (Kyrillidis et al. 2020) the problem is to minimize instead of
maximize, due to the difference of the definition of Boolean func-
tions, which, however, does not bring about an essential difference.

and Hessian-based algorithms (Nocedal and Wright 2006).
Gradient-free algorithms are suitable for cases where the
gradient is hard or impossible to obtain (Larson, Menick-
elly, and Wild 2019; Berahas et al. 2019). They are, how-
ever, generally inefficient and often their convergence rates
depend on the dimensionality of the problem (Hare, Nu-
tini, and Tesfamariam 2013). Hessian-based algorithms are
able to escape saddle points but are usually too expensive
to use (Nocedal and Wright 2006). Thus in practice, using
gradient-based algorithms is the most typical choice, which
is the case in FourierSAT. The performance of a specific
gradient-based algorithm relies heavily on how fast the gra-
dient can be computed. Since most computational work of
CLS-based methods happens in the continuous optimizer
(Jun Gu 1994), the efficiency of computing gradients is crit-
ical for the performance of CLS solvers.

GradSAT: from Walsh-Fourier Expansions to
BDDs
We start this subsection by analyzing some limitations of
FourierSAT. First, FourierSAT only accepts symmetric con-
straints.There are, however, useful constraints that cannot be
reduced to symmetric ones, e.g., pseudo-Boolean constraints
(PBs). Second, in FourierSAT, computing gradient costs
O(n) function evaluations (Kyrillidis et al. 2020), which can
get expensive for constraints with more than a few hundred
variables.

The issues above indicate that there might be better rep-
resentations of Boolean constraints than Walsh-Fourier ex-
pansions. In the rest of this section, we discuss how our new
framework, GradSAT, addresses those issues by choosing
Binary Decision Diagrams (BDDs) as the representation to
evaluate and differentiate the objective.

In order to use a new representation of Boolean con-
straints, we need to have a deeper understanding of the ob-
jective function. Theorem 4 in below, adapted from Theorem
3 in (Kyrillidis et al. 2020) indicates the objective value can
be interpreted as a measure of the progress of the algorithm.
Definition 4. (Randomized rounding) We define the ran-
domized rounding functionR : [−1, 1]n → {−1, 1}n by{

P[R(a)i = −1] = 1−ai
2

P[R(a)i = +1] = 1+ai
2

for i ∈ {1, · · · , n}, where P denotes the probability.
Definition 5. (Vector probability space) We define a proba-
bility space on Boolean vectors w.r.t. real point a ∈ [−1, 1]n,
denoted by Sa : {−1, 1}n → [0, 1] by:
Sa(b) = P[R(a) = b] =

∏
bi=−1

1−ai

2

∏
bi=1

1+ai

2 ,

for b ∈ {−1, 1}n, with respect to the randomized-
rounding function R. We use b ∼ Sa to denote that b ∈
{−1, 1}n is sampled from the probability space Sa.
Theorem 4. Given a formula f and constraint weight func-
tion w : Cf → R+, for a real point a ∈ [−1, 1]n, we have

Ff,w(a) = E
b∼Sa

[Ff,w(b)],

where E denotes expectation.

3844

For a discrete point b ∈ {−1, 1}n, Ff,w(b) is the sum of
weights of all constraints satisfied by b. Therefore, Theorem
4 reveals that for a real point a, the value Ff,w(a) is in fact
the expected solution quality at a. Thus, a CLS approach
can make progress in the sense of expectation as long as it
increases the objective value. Compared with DLS solvers
and coordinate descent-based CLS solvers that only flip one
bit per iteration, a CLS method is able to ”flip” multiple vari-
ables, though probably by a small amount, to make progress.

We now interpret Theorem 4 from the perspective of
circuit-output probability.
Corollary 1. With f, w, a as in Theorem 4, we have

Ff,w(a) = E
b∼Sa

[Ff,w(b)] =
∑
c∈Cf

w(c) · COP(Pa, c),

where Pa : X → R is the variable input probability function
defined by Pa(xi) =

1−ai

2 for all i ∈ {1, · · · , n}.
Corollary 1 states that to evaluate the objective function,

it suffices to compute the circuit-output probability of each
constraint. Calculating the circuit-output probability, as a
special case of literal weighted model counting, is #P-hard
for general representations such as CNF formulas (Valiant
1979). Nevertheless, if a Boolean function is represented by
a BDD B of size S(B), then the circuit-output probability
on it can be solved in timeO(S(B)) by a probability assign-
ment algorithm (Thornton and Nair 1994) shown in Alg. 2.
Lemma 1. (Thornton and Nair 1994) Alg. 2 returns the
circuit-output probability COP(P, f), where P ≡ 1

2 and
runs in time O(S(B)) given the BDD B of f .

