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Abstract

Texts appearing in daily scenes that can be recognized by
OCR (Optical Character Recognition) tools contain signif-
icant information, such as street name, product brand and
prices. Two tasks – text-based visual question answering and
text-based image captioning, with a text extension from exist-
ing vision-language applications, are catching on rapidly. To
address these problems, many sophisticated multi-modality
encoding frameworks (such as heterogeneous graph struc-
ture) are being used. In this paper, we argue that a simple
attention mechanism can do the same or even better job with-
out any bells and whistles. Under this mechanism, we simply
split OCR token features into separate visual- and linguistic-
attention branches, and send them to a popular Transformer
decoder to generate answers or captions. Surprisingly, we find
this simple baseline model is rather strong – it consistently
outperforms state-of-the-art (SOTA) models on two popular
benchmarks, TextVQA and all three tasks of ST-VQA, al-
though these SOTA models use far more complex encod-
ing mechanisms. Transferring it to text-based image cap-
tioning, we also surpass the TextCaps Challenge 2020 win-
ner. We wish this work to set the new baseline for these
two OCR text related applications and to inspire new think-
ing of multi-modality encoder design. Code is available at
https://github.com/ZephyrZhuQi/ssbaseline

Introduction
To automatically answer a question or generate a descrip-
tion for images that require scene text understanding and
reasoning has broad prospects for commercial applications,
such as assisted driving and online shopping. Equipped with
these abilities, a model can help drivers decide distance to
the next street or help customers get more details about a
product. Two kinds of tasks that focus on text in images have
recently been introduced, which are text-based visual ques-
tion answering (TextVQA) (Singh et al. 2019; Biten et al.
2019) and text-based image captioning (TextCaps) (Sidorov
et al. 2020). For example, in Figure 1, a model is required to
answer a question or generate a description by reading and
reasoning the texts “tellus mater inc.” in the image. These
two tasks pose a challenge to current VQA or image cap-
tioning models as they explicitly require understanding of
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TextCaps: a store front with the words tellus mater inc. 
on it. 

Q: what is the name of the store?
A: tellus mater inc.

TextVQA:

Figure 1: An example of TextVQA and TextCaps tasks. The
answer and description are generated by our model. Our
simple baseline is able to read texts and answer related ques-
tions. Besides, it can also observe the image and generate a
description with texts embedded in it.

a new modality – Optical Character Recognition (OCR). A
model must efficiently utilize text-related features to solve
these problems.

For TextVQA task, the current state-of-the-art model
M4C (Hu et al. 2019) handles all modalities (questions, vi-
sual objects and OCR tokens) over a joint embedding space.
Although this homogeneous method is easy to implement,
fast to train and has made great headway, it considers that
texts and visual objects contribute indiscriminately to this
problem and uses text features as a whole. For TextCaps
problem, the only difference is that it only has two modali-
ties: visual objects and OCR tokens. However, these limita-
tions remain.

Some other works proposed even more complex struc-
tures to encode and fuse multi-modality features of this
task, i.e., questions, OCR tokens and images. For example,
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Figure 2: Encoders of different models. (a) Current state-of-the-art model M4C on TextVQA task forwards each feature vector
of all modalities indiscriminately into transformer layers, which exhaust tremendous computation. (b) MM-GNN handcrafts
three graphs to represent the image and applies three aggregators step by step to pass messages between graphs. (c) SMA intro-
duces a heterogeneous graph and considers object-object, object-text and text-text relationships, upon which a graph attention
network is then used to reason over them. (d) Our baseline uses three vanilla attention blocks to highlight most relevant features
and combines them into six individually-functioned vectors, which is then sent into transformer-based fusion encoders. The
considerably fewer parameters of six vectors save computation.

SMA (Gao et al. 2020b) uses a heterogeneous graph to en-
code object-object, object-text and text-text relationships in
the image, and then designs a graph attention network to
reason over it. MM-GNN (Gao et al. 2020c) represents an
image as three graphs and introduces three aggregators to
guide message passing from one graph to another.

