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Abstract

Estimating the complete 3D point cloud from an incomplete
one lies at the core of many vision and robotics applications.
Existing methods typically predict the complete point cloud
based on the global shape representation extracted from the
incomplete input. Although they could predict the overall
shape of 3D objects, they are incapable of generating struc-
ture details of objects. Moreover, the partial input point sets
obtained from range scans are often sparse, noisy and non-
uniform, which largely hinder shape completion. In this pa-
per, we propose an adaptive sampling and hierarchical folding
network (ASHF-Net) for robust 3D point cloud completion.
Our main contributions are two-fold. First, we propose a de-
noising auto-encoder with an adaptive sampling module, aim-
ing at learning robust local region features that are insensitive
to noise. Second, we propose a hierarchical folding decoder
with the gated skip-attention and multi-resolution completion
goal to effectively exploit the local structure details of partial
inputs. We also design a KL regularization term to evenly dis-
tribute the generated points. Extensive experiments demon-
strate that our method outperforms existing state-of-the-art
methods on multiple 3D point cloud completion benchmarks.

Introduction
Point cloud, as a common data format for describing the 3D
shape of an object, has achieved significant attention due to
the rapid development of 3D acquisition technologies, and
can be easily collected by 3D sensors and depth cameras.
However, raw point clouds produced by those devices are
usually highly sparse, noisy, and seriously incomplete due
to limited sensor resolution and occlusion (Yuan et al. 2018;
Wen et al. 2020), which hampers the downstream tasks,
such as shape classification (Sarmad, Lee, and Kim 2019)
and rendering. Consequently, recovering the complete point
clouds from partial observations, namely point cloud com-
pletion, is important for subsequent 3D vision applications.

Unlike images or voxel grids where convolutional neu-
ral networks (CNNs) can be directly applied, point cloud
processing poses great challenges to directly applying 2D
and 3D convolutions due to its sparsity and disorder proper-
ties. Several methods (Li et al. 2016; Dai, Ruizhongtai Qi,
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Figure 1: Our method has advantages in acquiring high-
fidelity dense point clouds and avoiding uneven distribution,
blurred details, or geometric structure loss.

and Nießner 2017; Han et al. 2017; Liu et al. 2019b) con-
vert point clouds into 3D voxels and then apply 3D CNNs to
them. However, the voxelization operation leads to an irre-
versible loss of geometric information and has a high com-
putational cost. Therefore, most of the existing methods (Qi
et al. 2017a,b) use the Multi-Layer Perceptrons (MLPs) to
process point clouds directly. Generally, these methods first
use sampling approaches to select central points from the in-
complete input point clouds, and then utilize max-pooling
to aggregate features across points in a global or hierar-
chical fashion. Finally, global point features are formed to
model the complete shape. Despite the modest success of
these methods, they have two main bottlenecks. First, raw
point cloud data captured from these 3D sensors or recon-
struction algorithms inevitably contain outliers or noise in
real-world scenarios. However, a common issue in existing
sampling approaches is that the sampled points are limited
to a subset of the original point clouds, where little attention
is paid to the biased effects of outliers and noise on point
feature learning. Second, previous work on point completion
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aims to predict the general/overall shape of a category but ig-
nores the local structure details of a specific object (Huang
et al. 2020), thus resulting in detailed geometrical structure
loss (Yang et al. 2018). Concretely, they sometimes produce
distorted results or even fail to preserve some of the actual
structures which have been revealed in the partial inputs, as
shown in Figure 1.