Alg. 2 deals with the uniform variable probability,
P (xi) = 1

2 for i ∈ {1, . . . , n}. In the following we adapt
it for admitting a general variable input probability function
Pa : X → [0, 1].

To use the idea of Alg. 2, we need to construct the BDDs
for the constraints of f . Note that since different constraints
can share same sub-functions, equivalent nodes only need
to be stored once. In BDD packages such as CUDD, this
property is realized by a decision-diagram manager. After
combining equivalent nodes, the BDD forest generated from
all constraints forms a multi-rooted BDD (MRBDD). The
size of the MRBDD can be significantly smaller than the
sum of the size of each individual BDD when sub-function
sharing frequently appears. Alg. 3 shows how to use ideas
above to evaluate our objective Ff,w.
Theorem 5. Alg. 3 returns the correct objective value
Ff,w(a) and runs in time O(S(B)), for the MRBDD B of f .

Alg. 3 traverses the MRBDD in a top-down style while
the same effect can be achieved by a bottom-up algorithm
as well, as shown in Alg. 4. Similar ideas of traversing
BDDs bottom-up have been used in BDD-based SAT solv-
ing (Pan and Vardi 2006) and weighted model counting
(Dudek, Phan, and Vardi 2019).
Theorem 6. Alg. 4 returns the correct objective value
Ff,w(a) and runs in time O(S(B)), for the MRBDD B of f .

So far we have demonstrated how to evaluate the objective
by BDDs. In the rest of this section we will show the combi-
nation of the bottle-up and top-down algorithms inspires an
efficient algorithm for gradient computation.

Algorithm 2: The Probability-Assignment Algo-
rithm

Input : BDD B of Boolean function f ;
Output: COP(P, f) with P ≡ 1

2

1 Step 1. Assign probability 1 for the root node of B.
2 Step 2. If the probability of node v =M [v], assign

probability 1
2M [v] to the outgoing arcs from v.

3 Step 3. The probability M [u] of node u is the sum of
the probabilities of the incoming arcs.

4 return M [B.one]

Algorithm 3: Objective Evaluation (Top-Down)
Input : MRBDD B, real point a ∈ [−1, 1]n,

constraint weight function w : Cf → R.
Output: value of Ff,w(a)

1 Let MTD : B.V → R be the bottom-up messages
and MTD[u] = 0 for all the non-entry nodes
u ∈ B.V .

2 for each constraint c ∈ Cf do
3 MTD[B.entry(c)] = w(c)
4 Sort all nodes of B by topological order to list L.
5 for each node v ∈ L do
6 MTD[v.T]+ = 1−a[iu]

2 ·MTD[v]

7 MTD[v.F]+ = 1+a[iu]
2 ·MTD[v]

8 return MTD[B.one]

Algorithm 4: Objective Evaluation (Bottom-Up)
Input, Output: Same with Algorithm 3

1 Let MBU : B.V → R be the bottom-up messages
and MBU [u] = 0 for all nodes u ∈ B.V except
MBU [B.one] = 1.

2 Sort all nodes of B by topological order to list L.
3 for each node v ∈ L do
4 for each node u such that u.T = v do
5 MBU [u]+ = 1−a[iu]

2 ·MBU [v]
6 for each node u such that u.F = v do
7 MBU [u]+ = 1+a[iu]

2 ·MBU [v]
8 return

∑
c∈Cf

(MBU [B.entry(c)] · w(c))

Gradient is as Cheap as Evaluation in GradSAT
In this subsection, we propose a fast algorithm for com-
puting the gradient, based on message passing on BDDs.
The algorithm runs in O(S(B)), given B the MRBDD of
formula f . Roughly speaking, computing the gradient is as
cheap as evaluating the objective function.

The basic idea is to traverse the MRBDD twice, once top-
down and once bottom-up. Then, enough information is gen-
erated for applying the differentiate operation on each BDD
node. The gradient of a specific variable, say xi, is obtained
from all nodes associated with xi. This idea is borrowed

3845

Algorithm 5: Efficient Gradient Computation
Input : Same with Algorithm 3
Output: Gradient vector g ∈ Rn at point a

1 Let g be a zero vector with length n.
2 Run Algorithm 3 with (B, a,w)
3 Run Algorithm 4 with (B, a,w)
4 Collect MTD,MBU : B.V → R from Alg. 3 and 4
5 for each non-terminal node v ∈ B.V do
6 g[iv]+ = 1

2 ·MTD[v] · (MBU [v.F]−MBU [v.T])
7 return g

from belief-propagation methods on graph model in prob-
abilistic inference (Pearl 1988; Shafer and Shenoy 1990).
Compared with FourierSAT, where the computation of the
gradient for different variables has no overlap, Alg. 5 ex-
ploits the shared work between different variables.