In this paper, we use the vanilla attention mechanism to
fuse pairwise modalities. Under this mechanism, we further
use a more reasonable method to utilize text features which
leads to a higher performance, that is by splitting text fea-
tures into two functionally different parts, i.e., linguistic- and
visual-part which flows into corresponding attention branch.
The encoded features are then sent to a popularly-used
Transformer-based decoder to generate answers or captions.
As compared to the aforementioned M4C models (shown in
Figure 2a) that throw each instance of every modality into
transformer layers, our model (in Figure 2d) first uses three
attention blocks to filter out irrelevant or redundant features
and aggregate them into six individually-functioned vec-
tors. In contrast to hundreds of feature vectors in M4C, the
six vectors consume much less computation. Moreover, to
group text features into visual- and linguistic- parts is more
reasonable. When comparing with the graph-based multi-
modal encoders such as MM-GNN (Figure 2b) and SMA
(Figure 2c), our baseline is extremely simple in design and
reduces much space and time complexity.

In addition, for the first time we ask the question: to
what extent OCRs contribute to the final performance of
TextVQA, in contrast to the other modality - visual contents
such as objects and scenes? An interesting phenomenon is
observed that OCRs play an almost key role in this special
problem while visual contents only serve as assisting factors.
A strong model without the use of visual contents surpasses
current state-of-the-art model, demonstrating the power of
proposed pairwise fusion mechanism and primary role of
texts.

To demonstrate the effectiveness of our proposed simple
baseline model, we test it on both TextVQA (Singh et al.
2019) and TextCaps (Sidorov et al. 2020) tasks. For the
TextVQA, we outperforms the state-of-the-art (SOTA) on
TextVQA dataset and all three tasks of ST-VQA, and rank
the first on both leaderboards. More importantly, all com-
pared SOTA models use the similar Transformer decoder
with ours, but with far more complex encoding mechanisms.
For TextCaps, we surpass the TextCaps Challenge 2020 win-
ner and now rank the first place on the leaderboard.

Overall, the major contribution of this work is to pro-
vide a simple but rather strong baseline for the text-based
vision-and-language research. This could be the new base-
line (backbone) model for both TextVQA and TextCaps.
More importantly, we wish this work to inspire a new think-
ing of multi-modality encoder design – simple is not easy.
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Figure 3: A simple baseline model for TextVQA. Given an image and a question, we prepare three features (OCR visual-part,
OCR linguistic-part and object features) and three question self-attention outputs. The six sequences are put into attention block
and fused into six vectors, upon which we calculate element-wise product two by two to get concatenated embeddings. The
encoder outputs predict the first word and the rest of answer is produced by an iterative decoder.

Related Work
Text based visual question answering. VQA (Antol et al.
2015; Johnson et al. 2017; Kahou et al. 2018; Wang et al.
2018) has seen rapid development in recent years. A new
task – TextVQA goes one step further and aims at the under-
standing and reasoning of scene texts in images. A model
needs to read texts first and then answer related questions in
natural everyday situations. Two datasets, TextVQA (Singh
et al. 2019) and ST-VQA (Biten et al. 2019) are introduced
concurrently to benchmark progress in this field. To solve
this problem, various methods have also been proposed.
LoRRA, the baseline model in TextVQA, uses bottom-up
and top-down (Anderson et al. 2018) attention on visual ob-
jects and texts to select an answer from either vocabulary or
fixed-index OCR. M4C (Hu et al. 2019) is equipped with a
vanilla transformer decoder to iteratively generate answers
and a flexible pointer network to point back at most proba-
ble OCR token at one decoding step. MM-GNN (Gao et al.
2020c) designs a representation of three graphs and intro-
duces three aggregators to update message passing for ques-
tion answering.
Text based image captioning. Image captioning chal-
lenges a model to automatically generate a natural lan-
guage description based on the contents in an image. Ex-
isting datasets, e.g., COCO Captions (Chen et al. 2015) and
Flickr30k (Young et al. 2014), focus more on visual objects.
To enhance text comprehension in the context of an image,
a new dataset called TextCaps (Sidorov et al. 2020) is pro-
posed. It requires a model to read and reason about texts
and generate coherent descriptions. The baseline model in
TextCaps is modified from aforementioned M4C slightly, by
removing question input directly.
Generative transformer decoder. To address the problem
that answers in these two text-based tasks are usually con-
catenated by more than one word, we use the structure of
transformer (Devlin et al. 2019) decoder in answer module.
Following previous work, we also use the generative trans-

former decoder for fair comparison.