To overcome the noise problem, we propose a denoising
auto-encoder to learn robust local region features directly
from noisy-partial input point clouds. This is achieved by ex-
tending the recent adaptive sampling idea (Yan et al. 2020),
which first re-weights the neighbors around the initial sam-
pled points obtained by farthest point sampling (FPS) (Qi
et al. 2017a), and then adaptively adjusts the coordinates
of the sampled points beyond the entire point cloud. Such
coordinate adjustment is conducive to fitting intrinsic geo-
metric sub-manifolds and is able to eliminate the influence
of noise or outliers. To preserve the structure details of the
objects in partial inputs, we further propose a hierarchical
folding decoder that combines a gated skip-attention mod-
ule and a multi-resolution completion target. It completes
the point cloud progressively, e.g., from skeleton to details,
while preserving the structure details on local regions un-
der all resolution levels. Specifically, the decoder has the
same number of resolution levels as the number of layers
in the encoder, where the gated skip-attention (GSA) mod-
ule connects each level of the decoder to the correspond-
ing layer of the encoder. We establish the GSA module to
determine the relevance of attention results and queries by
combining the attention mechanism with the attention gate,
so that the decoder can selectively convey geometric infor-
mation from the local regions of incomplete point clouds to
generate complete point clouds. The multi-resolution super-
vision gradually increases the number of points that need to
be predicted and guides the decoder progressively to predict
the 3D shape of an object from skeleton to details, which
enables the network to consistently generate the complete
shape under all resolution levels. Further, we design a KL
regularization term to enhance the uniformity of the output
point cloud distribution. Our main contributions can be sum-
marized as follows.

• We propose a denoising auto-encoder for learning robust
local region features from partial inputs, which can effec-
tively eliminate the influence of noise or outliers.

• We propose a hierarchical folding decoder combined with
a gated skip-attention and a multi-resolution completion
target. The gated skip-attention fuses the information of
local region features from the encoder into the decoder
at different resolutions, enabling the network to infer the
missing regions with more detailed geometry information
from incomplete point clouds. The multi-resolution com-
pletion target guides the decoder to detail the point clouds
at different resolutions.

• We propose a novel KL regularization term to prevent ex-
cessive overlap or extreme sparsity of the generated point
clouds.