Theorem 7. Alg. 5 returns the gradient g ∈ Rn of Ff,w at
real point a ∈ [−1, 1]n correctly and runs in time O(S(B)),
given the MRBDD B of f . 5

Roughly speaking, MTD[v] (Top-Down) has connection
with the probability of a BDD node v being reached from
the root, while MBU [v] (Bottom-Up) contains information
of the circuit-output probability of the sub-function defined
by the sub-BDD with root v. Algorithm 5 can be interpreted
as applying the differentiation operation on each node.

The Versatility of GradSAT
Now that we have an efficient algorithm to compute the
gradient for formulas with compact BDDs, the next natu-
ral question to ask is for what types of constraints can we
enjoy small size BDDs. Here we list the following results.

Proposition 1. (Sasao and Fujita 1996) Symmetric Boolean
constraints with n variables admits BDDs with size O(n2).

Proposition 2. (Aavani 2011) Pseudo-Boolean constraints
with n variables and magnitude of coefficients bounded by
M admits BDDs with size O(n ·M).

Thus GradSAT can accept symmetric constraints and
small-coefficient PBs, since they have reasonable BDD size.

It is well known that most of the local search-based in-
complete SAT solvers can also work as a solution approach
for the MaxSAT problem, by providing the “best found”
truth assignment upon termination (Kautz, Sabharwal, and
Selman 2009). Thus we also use GradSAT as a partial
MaxSAT solver to solve Boolean optimization problems.

Implementation Techniques
Adaptive Constraint Weighting
When dealing with satisfaction problem, the constraint-
weight function w : Cf → R+ has a great impact on the

5In fact, line 5-7 of Algorithm 5 can be integrated to Algorithm
4 once the top-down traverse is done. Thus computing the gradient
costs traversing the MRBDD twice instead of three times. We use
this trick in our implementation.

Algorithm 6: GradSAT
Input : Boolean formula f with constraint set Cf ;

Hyperparameters r and T
Output: A discrete assignment x ∈ {−1, 1}n

1 Build the MRBDD B of f .
2 for j = 1, . . . , J do
3 Sample x0 uniformly at random from [−1, 1]n.
4 Set w(c) = length(c) for all constraints c.
5 for t = 1, . . . , T do
6 Starting from x0, search for a local maximum

x∗jt of Ff,w in [−1, 1]n with Alg. 3 for
function value and Alg. 5 for gradient.

7 if Ff,w(x
∗
jt) =

∑
c∈Cf

w(c) then return x∗jt;

8 for ∀c ∈ Cf that is not satisfied by x∗jt do
9 Set w(c) = w(c) · r

10 return x∗jt with the highest Ff,w(x
∗
jt)

performance of CLS method. In practice we find that an ap-
propriate weight function can make it much faster for a con-
tinuous optimizer to reach a global maximum. How to pre-
define a static weight function for a given class of formulas
is, however, still more art than science thus far.

In CLS approaches for SAT solving, solving history is not
leveraged if random restart is invoked every time after get-
ting stuck in local optima. We are inspired from the Discrete
Lagrange Method (Wah and Shang 1996) and the “break-
out” heuristic (Morris 1993) in DLS to design the follow-
ing dynamic weighting scheme. The constraint weights are
initialized to be the length of the constraint. When a local
optimum is reached, we multiply the weights of unsatisfied
constraints by r and start from the same point once again.
GradSAT only does random restart when T trials have been
made for the same starting point, as shown in Alg. 6.6

A Portfolio of Optimizers and Parallelization
The specific optimizer to maximize the objective also influ-
ences the performance of a CLS solver. Different optimiz-
ers are good at different types of instances. GradSAT runs
a portfolio of four different optimizers, including SLSQP
(Kraft 1994), MMA (Svanberg 2002) from NLopt 7 and CG
(Hestenes and Stiefel 1952), BFGS (Fletcher 1987) from
Dlib (King 2009), on multiple cores and terminates when
any of optimizers returns a solution.

Experimental Results
We aim to answer the following research questions:
RQ1. Is the cost for computing gradient reduced by using
the BDD-based approach (Algorithm 5) ?
RQ2. What is the advantages and limitations of GradSAT
on randomly generated hybrid Boolean formulas?