Proposed Method
Given the three modalities (questions, OCR tokens, visual
objects), the first step of our model is to prepare the features
by projecting them into the same dimension. Then we de-
scribe the formulation of Attention Block for feature sum-
marizing. Stacking the blocks together yields encoder for
downstream tasks. Using encoder output to produce the first
word in answer, we then use an iterative decoder to predict
the rest of words. This whole process is shown in Figure 3.
When transferring to TextCaps, we only make minimal mod-
ifications which will be detailed in Section .
Notation In the remainder of this paper, all W are learned
linear transformations, with different symbols to denote in-
dependent parameters, e.g., Wfr. LN is Layer Normaliza-
tion (Ba, Kiros, and Hinton 2016). ◦ represents element-wise
product.

Feature Preparation
Question features. For a question with L words, we first
use a three-layer BERT (Devlin et al. 2019) model to embed
it into Q = {qi}Li=1. This BERT model is finetuned during
training.
OCR features. In text-based VQA and image captioning
problem, texts are of key importance. Simply gather every
feature of text together is not efficient enough. When faced
with a bunch of OCRs, human recognition system tends
to use two complementary methods to select subsequent
words, either by finding similarly-looking and spatially-
close words or choosing words coherent in linguistic mean-
ing. For this intuitive purpose, we split features of N OCR
tokens into two parts: Visual and Linguistic.
1) OCR visual-part. Visual features are combined by ap-
pearance feature and spatial feature as they show what eyes
catch of, without further processing of natural language sys-
tem. From this part, a model can get visual information such

3610



as word font, color and background. These two are extracted
by an off-the-shelf Faster R-CNN (Ren et al. 2015) detector.

xocr,v
i = LN(Wfrx

ocr,fr
i ) + LN(Wbxx

ocr,bx
i ), (1)

where xocr,fr
i is the appearance feature extracted from the

fc6 layer of Faster R-CNN detector. The fc7 weights are
finetuned on our task. xocr,bx

i is the bounding box feature
in the format of [xtl, ytl, xbr, ybr], where tl and br denotes
top left and bottom right coordinates respectively.
2) OCR linguistic-part. Linguistic features are made up of
1) FastText feature xocr,ft

i , which is extracted from a pre-
trained word embedding and 2) character-level Pyramidal
Histogram of Characters (PHOC) (Almazán et al. 2014) fea-
ture xocr,phi as they contain natural language related infor-
mation.

xocr,l
i = LN(Wftx

ocr,ft
i +Wphx

ocr,ph
i ) (2)

3) OCR additional features. In the SBD-Trans (Liu et al.
2019; Wang et al. 2019) that we use to recognize OCR to-
kens, the holistic representations in a specific text region are
themselves visual features, however, are employed for lin-
guistic word classification purpose. Therefore, they cover
both visual and linguistic context of the OCR token and we
thus introduce the Recog-CNN feature xocr,rg

i from this net-
work to enrich text features.

Finally, Recog-CNN features are added to OCR visual-
and linguistic-part simultaneously.

xocr,v
i = LN(Wfrx

ocr,fr
i +Wrgx

ocr,rg
i ) + LN(Wbxx

ocr,bx
i )

xocr,l
i = LN(Wftx

ocr,ft
i +Wphx

ocr,ph
i +Wrgx

ocr,rg
i )

(3)
Visual features. In text-based tasks, visual contents in an
image can be utilized to assist textual information in the rea-
soning process. To prove that our simple attention block has
the power of using visual features in various forms, we adopt
either grid-based global features or region-based object fea-
tures.
1) Global features. We obtain image global features xglobi
from a ResNet-152 (He et al. 2016) model pretrained on Im-
ageNet, by average pooling 2048D features from the res-5c
block, yielding a 14 × 14 × 2048 feature for one image. To
be consistent with other features, we resize the feature into
196× 2048, a total of 196 uniformly-cut grids.

xglob
i = LN(Wgx

glob
i ) (4)

2) Object features. The region-based object features are ex-
tracted from the same Faster R-CNN model as mentioned in
OCR features part.

xobj
i = LN(W

′

frx
obj,fr
i ) + LN(W

′

bxx
obj,bx
i ), (5)

where xobj,fr
i is the appearance feature and xobj,bx

i is the
bounding box feature.