Related Work
Existing works on point cloud completion and reconstruc-
tion can be roughly divided into four categories based on
their network architecture types, which are MLP-based,
Folding-based, GAN-based and Voxel-based.
MLP-based Networks. As a pioneer, PointNet (Qi et al.
2017a) first models each point independently using point-
wise MLPs and then aggregate a global feature by the max-
pooling operation. Extending PointNet, PointNet++ (Qi
et al. 2017b) further applies a hierarchical structure with
kNN grouping to learn local region features with increas-
ing contextual scales. Both methods simply aggregate re-
gional information by the largest activation, which means
that the geometric relationships among 3D points are not
yet fully utilized. To alleviate the loss of shape details
caused by MLPs, FoldingNet (Yang et al. 2018) introduces
a new decoding operation dubbed Folding and deforms a
2D plane into a 3D shape, which favors continuous and
smooth structures. PCN (Yuan et al. 2018) first proposes
the learning-based architecture focusing on shape comple-
tion tasks. TopNet (Tchapmi et al. 2019) proposes a hierar-
chical tree-structure rooted network to generate point cloud
without assuming any specific topology for input point sets.
NSFA (Zhang, Yan, and Xiao 2020) proposes the local fea-
ture and residual features aggregation strategies to repre-
sent the known part and the missing part separately. In ad-
dition, NSFA also designs a refinement component to pre-
vent the generated point cloud from non-uniform distribu-
tion and outliers. Nevertheless, most of these work suffers
from the information loss of structure details, as they pre-
dict the whole point cloud only from a single global shape
representation.
Folding-based Networks. Folding-based decoder, as a
generic architecture first introduced by Yang et al. (2018), is
provably able to reconstruct an arbitrary point cloud from a
2D grid, achieving low reconstruction errors even for objects
with delicate structures. Folding-based methods (Yuan et al.
2018; Tchapmi et al. 2019; Liu et al. 2019a) usually sam-
ple 2D grids from a 2D plane with fixed size and then con-
catenate them with the global shape representation extracted
by the point cloud feature encoder. AtlasNet (Groueix et al.
2018), MSN (Liu et al. 2019a) and SA-Net (Wen et al. 2020)
recover the complete point cloud of an object by estimat-
ing a collection of parametric surface elements and learn
mappings from 2D square to 3D surface elements. Despite
their limited success, the fine details of an object are often
missed. As can be seen in Figure 1, most existing folding-
based methods, such as PCN, FoldingNet and TopNet, are
incapable of producing the structure details of an object to
some extent. One reason is that they only rely on a single
global shape representation to predict the entire point cloud,
whereas the rich local region information favorable for re-
covering detailed geometric structures are not fully utilized.
GAN-based Networks. L-GAN (Achlioptas et al. 2018)
first introduces the deep generative model for the point
cloud. Although L-GAN is capable of performing point
cloud completion tasks, its architecture is not particularly
tailored for the shape completion tasks, and hence the per-
formance is not competitive. Among GAN-based works, one
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purpose to use Generative Adversarial Networks (GANs) is
to avoid complex optimizations and speed up predictions.
For example, RL-GAN-Net (Sarmad, Lee, and Kim 2019)
introduces a reinforcement learning agent to control GAN
network for real-time point cloud shape completion. An-
other line of GAN-based work is to use adversarial loss
to enhance the prediction accuracy, such as PF-Net (Huang
et al. 2020) and CRN (Wang, Ang Jr, and Lee 2020).
Voxel-based Networks. Early works (Dai, Ruizhongtai Qi,
and Nießner 2017; Han et al. 2017) typically apply 3D con-
volutional neural networks (CNNs) build upon the volumet-
ric representation of 3D point clouds. For instance, several
works (Mao, Wang, and Li 2019; Hua, Tran, and Yeung
2018) develop CNNs operating on discrete 3D grids that are
transformed from point clouds. PointCNN (Qi et al. 2017a)
achieves permutation invariance through a χ-conv transfor-
mation. Hua, Tran, and Yeung (2018) define convolutional
kernels on regular 3D grids, where the points are assigned
with the same weights when falling into the same grid.
Thomas et al. (2019) propose both rigid and deformable
kernel point convolution operators for 3D point clouds us-
ing a set of learnable kernel points. However, converting
point clouds into 3D volumes introduces a quantization ef-
fect that inevitably discards some details of an object (Wang
and Lu 2019) and is difficult to capture high-resolution or
fine-grained features. Recently, GRNet (Xie et al. 2020) in-
troduces 3D grids as intermediate representations to regu-
larize unordered point clouds. Despite its limited success in
relieving the detail loss, it suffers from high computational
cost that is cubic to the resolution of the 3D grids.

Approach
Problem Setup and Notations. Given a partial point set
S ∈ RNp×3, our goal is to generate a complete point set
R ∈ RNc×3, where Np, Nc denote the number of the partial
input points and complete output points, respectively.

Point Cloud Denoising Auto-encoder
Farthest point sampling (FPS) (Qi et al. 2017a) is the
most widely used sampling method on shape completion
tasks (Huang et al. 2020; Wen et al. 2020), as it has a rel-
atively good coverage of the entire point set. However, one
main issue in FPS is that its large sensitivity to the outliers
and noise, which makes it highly unstable for dealing with
real-world point cloud data. To endow our model with noise
immunity, we propose to rectify outliers and reduce noise
using the spatial and feature information of the input points.

We first apply FPS to obtain the relatively uniform points
as original sampled points similar to (Yan et al. 2020). Let
St ∈ RNt×3 be the sampled Nt points from Np input points
at the t-th layer, ptk ∈ St be a sampled point with its related
point feature f tk from F t ∈ RNt×Dt at the t-th layer. For
the central point pti, we first gather itsK neighboring points,
i.e., N t

i = {pt1, . . . , ptk, . . . , ptK}, via the KNN algorithm
based on point-wise Euclidean distances. We then explicitly
encode the relative point positions as follows:

rtk = MLP
(
pti ⊕ ptk ⊕ (pti − ptk)⊕ ||pti − ptk||

)
, (1)