6We tuned r and T by running GradSAT on random 3-CNF
benchmarks with r ∈ {1, 1.5, 2, 2.5, 3} and T ∈ {1, 2, 4, 8, 16}
and choosing (r, T) that solves most cases. We got r = 2, T = 8.

7S. Johnson, The NLopt nonlinear-optimization package.

3846

instance type n m max/avg. constraint length FourierSAT/s GradSAT/s Acceleration (×)

3-CNF 500 2000 3/3 0.187 0.012 15.58
10-CNF 1000 32000 10/10 18.81 2.89 6.26

2-CNF+1 CARD 300 451 300/2.66 0.40 0.086 4.65
3-CNF+XORs 150 360 75/15 0.036 0.029 1.24

Table 2: Gradient speedup. FourierSAT/s and GradSAT/s denote the gradient cost in seconds. GradSAT significantly improves
the efficiency of computing gradient.

RQ3. Can GradSAT perform well in solving discrete opti-
mization problems, encoded by MaxSAT?
RQ4. Can MRBDD with nodes sharing significantly reduce
the total number of nodes?

Solver Competitors. 1) CDCL solvers including Glu-
cose, cryptoMiniSAT (CMS) and ML-enhanced solver
MapleSAT; 2) DLS solvers, including WalkSATlm (Cai,
Su, and Luo 2013), CCAnr and ProbSAT; 3) PB solvers
including CDCL-based MiniSAT+ (Aavani 2011), Open-
WBO (Martins, Manquinho, and Lynce 2014), NAPS
(Sakai and Nabeshima 2015) and Conflict-Driven-Pseudo-
Boolean-Search-based (CDPB) solver RoundingSAT (Elf-
fers and Nordström 2018); 4) Partial MaxSAT solvers, in-
cluding Loandra (Berg, Demirović, and Stuckey 2019),
the best solver of MaxSAT Competition 2019 (incomplete
track), WalkSAT (v56) and Mixing Method (Wang, Chang,
and Kolter 2017), an SDP-based solver.

Benchmark 1: Hybrid random formulas consisting of
disjunctive clauses, XORs, CARDs and PBs. We generate
four types of satisfiable random hybrid benchmarks: CNF-
XORs (360 instances), XORs-1CARD (270 instances),
CARDs (360 instances) and PBs (720 instances) with vari-
able number n ∈ {50, 100, 150} 8. When a constraint is
not accepted by a traditional CNF solver, we use CNF en-
codings to resolve the issue. Specifically, we let pySAT (Ig-
natiev, Morgado, and Marques-Silva 2018) choose the CNF
encoding for CARDs and PBs, while using the methods in
(Li 2000) to encode XORs. Time limit is set to be 100s.

Benchmark 2: MaxSAT problems. We gathered 570 in-
stances from the crafted (198 instances) and random
track (377 instances) of MaxSAT Competition 2016-2019.
Those instances encode random problems as well as com-
binatorial problems such as set covering and MaxCut. We
set the time limit to 60s. We also used problems from
the incomplete track of MaxSAT Competition 2019 as the
industrial benchmarks (296 instances).

Implementation of GradSAT. We implement GradSAT
in C++ 9. Each experiment is run on an exclusive node in
a Linux cluster with 16-processor cores at 2.63 GHz and 1
GB of RAM per processor. We generated five versions of
GradSAT, including using single-core on each of the four
optimizers (SLSQP, MMA, CG, BFGS) and using 16 cores
on the portfolio, with each optimizer getting 4 cores.

RQ1. Table 2 lists the running time for computing gradi-

8A detailed description of benchmarks generation can be found
in the supplemental material.

9Available at https://github.com/vardigroup/GradSAT

0 200 400 600 800 1000
Number of problems solved

0

20

40

60

80

R
un

ni
ng

 ti
m

e
(in

 s
ec

on
ds

)

RoundingSAT(PB-CDPB)
GradSAT-16-cores (CLS)
Open-WBO(PB-CDCL)
CMS (CDCL)
CCAnr (DLS)
WalkSATlm (DLS)
Glucose (CDCL)
MiniSAT+(PB-CDCL)
NAPS(PB-CDCL)
MapleSAT (CDCL)
ProbSAT (DLS)

Figure 1: Results on random CARDs and PBs. GradSAT is
second only to CDPB-based RoundingSAT.

0 100 200 300 400 500 600
Number of problems solved

0

20

40

60

80

R
un

ni
ng

 ti
m

e
(in

 s
ec

on
ds

) CMS (CDCL)
MapleSAT (CDCL)
Glucose (CDCL)
CCAnr (DLS)
GradSAT-16-cores (CLS)
ProbSAT (DLS)
FourierSAT(CLS)
WalkSATlm (DLS)

Figure 2: Results on random XORs-1CARD and CNF-
XORs. CDCL solvers outperform local-search solvers.

ent on several instances. Each running time is the average
on 100 random points in [−1, 1]n. The results indicate that
GradSAT significantly accelerates the computation of gra-
dient compared with FourierSAT.