Attention Block as Feature Summarizing
In tasks that cross the fields of computer vision and natural
language processing, modality fusion is of superior impor-
tance. Treating them as homogeneous entities in a joint em-
bedding space might be easy to implement, however, is not
carefully tailored to a specific problem. Moreover, the many
parameters of all entities in the large model (for example, a
Transformer) consume much computation. To grasp interac-
tion between modalities for maximum benefit and filter out
irrelevant or redundant features before the entering into a
large fusion layer, we use a simple attention block to input
two sequences of entities and output two processed vectors,
which is shown as the Attention Block in Figure 3.

The two sequences of entities might be any sequence we
want. For TextVQA problem, question changes in real-time
and plays a dominant role in final answering. The design of
question needs careful consideration and its existence should
contribute throughout the process. For example, here we use
question as one input of query in attention block. The se-
quence of question words goes through a self-attention pro-
cess before forwarding into attention block.

First we put the question word sequence Q = {qi}Li=1
through a fully connected feed-forward network, which con-
sists of two linear transformations (or two convolutions with
1 as kernel size) and one ReLU activation function between
them.

qfci = conv{ReLU[conv(qi)]}, i = 1, . . . , L; (6)

A softmax layer is the used to compute the attention on each
word in the question.

ai = Softmax(qfci ), i = 1, . . . , L; (7)

This is known as self-attention and these weights are multi-
plied with original question embedding to get weighted sum
of word embeddings.

Qs =
∑L

i=1aiqi. (8)

If we have several individual entities to combine with ques-
tion, the corresponding number of parallel self-attention pro-
cesses are performed on the same question with independent
parameters. For example, we can get Qs

v , Qs
l and Qs

o for
OCR visual-part, OCR linguistic-part and object regions re-
spectively.

Then theQs are used as query for corresponding features.
We calculate the attention weights under the guidance ofQs,
which are then put into a softmax layer. Finally the weights
are multiplied with original queried features to get a filtered
vector. Here we take the pair ofQs

v and xocr,v
i as an example:

pi = W[ReLU(WsQ
s
v) ◦ ReLU(Wxx

ocr,v
i )],

si = Softmax(pi), i = 1, . . . , N,

gocr,v =
∑N

i=1six
ocr,v
i

(9)

where gocr,v is the output of attention block. Similarly, we
can get gocr,l for the OCR-linguistic summarizing feature,
gobj for the object summarizing feature.

Different from M4C sending every single question to-
kens, OCR tokens and objects into the transformer feature
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Figure 4: TextCaps baseline model. It has a same structure
as TextVQA baseline model.

fusion layer, here we only have 6 feature vectors (Qs
v , Qs

l ,
Qs

o, gocr,v , gocr,l and gobj) which are sent to the following
process. This largely decreases the computation complexity
and burden, considering that the transformer is a parameter-
heavy network.

Stacked-Block Encoder
The attention block in Section can be stacked together as
an encoder which produces combined embedding for down-
stream tasks.
TextVQA baseline model. As presented in the above mod-
ule, questions are sent through self-attention to output Qs

v ,
Qs

l and Qs
o. OCR features in images are splitted into visual-

and linguistic part, which are xocr,v and xocr,l. We also have
object features xobj . The six sequences are put into three at-
tention blocks and we get six 768D vectors which are then
forwarded into a fusion encoder. The fusion encoder, OCR
encoder and generative decoder in Figure 3 are in the same
transformer model but undertaking different roles. After fu-
sion encoder processing, the six vectors conduct element-
wise multiplication in a pairwise way to get corresponding
embeddings which are concatenated together. Then we use a
fully-connected layer to transform the concatenated embed-
dings to a context embedding with appropriate dimension,
upon which we generate the first answer output. Given the
first answer word, a generative decoder is then used to select
the rest of answer, which will be detailed in Section and
Supplementary Material.