where pti or ptk denotes the x-y-z positions of points, ⊕
denotes the concatenation operation, and || · || measures
the Euclidean distance between the central point and its
neighbors. After that, we concatenate the encoded relative
point positions rtk with its related point features f tk to ob-
tain augmented feature vectors f̂ tk, i.e., f̂ tk = f tk ⊕ rtk for
k = 1, . . . ,K . Now, we have a neighboring feature set
F̂ ti = {f̂ t1, . . . , f̂ tk, . . . , f̂ tK} for the central point pti with
the local geometric information encoded in it. To adaptively
capture the features of neighboring points at different prox-
imity, we aggregate the neighboring features using the atten-
tion mechanism (Vaswani et al. 2017). The aggregation rule
for central points is defined as

f̃ t+1
i = φt

(
f ti ⊕

∑
k∈N t

i

Ai,kψt(f̂ tk)
)
, (2)

where ψt is a layer-specific linear transformation and can be
easily implemented by independent 1D convolution Conv :
RDt 7→ RDt+1 . φt is a projection matrix for feature trans-
formation. Ai = [αi,k]

K
k=1 is the attention weight matrix

which adaptively controls the contribution of a neighbor pk
to its central point pi. The attention score αi,k can be com-
puted by various score functions. For simplicity, we use the
dot-product attention (Vaswani et al. 2017) as follows:

αi,k = Softmax(< W t
q f̂

t
i ,W

t
kf̂

t
k >). (3)

To eliminate the biased effect of noise and outliers, we also
update the current coordinates of the central point pti with its
weighted average neighbor point coordinates, that is,

p̃t+1
i = AiPi, Pi = [ ptk ]

K
k=1, (4)

where Pi ∈ RK×3 is the K neighbors’ coordinate matrix
corresponding to the sampled central point pti. Note that the
new coordinates of pti are not confined to a subset of orig-
inal point clouds, thereby enabling them more suitable for
feature learning with intrinsic geometry and more robust to
noise. We refer to such feature and position update rule as
the adaptive sampling (AS) module.

Given a noisy and partial point set S, we train an encoder
Erγ : S 7→ Xr with AS modules and a decoder Dr

ψ : Xr 7→
S̃ with the reconstruction loss defined as follows:

LEMD(γ, ψ) = ES∼ppartiald(S, Dr
ψ(E

r
γ(S))), (5)

where S ∼ ppartial denotes point set drawn from the set of
noisy and partial point sets, d(S1,S2) is the Earth Mover’s
Distance (EMD) (Fan, Su, and Guibas 2017) between point
sets S1 and S2, forcing the reconstructed output to have the
same density distribution as the input, and (γ, ψ) are the
learnable parameters of the encoder and decoder networks,
respectively. For the architecture of encoder Erγ , we stack
the AS module hierarchically which resembles the Point-
Net++ (Qi et al. 2017b), while for the decoder Dr

ψ , we
transform the latent vector Xr by using three independent
point-wise MLPs with ReLU activations to generate a re-
constructed point set S̃ .
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Figure 2: Overall architecture of ASHF-Net. ASHF-Net mainly consists of three modules: the denoising auto-encoder aims to
extract robust local region features from the partial inputs; the hierarchical folding decoder aims to progressively reconstruct
the complete point clouds; the gated skip-attention bridges the local region features in encoder and the point features in decoder.

Hierarchical Folding Decoder
As shown in Figure 2, our decoder hierarchically completes
the point clouds at three resolution levels, corresponding to
the three resolution levels of the encoder. Each resolution
level of the decoder comprises a gated skip-attention module
for conveying the local region features from the encoder, and
an associated supervision target for guiding the point cloud
completion from skeleton to details.