RQ2. We classify the four types of benchmarks in Bench-
mark 1 into two groups: 1) PBs and CARDs; 2) XORs-
1CARD and CNF-XORs; because solvers have similar per-
formance on instances from the same group. We summa-
rize the results in Figure 1 and 2. Figure 1 shows the re-
sults on CARDs and PBs instances. Though CDPB-based
solver RoundingSAT easily solves all instances, GradSAT
on 16 cores is able to solve 732 instances, more than all other
CDCL, DLS SAT solvers and CDCL-based PB solvers.
From Figure 2, we observe that on benchmarks involving
XORs, CDCL solvers, especially CMS, perform better than
local-search solvers. GradSAT on 16 cores solves 155 in-
stances, only second to CCAnr (191) among all local search
solvers. We conjecture that the solution space shattering

3847

Benchmarks Avg. total # nodes of indi. BDDs Avg. # nodes of MRBDD Avg. redu. ratio (×)

MaxSAT-Random 6683 2044 3.22
MaxSAT-Crafted 7435 3237 2.51

MaxSAT-Industrial 3428810 1548877 2.29
Hybrid SAT-CARDs 31714 31454 1.02

Hybrid SAT-PBs 602664 602393 1.00
Hybrid SAT-CNF-XORs 7254 5600 1.30

Hybrid SAT-XORs-1CARD 5976 5794 1.03

Table 3: Nodes sharing in MRBDD. The average reduction ratio is considerable on MaxSAT instances while unsatisfactory on
hybrid SAT instances.

Methods Avg. Score #Win

GradSAT-Portfolio-16cores 0.970 465
GradSAT-BFGS-1core 0.954 293
GradSAT-MMA-1core 0.950 248

GradSAT-CG-1core 0.949 234
GradSAT-SLSQP-1core 0.937 206

WalkSAT 0.917 124
FourierSAT 0.908 108

Mixing Method 0.892 121
Loandra 0.874 41

VBS 1 575
VBS without GradSAT 0.990 254

Table 4: Results on MaxSAT instances. GradSAT imple-
mentations achieve better avg. score as well as #Win and
improve the VBS.

(Dudek, Meel, and Vardi 2016; Pote, Joshi, and Meel 2019)
brought by XORs might be the reason for the weakness of
local search solvers in handling XORs.

RQ3. Table 4 showcases the results on MaxSAT bench-
marks. We use the incomplete score (Berg, Demirović, and
Stuckey 2019) and the number of instances where a solver
provides the solution with the best cost (#Win) as the metric
for evaluation. All five versions of GradSAT achieve bet-
ter average score and #Win than other solvers. Moreover,
GradSAT improves the score of Virtual Best Solver (VBS)
with 0.01 and #Win with 321.

We also try GradSAT on large-size instances from the
industrial MaxSAT problems, which contain both hard
and soft clauses. But GradSAT is not able to give an an-
swer for about 2/3 of all instances. On instances which
GradSAT successfully solves, an average score of 0.82 is
achieved. We conjecture two reasons for the unsatisfactory
performance of GradSAT on industrial benchmarks
as follows. First, GradSAT sets the weight of hard clauses
to be (#soft clauses + 1). It has been shown (Lei and Cai
2018) that this natural weighting performs poorly without
exploiting the structure of partial MaxSAT problems. Sec-
ond, industrial benchmarks contain a large number of vari-
ables, which also the non-stochastic DLS solver, e.g., GSAT,
could hardly handle. Thus it is not surprising that GradSAT,
as a proof-of-concept implementation demonstrating how to
calculate the full gradients simultaneously, is less competi-
tive. We leave handling industrial partial MaxSAT problems

by CLS approaches as a future direction.
RQ4. Table 3 shows the total number of nodes of indi-

vidual BDDs and the number of nodes of MRBDD for each
type of benchmarks In order to allow more nodes sharing,
we use the same variable order for all individual BDDS, cor-
responding to the original variable indices. We leave plan-
ning and applying a better variable order as a future direc-
tion. For all tracks of MaxSAT instances in CNF format,
using MRBDD significantly reduced the number of nodes,
yielding a average reduction ratio from 2.29 to 3.22. How-
ever, on non-CNF hybrid SAT instances, nodes sharing in
MRBDD is negligible, probably due to relatively large con-
straint length.