TextCaps baseline model. As there are no questions
in TextCaps, we use objects to guide OCR visual- and
linguistic-part and use OCRs to guide object features. Tech-
nically we simply replace question word sequence with
OCR token sequence or object proposal feature sequence.
The other settings are the same with TextVQA. Figure 4 il-
lustrates our Textcaps baseline model. To easily transfer to
another task demonstrates the generalization ability and sim-
plicity of our method.

Answer Generation Module
To answer a question or generate a caption, we use a gen-
erative decoder based on transformer. It takes as input the
‘context embedding’ from the above encoder and select the
first word of the answer. Based on the first output word, we
then use the decoder to find the next word token either from a
pre-built vocabulary or the candidate OCR tokens extracted
from the given image, based on a scoring function.
Training Loss. Considering that the answer may come from
two sources, we use multi-label binary cross-entropy (bce)
loss:

pred =
1

1 + exp (−ypred)
,

Lbce = −ygtlog(pred)− (1− ygt)log(1− pred),
(10)

where ypred is prediction and ygt is ground-truth target.
Additional Training Loss. In some cases, the model rea-
sons correctly, however, picks slightly different words than
what we expected due to defective reading (OCR) ability. To
take advantage of these predictions, we introduce a new pol-
icy gradient loss as an auxilliary task inspired by reinforce-
ment learning. In this task, the greater reward, the better. We
take Average Normalized Levenshtein Similarity (ANLS)
metric1 as the reward which measures the character simi-
larity between predicted answer and ground-truth answer.

r = ANLS(φ(ygt), φ(ypred)),

y = 1(softmax(ypred)),

Lpg = (0.5− r)(ygtlog(y) + (1− ygt)log(1− y)),
L = Lbce + α · Lpg,

(11)

where φ is a mapping function that returns a sentence given
predicting score (e.g., , ypred), ANLS(·) is used to calculate
similarity between two phrases, 1 is an indicator function
to choose the maximum probability element. The additional
training loss is a weighted sum of Lbce and Lpg , where α
is a hyper-parameter to control the trade-off of Lpg . After
introducing policy gradient loss, our model is able to learn
fine-grained character composition alongside linguistic in-
formation. We only apply this additional loss on ST-VQA
dataset, which brings roughly 1% improvement.

Experiments
Extensive experiments are conducted across two categories
of tasks: TextVQA and TextCap. For TextVQA we set new
state-of-the-art on TextVQA dataset and all three tasks of
ST-VQA. For TextCaps we surpass 2020 TextCaps Chal-
lenge winner. See more experiments details below.

Implementation Details
The set of methods are built on top of PyTorch. We use
Adam as the optimizer. The learning rate for TextVQA and
TexCaps is set to 1e−4. For TextVQA we multiply the learn-
ing rate with a factor of 0.1 at the 14, 000 and 15, 000 iter-
ations in a total of 24, 000 iterations. For TextCaps the mul-
tiplication is done at the 3, 000 and 4, 000 iterations, with

1ANLS(s1, s2) = 1 − d(s1, s2)/max(len(s1), len(s2)), d(,)
is edit distance.
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# Method Trans
structure

OCR
system

Visual
feat

OCR
feat

Accu.
on val

Accu.
on test

1 one-block 4-layer Rosetta-en - Fast, PHOC, FRCN, bbox 37.51 -
2 two-block 4-layer Rosetta-en - Fast, PHOC, FRCN, bbox 39.28 39.99
3 three-block 4-layer Rosetta-en Global Fast, PHOC, FRCN, bbox 39.52 -
4 three-block 4-layer Rosetta-en Obj Fast, PHOC, FRCN, bbox 39.91 -
5 three-block 4-layer Rosetta-en Obj Fast, PHOC, FRCN, bbox, Recog-CNN 40.28 -
6 three-block 8-layer Rosetta-en Obj Fast, PHOC, FRCN, bbox, Recog-CNN 40.38 40.92
7 three-block 8-layer SBD-Trans Obj Fast, PHOC, FRCN, bbox, Recog-CNN 43.95 44.72
8 three-block(w/ST-VQA) 8-layer SBD-Trans Obj Fast, PHOC, FRCN, bbox, Recog-CNN 45.53 45.66

Table 1: We ablate our model on TextVQA dataset by testing number of attention blocks, forms of visual object features and
addition of OCR representations.