To begin with, denote by Xr ∈ R1×De4 the global shape
vector extracted from the denoising auto-encoder. We first
duplicate Xr by Nd3 times to form Nd3 × De4 dimensional points
features for the 3-th level of decoder. To mimic the morphing
of a 2D square into a 3D surface, we propose to sample 2D
grids with an increasing density from the 2D plane of fixed
size. Specifically, for the Nd3 point features in the 3-th layer of
decoder, the Nd3 2D grids are evenly sampled from 46× 46
2D plane and concatenated with the point features, as illus-
trated in Figure 2. Then, the point features with 2D grids are
passed through MLPs and transformed into 3-dimensional
latent codewords following FoldingNet (Yang et al. 2018).
These 3-dimensional codewords are again concatenated with
the point features in the 3-th level of decoder. After that, we
obtain the point feature Pi ∈ RNd3×(D

e
4+3).

To effectively integrate the point features Pi generated
by the decoder and the local region features Ei extracted
from the encoder, we use the attention mechanism (Vaswani
et al. 2017) to jointly exploit attentions over them. We first
compute the query Qi ∈ RNd3×d, key Ki ∈ RNe3×d and
value Vi ∈ RNe3×d by three individual linear projections,
i.e.,Qi =WqPi,Ki =WeEi, Vi =WvEi. A skip-attention
module fatt(Qi,Ki, Vi) measures the similarity betweenQi
and Ki and use the similarity scores to compute weighted
average vectors over Vi, which is defined as

V̂i = fatt(Qi,Ki, Vi) = Softmax(QiK
T
i )Vi. (6)

However, not all region features under each level of reso-
lutions will contribute equally to 3D shape inference and
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Figure 3: An illustration of the gated skip-attention module.

reconstruction. To avoid introducing redundant or mislead-
ing information and focus on the most relevant regions, we
propose the gated skip-attention module to measure the at-
tention results and the query Qi, as depicted in Figure 3.
The GSA module generates an information vector Ii and an
attention gate Gi via two separated linear transformations
both conditional on the attention results V̂i and the query
Qi,

Ii =W s
qQ

T
i +W s

v V̂
T
i +Bs, (7)

Gi = σ(W g
q Q

T
i +W g

v V̂
T
i +Bg), (8)

where W s
q ,W

s
v ,W

g
q ,W

g
v ∈ RNd3×d are trainable transforma-

tion matrices and Bs, Bg ∈ RN3×d are bias matrices. σ de-
notes the sigmoid activation. We then add a filter by applying
the attention gate to the information vector using element-
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Figure 4: An illustration of the KL penalty term and the
shape completion effect of adding KL penalty.

wise multiplication and obtain the attended information:

Îi = Gi � Ii, P̂i = Pi + Îi, (9)

where � denotes element-wise multiplication, and the final
point feature representation P̃i ∈ RNd3×D

d
3 is obtained by a

residual connection (He et al. 2016).
The point features P̃i in each level of the decoder ac-

counts for predicting point clouds at different resolutions.
We first use FPS to sample two different scale point sets
from the original complete point clouds as the supervisors.
As shown in Figure 2, two point clouds R3 ∈ R

Nc
3
×3 and

R2 ∈ R
Nc
2
×3 are sampled from the ground truth point cloud

R ∈ RNc×3. We directly feed the point feature P̃i at the
i-th level of decoder into MLPs to generate Nc/i points,
which can be represented as Rip = RS(MLPs(P̃i)), where
RS(·) is a reshape operation. We choose the Chamfer Dis-
tance (CD) (Fan, Su, and Guibas 2017) as the completion
loss for its efficiency. Note that our decoder predicts three
point clouds at different resolutions, the total completion
loss Lcom hence consists of three terms and is computed by

Lcom = LCD(Rp,R) + αLCD(R2
p,R2) + βLCD(R3

p,R3)
(10)

where α and β are hyperparameters fixed to 0.5 and 0.3 re-
spectively for our experiments.