Conclusion and Future Directions
In this paper, we proposed a new BDD-based continuous lo-
cal search (CLS) framework for solving Boolean formulas
consisting of hybrid constraints, including symmetric con-
straints and pseudo-Boolean constraints. The core of our ap-
proach is a novel algorithm for computing the gradient as
fast as evaluating the objective function. We implemented
our method as GradSAT on top of a portfolio of continuous
optimizers. The experimental results demonstrate the power
of GradSAT at handling CARD/PB constraints and small-
size MaxSAT problems, while we also observe the limita-
tions of our tool on large instances and XOR-rich instances.

Since for large instances, the cost for computing the gra-
dient is still too high, a future direction is applying stochastic
gradient descent to reduce the cost. Another future direction
is to combine the advantages of CLS methods, i.e., the capa-
bility of “searching inside” and those of DLS methods, in-
cluding “sideway walk”, which searches the space quickly,
in order to design stronger solvers. We also want to design
better weighting mechanism as in (Lei and Cai 2018) to han-
dle partial MaxSAT problems with hard clauses.

Acknowledgments
Work supported in part by NSF grants IIS-1527668, CCF-
1704883, IIS-1830549, CCF-1907936, CNS-2003137, and
an award from the Maryland Procurement Office.

References
Aavani, A. 2011. Translating Pseudo-Boolean Constraints
into CNF. In Sakallah, K. A.; and Simon, L., eds., Theory

3848

and Applications of Satisfiability Testing - SAT 2011, 357–
359. Berlin, Heidelberg: Springer Berlin Heidelberg.

Audemard, G.; and Simon, L. 2014. Lazy Clause Exchange
Policy for Parallel SAT Solvers. In SAT 2014, 197–205.
Cham. ISBN 978-3-319-09284-3.

Balint, A.; and Schöning, U. 2012. Choosing Probability
Distributions for Stochastic Local Search and the Role of
Make versus Break. In SAT 2012, 16–29. ISBN 978-3-642-
31612-8.

Berahas, A. S.; Cao, L.; Choromanski, K.; and Scheinberg,
K. 2019. A theoretical and empirical comparison of gra-
dient approximations in derivative-free optimization. arXiv
preprint arXiv:1905.01332 .

Berg, J.; Demirović, E.; and Stuckey, P. J. 2019. Core-
Boosted Linear Search for Incomplete MaxSAT. In
Rousseau, L.-M.; and Stergiou, K., eds., Integration of Con-
straint Programming, Artificial Intelligence, and Operations
Research, 39–56. Cham: Springer International Publishing.
ISBN 978-3-030-19212-9.

Biere, A. 2008. PicoSAT Essentials. JSAT 4: 75–97.

Bogdanov, A.; Khovratovich, D.; and Rechberger, C. 2011.
Biclique Cryptanalysis of the Full AES. In ASIACRYPT
2011. ISBN 978-3-642-25385-0.

Bryant, R. E. 1995. Binary decision diagrams and beyond:
enabling technologies for formal verification. In Proceed-
ings of IEEE International Conference on Computer Aided
Design (ICCAD), 236–243.

Cai, S.; Luo, C.; and Su, K. 2015. CCAnr: A Configura-
tion Checking Based Local Search Solver for Non-random
Satisfiability. In Heule, M.; and Weaver, S., eds., Theory
and Applications of Satisfiability Testing – SAT 2015, 1–8.
Cham: Springer International Publishing. ISBN 978-3-319-
24318-4.

Cai, S.; Su, K.; and Luo, C. 2013. Improving WalkSAT for
Random k-Satisfiability Problem with k > 3. In AAAI.

Costa, M.-C.; de Werra, D.; Picouleau, C.; and Ries, B.
2009. Graph Coloring with Cardinality Constraints on the
Neighborhoods. Discrete Optimization 6(4): 362 – 369.
ISSN 1572-5286. doi:https://doi.org/10.1016/j.disopt.2009.
04.005. URL http://www.sciencedirect.com/science/article/
pii/S1572528609000231.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A Ma-
chine Program for Theorem-Proving. Communications of
the ACM 5(7): 394–397.

Davis, M.; and Putnam, H. 1960. A Computing Procedure
for Quantification Theory. Journal of the ACM (JACM) 7(3):
201–215.

Dinur, I.; Regev, O.; and Smyth, C. 2005. The Hardness of 3-
Uniform Hypergraph Coloring. Combinatorica 25(5): 519–
535. ISSN 1439-6912. doi:10.1007/s00493-005-0032-4.
URL https://doi.org/10.1007/s00493-005-0032-4.