# Method OCR
system

Accu.
on val

Accu.
on test

1 LoRRA (Singh et al. 2019) Rosetta-ml 26.56 27.63
2 DCD ZJU (Lin et al. 2019) - 31.48 31.44
3 MSFT VTI - 32.92 32.46
4 M4C (Hu et al. 2019) Rosetta-en 39.40 39.01
5 SA-M4C (Kant et al. 2020) Google OCR 45.40 44.60
6 SMA (Gao et al. 2020a) SBD-Trans 44.58 45.51
7 ours (three-block) Rosetta-en 40.38 40.92
8 ours (three-block w/ST-VQA) SBD-Trans 45.53 45.66

Table 2: Comparison to previous work on TextVQA dataset.
Our model sets new state-of-the-art with an extremely sim-
ple design.

12, 000 total iterations. We set the maximum length of ques-
tions to L = 20. We recognize at most N = 50 OCR tokens
and detect at most M = 100 objects. The maximum num-
ber of decoding steps is set to 12. Transformer layer in our
model uses 12 attention heads. The other hyper-parameters
are the same with BERT-BASE (Devlin et al. 2019). We use
the same model on TextVQA and three tasks of ST-VQA,
only with different answer vocabulary, both with a fixed size
of 5000.

Ablation Study on TextVQA Dataset
TextVQA (Singh et al. 2019) is a popular benchmark dataset
to test scene text understanding and reasoning ability, which
contains 45, 336 questions on 28, 408 images. Diverse ques-
tions involving inquires about time, names, brands, authors,
etc., and dynamic OCR tokens that might be rotated, casual
or partially occluded make it a challenging task.

We first conduct an experiment of building only one
block, with one question self-attention output guiding the
whole set of text features as a comparison. This is a one-
block model in Table1 which does not perform as good as
the state-of-the-art. To investigate how well text features can
perform without the usage of visual grid-based or region-
based features, we build a two-block model. Given the two
categories of OCR features – visual and linguistic, we find
that our simple model is already able to perform promis-
ingly on TextVQA problem. Line 1 and Line 2 tell clearly
the validity of sorting text features into two groups (1.77%

# Method ANLS
on test1

ANLS
on test2

ANLS
on test3

1 M4C (Hu et al. 2019) - - 0.4621
2 SA-M4C (Kant et al. 2020) - 0.4972 0.5042
3 SMA (Gao et al. 2020a) 0.5081 0.3104 0.4659
4 ours 0.5060 0.5047 0.5089
5 ours(w/TextVQA) 0.5490 0.5513 0.5500

Table 3: Comparison to previous work on ST-VQA dataset.
With TextVQA pretraining, our model outperforms current
approaches by a large margin.

difference).
When building our third block on the basis of visual con-

tents, either global features or object-level features are at
our disposal. The incorporation of a third block has mod-
est improvements (0.24% for global and 0.63% for object
features). From Line 4 to Line 5, a new Recog-CNN fea-
ture is added to enrich text representation and brings 0.37%
improvement. We also use more transformer layers (from 4
to 8) and get 0.1% higher result. Then we use a much bet-
ter OCR system (especially on recognition part) and obtain
large performance boost (from 40.38% to 43.95%).

Qualitative examples. We present four examples in Fig-
ure 5 where our model shows the ability to really read scene
texts in a way similar to humans, i.e., left-to-right then top-
to-bottom. In contrast, current state-of-the-art model M4C
fails to read tokens in a correct order.

Comparison with State-of-the-art
TextVQA dataset. Even stripped of the usage of visual con-
tents in the image, our two-block model already surpasses
current state-of-the-art M4C by 0.98% on test set (Line 2 in
Table 1 VS. Line 4 in Table 2). Using the same OCR system,
our baseline model further improves upon M4C by 0.98% on
val and 1.91% on test (Line 7 VS. Line 4 in Table 2).

Compared to the top entries in TextVQA Challenge 2020,
our baseline has a significantly simpler model design, espe-
cially on the encoder side. M4C and SA-M4C take all pa-
rameters of entities into transformer layers and join large
amout of computation. SMA uses a heterogeneous graph
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Q: what does coca cola do? 