To make the final generated point cloud Rp ∈ RNc×3

more evenly distributed, we propose a regularization term to
penalize points if points are located too close to its neigh-
boring points or too sparse distributed. Specifically, we first
use FPS to pick M seed points inRp and use a ball query of
radius rd to crop a point subset (as shown in Figure 4) from
Rp at each seed. Then we compute the probability density
function (pdf) of the neighboring points conditional on the
seed point in a neighborhood, which is formulated as:

p(yj |x) ≈
1

|N (x)|σ3

∑
k∈N (x)

{
3∏
d=1

h(
yj,d − yk,d

σ
)}, (11)

where σ is the bandwidth which determines the smoothing
of the resulting sample density function (we use σ = .25rd).
h is the density estimation kernel, a non-negative function

whose integral equals 1 (we use a Gaussian), and d is one
the three dimensions of R3. The pdf of a point yj with re-
spect to a given point x is always relative to all other sam-
ples in the receptive field. Notice that p(yj |x) is high where
the sampled points are dense and low where they are sparse.
Ideally, the sampled points should be uniformly distributed
inside a small neighborhood, i.e., q(yj |x) = 1/|N (x)|. We
hence minimize the Kullback-Leibler (KL) divergence from
p(yj |x) to q(yj |x) as a regularization term, that is,

KL(p||q) =
M∑
i=1

Nx∑
j=1

p(yj |x) log
p(yj |x)
q(yj |x)

. (12)

Experiments
Datasets and Implementation Details
ShapeNet. The ShapeNet dataset (Wu et al. 2015) for point
cloud completion is derived from PCN (Yuan et al. 2018),
which consists of 30,974 3D models from 8 categories. The
ground truth point clouds containing 16,384 points are uni-
formly sampled on the mesh surfaces and the partial point
input with 2048 points is generated by back-projecting 2.5D
depth images into 3D. For a fair comparison, we use the
same train/val/test splits as PCN (Yuan et al. 2018).
KITTI. The KITTI dataset (Geiger et al. 2013) is collected
from a sequence of real-world Velodyne LiDAR scans, also
derived from PCN (Yuan et al. 2018). For each frame, the car
objects are extracted according to the 3D bounding boxes,
which results in 2,401 partial point clouds. Note that the
partial point clouds in KITTI are highly sparse and have no
complete point clouds as ground truth. Besides, the point
number of the incomplete car has a large range of variation.
To obtain a fixed number of input points, we randomly select
2,048 points by randomly dropping or replicating points.

Our model is implemented with PyTorch on 8 NVIDIA
RTX 2080Ti GPUs. We first train the auto-encoder by opti-
mizing Eq. 5. Then we train the decoder with a small learn-
ing rate (1e-5) using the Adam optimizer and save the best
model if the validation loss does not decrease for 10 epochs.
The batch size is set to 36. For the KL regularization term,
we set the number of seed pointsM to 100 and select the ball
query radius rd from set {10, 8, 6, 4, 2}. We compute Eq. 12
for each rd and then sum up the results as the regularization.

Comparison with State-of-the-Arts
Results on ShapeNet. All competing methods except for
AtlasNet can easily predict the coordinates of 16384 points
with 2048 points as input. In particular, we sample 16,384
points from the primitive surface elements generated by
TopNet. We adjust the number of nodes and the size of fea-
ture embedding to make TopNet generate 16384 points. To
generate 16384 points, we increase the number of mapping
MLPs to 32 in MSN. Quantitative results in Table 1 indi-
cate that ASHF-Net outperforms all competitive methods in
terms of the Chamfer Distance. Figure 5 shows the quali-
tative results for point cloud completion on the test set of
ShapeNet. We can observe that, AtlasNet, PCN, FoldingNet,
and TopNet miss some structure details and only recover the
sketch of object shapes, which may be caused by using only
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Input AtlasNet PCN FoldingNet TopNet MSN NSFA PF-Net OursCRN GRNet GT

Figure 5: Visualization of point cloud completion using different methods. Each output point cloud contains 16384 points.