Dixon, H. E.; Ginsberg, M. L.; Luks, E. M.; and Parkes, A. J.
2011. Generalizing Boolean Satisfiability II: Theory. arXiv
e-prints arXiv:1109.2134.

Dudek, J. M.; Meel, K. S.; and Vardi, M. Y. 2016. Combin-
ing the k-CNF and XOR Phase-Transitions. In IJCAI.
Dudek, J. M.; Phan, V. H. N.; and Vardi, M. Y. 2019. AD-
DMC: Weighted Model Counting with Algebraic Decision
Diagrams. arXiv e-prints arXiv:1907.05000.
Dudek, J. M.; and Vardi, M. Y. 2020. Parallel Weighted
Model Counting with Tensor Networks. arXiv e-prints
arXiv:2006.15512.
Eén, N.; and Sörensson, N. 2003. An Extensible SAT-
Solver. In SAT, 502–518. ISBN 978-3-540-24605-3.
Elffers, J.; and Nordström, J. 2018. Divide and Conquer:
Towards Faster Pseudo-Boolean Solving.
Fletcher, R. 1987. Practical Methods of Optimization. Num-
ber v. 2 in A Wiley-Interscience publication. Wiley.
Hare, W.; Nutini, J.; and Tesfamariam, S. 2013. A sur-
vey of non-gradient optimization methods in structural en-
gineering. Advances in Engineering Software 59: 19 – 28.
ISSN 0965-9978. doi:https://doi.org/10.1016/j.advengsoft.
2013.03.001.
Hestenes, M. R.; and Stiefel, E. 1952. Methods of conjugate
gradients for solving linear systems. Journal of research of
the National Bureau of Standards 49: 409–435.
Hoos, H.; and Stützle, T. 2000. Local Search Algorithms for
SAT: An Empirical Evaluation. J. Automated Reasoning 24:
421–481. doi:10.1023/A:1006350622830.
Hutter, F.; Tompkins, D. A. D.; and Hoos, H. 2002. Scal-
ing and Probabilistic Smoothing: Efficient Dynamic Local
Search for SAT. In CP.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Ora-
cles. In SAT, 428–437. doi:10.1007/978-3-319-94144-8 26.
URL https://doi.org/10.1007/978-3-319-94144-8 26.
Jain, P.; and Kar, P. 2017. Non-convex Optimization for Ma-
chine Learning. arXiv e-prints arXiv:1712.07897.
Jun Gu. 1994. Global optimization for satisfiability (SAT)
problem. IEEE Transactions on Knowledge and Data Engi-
neering 6(3): 361–381.
Kamath, A.; Karmarkar, N.; Ramakrishnan, K. G.; and Re-
sende, M. C. 1990. Computational experience with an inte-
rior point algorithm on the satisfiability problem. Annals of
Operations Research 25: 43–58.
Kautz, H. A.; Sabharwal, A.; and Selman, B. 2009. Incom-
plete Algorithms. In Handbook of Satisfiability.
King, D. E. 2009. Dlib-ml: A Machine Learning Toolkit.
Journal of Machine Learning Research 10: 1755–1758.
Kraft, D. 1994. Algorithm 733: TOMP–Fortran Modules
for Optimal Control Calculations. ACM Trans. Math. Softw.
20(3): 262–281. ISSN 0098-3500. doi:10.1145/192115.
192124. URL https://doi.org/10.1145/192115.192124.
Kyrillidis, A.; Shrivastava, A.; Vardi, M. Y.; and Zhang, Z.
2020. FourierSAT: A Fourier Expansion-Based Algebraic
Framework for Solving Hybrid Boolean Constraints. In
AAAI 2020.