A(ours): relieves fatigue 
A(M4C): southern home 

Q: what side is this sign pointing 
to? 
A(ours): west side 
A(M4C): side 

Q: who makes this product? 

A(ours): airport extreme 
A(M4C): airport wi-fi  

Q: what is the name of the 
business? 
A(ours): airport business centre
A(M4C): airport centre

Figure 5: Qualitative examples of our baseline model in contrast to M4C. While our model can read texts in accordance with
written language system, M4C can only pick tokens in a random and errorneous way.

# Method Val set metrics
B M R S C

1 M4C-Captioner 23.30 22.00 46.20 15.60 89.60
2 ours(Rosetta-en) 23.87 22.02 46.4 15.01 91.06
3 ours(SBD-Trans) 24.89 22.71 47.24 15.71 98.83

# Method Test set metrics
B M R S C

4 M4C-Captioner 18.9 19.8 43.2 12.8 81.0
5 colab buaa(Winner) 20.09 20.62 44.30 13.50 88.48
6 ours(SBD-Trans) 20.16 20.3 44.23 12.82 89.63

Table 4: Results on TextCaps dataset. (B: BLEU-4; M: ME-
TEOR; R: ROUGE L; S: SPICE; C: CIDEr)

to explicitly consider different nodes and compute attention
weights on 5-neighbored graph. Our model that surpasses
all of them only sends six holistic vectors two-by-two into
transformer layers, which tremendously saves computation.
ST-VQA dataset. The ST-VQA dataset (Biten et al. 2019)
is another popular dataset with three tasks, which gradually
increase in difficulty. Task 1 provides a dynamic candidate
dictionary of 100 words per image, while Task 2 provides
a fixed answer dictionary of 30, 000 words for the whole
dataset. As for Task 3, however, the model are supposed to
generate answer without extra information. We also evaluate
our model on ST-VQA dataset, using the same model from
TextVQA for all three tasks. Without any additional training
data, our model achieved the highest on Task 2 and Task 3
(Line 4 in Table 3). Using TextVQA dataset as additional
training data, our model sets new state-of-the-art on all three
tasks and outperforms current approaches by a large margin.

TextCaps Dataset
TextCaps is a new dataset that requires a model to read
texts in images and generate descriptions based on scene
text understanding and reasoning. In TextCaps, automatic
captioning metrics (BLEU (Papineni et al. 2002), ME-
TEOR (Denkowski and Lavie 2014), ROUGE L (Lin 2004),
SPICE (Anderson et al. 2016) and CIDEr (Vedantam,

Lawrence Zitnick, and Parikh 2015)) are compared with hu-
man evaluation scores. All automatic metrics show high cor-
relation with human scores, among which CIDEr and ME-
TEOR have the highest.

M4C-Captioner is the method provided in TextCaps,
which is modified from M4C model by simply remov-
ing question input. Similarly, simply replacing question
in our TextVQA baseline model with object or OCR se-
quence yields our TextCaps baseline model. Using exactly
the same OCR system, OCR representations, our baseline
with Rosetta-en OCR (Line 2 on Table 4) already surpass
M4C-Captioner (Line 1 on Table 4), especially on BLUE-4
and CIDEr metric. By upgrading our OCR system to SBD-
Trans and using 6-layer transformer in our encoder-decoder
structure, our baseline further exceeds TextCaps Challenge
Winner on BLUE-4 and CIDEr metric as shown in Line 5
and Line 6 of Table 4.

Conclusion

In this paper, we provide a simple but rather strong baseline
for the text-based vision-and-language research. Instead of
handling all modalities over a joint embedding space or via
complicated graph structural encoding, we use the vanilla
attention mechanism to fuse pairwise modalities. We fur-
ther split text features into two functionally different parts,
i.e., linguistic- and visual-part which flow into correspond-
ing attention branch. We evaluate our simple baseline model
on TextVQA, ST-VQA and TextCaps, all leading to the
best performance on the public leaderboards. This sets the
new state-of-the-art and our model could be the new back-
bone model for both TextVQA and TextCaps. What’s more,
we believe this work inspires a new thinking of the multi-
modality encoder design.
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