one single global shape vector for point cloud completion.
Besides being competitive in preserving the geometric de-
tails of some recent models such as MSN, GRNet, NSFA,
PF-Net and CRN, our model also performs best in detail
completion. As shown in Figure 5, although they recognize
the partial input as a chair, they cannot recover its details. In
contrast, our model can predict more realistic structures and
generate continuous and smooth details with more fidelity.
Moreover, our model employs the KL divergence to ensure
the points distribute uniformly, while most of these methods
are more likely to overfill points in some regions. It can also
be observed that our method can preserve the known struc-
tures, while most of the competitive methods distort or even
neglect the structures revealed in the input.
Results on KITTI. Since there are no complete ground truth
point clouds for KITTI, we use Fidelity, Minimal Matching
Distance (MMD), Consistency and Uniformity (Xie et al.
2020) as evaluation metrics. Following the settings in (Xie
et al. 2020; Yuan et al. 2018), we fine-tune all comparison
methods on cars of the ShapeNet, except PCN and GRNet,
which are evaluated directly using their released output or
pre-trained model weights. Models trained specifically on
cars are capable of learning the prior knowledge of the ob-
ject class. Table 2 lists the completion results for cars in the
LiDAR scans from the KITTI dataset. Thanks to the hierar-
chical folding decoder, the prediction of our model presents
strong spatial continuity with a high level of restoration and
the input is well preserved. The optimal Uniformity indi-
cates that point clouds generated by the ASHF-Net are more
evenly distributed than other methods, benefited from the
KL-divergence penalty. In addition, the best Consistency
confirms that the proposed method generates more reason-
able shape completion with fewer genus-wise distortions.

Methods Plane Cabinet Car Chair Lamp Sofa Table Vessel

AtlasNet 1.753 5.101 3.237 5.226 6.342 5.990 4.359 4.177
PCN 1.400 4.450 2.445 4.838 6.238 5.129 3.569 4.062

FoldingNet 3.151 7.943 4.976 9.225 9.234 8.895 6.691 7.325
TopNet 2.152 5.623 3.513 6.346 7.502 6.949 4.784 4.359

MSN 1.543 7.249 4.711 4.539 6.479 5.894 3.797 3.853
NSFA 1.751 5.310 3.429 5.012 4.729 6.413 4.000 3.555

PF-Net 1.551 4.430 3.116 3.962 4.213 5.874 3.347 3.887
CRN 1.455 4.212 2.969 3.238 5.160 5.013 3.988 3.962

GRNet 1.531 3.620 2.752 2.945 2.649 3.613 2.552 2.122

ASHF-Net 1.398 3.490 2.322 2.815 2.519 3.483 2.422 1.992

Table 1: Quantitative comparisons on the ShapeNet dataset
for shape completion (on 16,384 points) w.r.t. the Chamfer
Distance (×10−4). Lower is better.

Ablation Study

We empirically examine the effectiveness of principal com-
ponents in ASHF-Net via an ablation study, including the
adaptive sampling (AS) module, the gated skip-attention
module, the multi-resolution supervision and the KL reg-
ularization. The results on ShapeNet in terms of Chamfer
Distance (CD) are shown in Table 3. Overall, we can see
that each of the four new components consistently boosts the
performance of ASHF-Net. We first construct an encoder re-
sembling PointNet++ (Qi et al. 2017b) and a folding-based
decoder similar to FoldingNet (Yang et al. 2018) as the base-
line (BS). The insertion of the AS module over the base-
line leads to lower CD (w/AS), indicating that local region
features extracted by the AS module are more robust than
the feature learning combined with FPS and max-poling in
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Methods FD MMD Consistency Uniformity
(×10−3) (×10−3) (×10−3) 0.4% 0.8% 1.2%

AtlasNet 1.759 2.108 0.700 1.146 0.874 0.686
PCN 2.235 1.366 1.557 3.662 7.710 10.823

FoldingNet 7.467 0.537 1.053 1.245 1.262 1.063
TopNet 5.354 0.636 0.568 1.353 1.219 0.950