3849

Larson, J.; Menickelly, M.; and Wild, S. M. 2019.
Derivative-free optimization methods. Acta Numerica 28:
287–404.
Lei, Z.; and Cai, S. 2018. Solving (Weighted) Partial
MaxSAT by Dynamic Local Search for SAT. In Proceedings
of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18, 1346–1352. International
Joint Conferences on Artificial Intelligence Organization.
Li, C. M. 2000. Integrating Equivalency Reasoning into
Davis-Putnam Procedure. In AAAI, 291–296. AAAI Press.
ISBN 0-262-51112-6. URL http://dl.acm.org/citation.cfm?
id=647288.760210.
Liang, J. H. 2018. Machine Learning for SAT Solvers. Ph.D.
thesis, University of Waterloo.
Marques-Silva, J. P.; and Sakallah, K. A. 1999. GRASP:
A Search Algorithm For Propositional Satisfiability. IEEE
Transactions on Computers 48(5): 506–521.
Martins, R.; Manquinho, V.; and Lynce, I. 2011. Exploiting
Cardinality Encodings in Parallel Maximum Satisfiability.
In ICTAI, 313–320.
Martins, R.; Manquinho, V.; and Lynce, I. 2014. Open-
WBO: A Modular MaxSAT Solver,. In Sinz, C.; and Egly,
U., eds., Theory and Applications of Satisfiability Testing –
SAT 2014, 438–445. Cham: Springer International Publish-
ing. ISBN 978-3-319-09284-3.
McAllester, D.; Selman, B.; and Kautz, H. 1997. Evidence
for Invariants in Local Search. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence and
Ninth Conference on Innovative Applications of Artificial In-
telligence, AAAI’97/IAAI’97, 321–326. AAAI Press. ISBN
0262510952.
Morris, P. 1993. The Breakout Method for Escaping from
Local Minima. In AAAI.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. doi:10.1145/378239.379017. URL http://doi.acm.
org/10.1145/378239.379017.
Nocedal, J.; and Wright, S. 2006. Numerical optimization.
Springer Science & Business Media.
O’Donnell, R. 2014. Analysis of Boolean Functions.
New York, NY, USA: Cambridge University Press. ISBN
1107038324, 9781107038325.
Pan, G.; and Vardi, M. Y. 2006. Symbolic Techniques in Sat-
isfiability Solving. In Giunchiglia, E.; and Walsh, T., eds.,
SAT 2005, 25–50. Dordrecht: Springer Netherlands.
Pearl, J. 1988. Chapter 4 - Belief Updating by Network
Propagation. In Pearl, J., ed., Probabilistic Reasoning in
Intelligent Systems, 143 – 237. San Francisco (CA): Morgan
Kaufmann. ISBN 978-0-08-051489-5.
Pote, Y.; Joshi, S.; and Meel, K. S. 2019. Phase Transition
Behavior of Cardinality and XOR Constraints. In IJCAI-19.
Prestwich, S. 2009. CNF Encodings, Handbook of Satisfi-
ability: Volume 185 Frontiers in Artificial Intelligence and
Applications.

Sakai, M.; and Nabeshima, H. 2015. Construction of an
ROBDD for a PB-Constraint in Band Form and Related
Techniques for PB-Solvers. IEICE Transactions on Infor-
mation and Systems E98.D(6): 1121–1127.
Sasao, T.; and Fujita, M. 1996. Representations of Dis-
crete Functions. USA: Kluwer Academic Publishers. ISBN
0792397207.
Selman, B.; Kautz, H.; and Cohen, B. 1999. Local Search
Strategies for Satisfiability Testing. Second DIMACS Imple-
mentation Challenge 26.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A
New Method for Solving Hard Satisfiability Problems. In
Proceedings of the Tenth National Conference on Artifi-
cial Intelligence, AAAI’92, 440–446. AAAI Press. ISBN
0262510634.
Shafer, G.; and Shenoy, P. 1990. Probability propagation.
Ann Math Artif Intell 2: 327–351. doi:10.1007/BF01531015.
Sheini, H. M.; and Sakallah, K. A. 2006. Pueblo: A Hybrid
Pseudo-Boolean SAT Solver. JSAT 2: 165–189.
Soos, M.; Nohl, K.; and Castelluccia, C. 2009. Extending
SAT Solvers to Cryptographic Problems. In SAT, 244–257.
Svanberg, K. 2002. A Class of Globally Convergent Opti-
mization Methods Based on Conservative Convex Separa-
ble Approximations. SIAM Journal on Optimization 12(2):
555–573. doi:10.1137/S1052623499362822. URL https:
//doi.org/10.1137/S1052623499362822.
Thornton, M.; and Nair, V. 1994. Efficient Spectral Coeffi-
cient Calculation Using Circuit Output Probabilities. Digital
Signal Processing 4(4): 245 – 254. ISSN 1051-2004. doi:
https://doi.org/10.1006/dspr.1994.1024.
Valiant, L. G. 1979. The Complexity of Enumeration and
Reliability Problems. SIAM Journal on Computing 8(3):
410–421. doi:10.1137/0208032.
Vardi, M. Y. 2014. Boolean satisfiability: theory and engi-
neering. Commun. ACM 57(3): 5.
Wah, B.; and Shang, Y. 1996. A Discrete Lagrangian-Based
Global-Search Method for Solving Satisfiability Problems. J
Global Optimization 12(1). doi:10.1023/A:1008287028851.
Wang, P.-W.; Chang, W.-C.; and Kolter, J. Z. 2017. The
Mixing method: coordinate descent for low-rank semidefi-
nite programming. arXiv preprint arXiv:1706.00476 .

3850