MSN 0.434 2.259 1.951 0.822 0.523 0.383
NSFA 1.281 0.891 0.491 0.992 0.767 0.552

GRNet 0.816 0.568 0.313 0.632 0.489 0.352
PF-Net 1.137 0.792 0.436 0.881 0.682 0.491

CRN 1.023 0.872 0.431 0.870 0.673 0.485

ASHF-Net 0.773 0.541 0.298 0.602 0.466 0.335

Table 2: Results of point cloud completion on the KITTI
dataset w.r.t. Fidelity Distance (FD), Minimal Matching Dis-
tance (MMD), Consistency, and Uniformity computed on
16,384 points. Lower is better.

Evaluation Category Ablation Versions
BS w/ AS w/ GSA w/R2,3

p w/ u

CD
(×10−4)

Plane 2.169 1.915 1.672 1.499 1.398
Cabinet 5.626 5.543 3.608 3.577 3.490

Car 3.516 3.302 2.701 2.672 2.322
Chair 6.361 5.313 2.993 2.842 2.815
Lamp 7.517 7.395 2.699 2.553 2.519
Sofa 5.126 4.889 3.575 3.505 3.483
Table 6.956 5.593 2.517 2.449 2.422
Vessel 4.791 3.738 2.159 2.026 1.922

Average 5.276 4.711 2.741 2.640 2.555

Table 3: Quantitative comparisons of the ablation study.

PointNet++. Then, the addition of the GSA module further
improves the performance (w/GSA), validating the effec-
tiveness of the GSA module in communicating the local re-
gion features extracted by the encoder with the point features
generated by the decoder. Also, the introduction of the multi-
resolution supervision results in performance gains (w/R).
This suggests that integrating multi-resolution supervision
is favorable for point cloud completion. Finally, the insertion
of the KL regularization, hence the full version of the model,
consistently achieves the lowest scores (w/u) in terms of
CD, implying that ASHF-Net is able to generate a more uni-
formly distributed point cloud with high fidelity.

Robustness Test
Most existing point cloud completion methods can achieve
good performance on clean synthetic datasets because they
have stable distribution and do not contain any noise, such as
PointNet++. However, in addition to high sparsity, raw point
clouds data acquired by 3D sensor or reconstruction algo-
rithms inevitably contain outliers or noise (Li et al. 2019;
Yan et al. 2020). To further verify the generalization and ro-
bustness of the proposed model, we replace a certain num-
ber of randomly picked points with random noise on the test
set of ShapeNet, as shown in Figure 6 (the red points rep-
resent random noise points). Notably, we also test the in-

Figure 6: Illustration of point clouds with some points re-
placed by random noise and performance comparisons of
different models against noise. (I & II). Visualization of the
latent representations extracted by the PointNet++ encoder
with clean inputs and noisy inputs. (III & IV). Visualization
of the latent representations extracted by the ASHF-Net en-
coder with clean inputs and noisy inputs.

fluence of noise on the completion effect of ASHF-Net’s
two baselines, namely PointNet∗ and PointNet++∗, whose
encoders are PointNet and PointNet++ respectively but the
decoders are the same as our model. Figure 6 shows the
completion results on the plane class in terms of CD vary-
ing by the number of replaced noisy points. We can see that
as the noise increases, ASHF-Net consistently outperforms
its competitors without significant performance degradation.
Besides, we use t-SNE tool (Maaten and Hinton 2008) to vi-
sualize the latent representations extracted from our encoder
and the PointNet++ encoder. It can be seen that after adding
noise, ASHF-Net can learn more discriminative representa-
tions than PointNet++, indicating a stronger noise immunity.

Conclusion

We have presented a novel point cloud completion frame-
work, ASHF-Net, that: (a) is robust to noise or outliers in
raw input point clouds; (b) progressively generates the point
clouds at different resolution levels; (c) guarantees the even
distribution of the generated point clouds. Experiments on
multiple point cloud completion tasks as well as noise tests
have verified the robustness and effectiveness of the model.
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