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Abstract

Camouflaged objects, similar to the background, show in-
definable boundaries and deceptive textures, which increas-
es the difficulty of detection task and makes the model rely
on features with more information. Herein, we design a tex-
ture label to facilitate our network for accurate camouflaged
object segmentation. Motivated by the complementary rela-
tionship between texture labels and camouflaged object la-
bels, we propose an interactive guidance framework named
TINet, which focuses on finding the indefinable boundary
and the texture difference by progressive interactive guid-
ance. It maximizes the guidance effect of refined multi-level
texture cues on segmentation. Specifically, texture perception
decoder (TPD) makes a comprehensive analysis of texture in-
formation in multiple scales. Feature interaction guidance de-
coder (FGD) interactively refines multi-level features of cam-
ouflaged object detection and texture detection level by lev-
el. Holistic perception decoder (HPD) enhances FGD result-
s by multi-level holistic perception. In addition, we propose
a boundary weight map to help the loss function pay more
attention to the object boundary. Sufficient experiments con-
ducted on COD and SOD datasets demonstrate that the pro-
posed method performs favorably against 23 state-of-the-art
methods.

Introduction
Salient object detection (SOD) (Borji et al. 2019) aims to es-
timate the visual salient regions, while camouflaged object
detection (COD) aims to identify the concealed objects that
similar to their surroundings and the camouflaged objects
usually are not easy to find. So COD is more prone to seri-
ous misjudgment than SOD. They both can be used as initial
steps of many image comprehension and processing tasks,
such as image editing, image retrieval, photo composition,
and target tracking. Besides, COD research will contribute
to the development of medical image, military, agricultural,
and wildlife protection fields. Examples include pneumonia
segmentation, polyp segmentation (Fan et al. 2020b), tumor
segmentation, camouflage enemy facility detection, detec-
tion of burial mines, locust detection and rare animal detec-
tion.
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Figure 1: Given scenes like (a), how to find the camouflage
objects? We propose TINet to infer the objects from local
saliency cues, texture cues (b), contour edge cues (c), and
holistic perception (e), which is consistent with the process
of human inferring and thinking. ConEdge is object contour
extracted from GT. (b) is the Canny map of (a) and it only
shows the object areas. (d) is (b) + (c).

A sufficiently large and finely marked COD dataset was
proposed by (Fan et al. 2020a). Most of the camouflaged
objects in the dataset are animals and they usually adapt the
color of their body to match the surroundings or hide in an
environment close to their color to avoid recognition (Owens
et al. 2014). The camouflage strategy works by deceiving
and misleading the visual perceptual system of the observer.
We can feel the effect of the strategy by trying to find the
camouflaged objects and identify the full boundaries of the
camouflaged objects in Fig. 1.

Salient objects have obvious stimulation to the visual per-
ceptual system of the observer and can be identified instan-
taneously. However, the process of camouflage object de-
tection is a longer thinking process of anti-deception, where
more types of cues are used. For example, for the first row of
Fig. 1, we first find the owl’s face (local saliency) and then
follow this clue to confirm the overall outline. For the 2,3
rows, when the colors of the camouflaged objects are sim-
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ilar to the environment and the edges are blurred, the tex-
ture features (texture cues) will be an important clue. For
the 4,5 rows, the texture of the targets is deceptive and al-
most identical to the background, but relatively clear edges
(edge cues) and unique shapes help to identify the targets.
In addition, holistic perception plays an important role. In-
spired by the above ideas, we improved the contour edge la-
bel (Fig. 1(c) ConEdge) to obtain the texture label (Fig. 1(d)
Texture) by adding detailed information about the surface of
objects, which is helpful to discover the difference between
the texture of the camouflaged objects and the background.
The texture label here doesn’t just represent texture, it com-
bines multiple cues: local saliency cues, texture cues, and
edge cues.

In this paper, our proposed texture-aware interactive guid-
ance network (TINet) focuses on the progressive interactive
guidance of multi-level texture features and multi-level seg-
mentation features. Specifically, TINet has three decoders:
texture perception decoder (TPD), feature interaction guid-
ance decoder (FGD), and holistic perception decoder (HPD).
TINet is a dual-task model. HPD and TPD complement each
other in their respective tasks. Taking the segmentation task
as an example, TPD makes a comprehensive analysis of tex-
ture information. FGD interactively refines multi-level fea-
tures of camouflaged object detection and texture detection
progressively from bottom to top level by level. FGD-T and
FGD-S are two components of FGD coupled with each oth-
er. In FGD-T, two types of high-level features with rich se-
mantic information and accurate location information can
effectively suppress the background noise of the low-level
texture features. In FGD-S, the optimized texture features
contain sufficient internal details, which helps to infer more
accurate segmentation features. HPD enhances FGD results
through feedback and integration. In addition, we use weight
maps to optimize the loss function. In order to verify the u-
niversality of the proposed method, we train two models re-
spectively for COD and SOD tasks. According to the charac-
teristics of SOD task, we adjust the structure of the network
slightly and use contour edge labels to get the best results.

To sum up, our contributions are as follows:

• We propose a texture label with multiple cues and design
FGM modules for heterogeneous feature fusion which use
two types of high-level features with rich semantic infor-
mation to guide one type of low-level features with rich
details.

• We introduce the FGD decoder for bidirectional feature
optimization, where segmentation features suppress the
background noise of texture features and the refined tex-
ture features are used to infer more accurate segmentation
features. TPD and HPD decoders further optimize the re-
sults of FGD from the perspective of texture perception
and holistic perception.

• Sufficient experiments conducted on 4 COD and 5 SOD
datasets demonstrate that the proposed method outper-
forms 13 state-of-the-art COD methods and 23 state-of-
the-art SOD methods in terms of eight metrics, which
proves the advancement of our method.
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Figure 2: Simplified structure of multi-cue models. Gray,
blue and orange blocks are encoders, decoders and edge
modules. The blue and orange arrows are mask labels and
other types of labels, respectively. (a) EGNet (b) MLMSNet
(c) ASNet (d) PoolNet (e) SCRN (j) StdEdge (k) ConEdge
(g) and (h) are two types of eye fixation maps.

Related Work
Limited by the lack of rich datasets, the research in the
COD field is still in its infancy. The author of COD10K
dataset (Fan et al. 2020a) proposed SM and IM modules to
realize search and recognition, which are inspired by hunt-
ing. Because generic object detection, salient object detec-
tion, and camouflaged object detection are three related de-
tection tasks (Zhao et al. 2019b), we can find the inspiration
for COD from the excellent algorithms of SOD, which has
been verified in the experiment of (Fan et al. 2020a). Ear-
ly traditional SOD approaches mainly rely on hand-crafted
features (Yang et al. 2013; Zhu et al. 2014; Zhang et al.
2015) and a comprehensive survey (Borji et al. 2015) shows
it. With the development of CNNs, scholars have proposed
various methods to aggregate multi-level features to produce
excellent results.

Deep Aggregation Models
(Long, Shelhamer, and Darrell 2015) proposed a creative
FCN network to predict images at the pixel level. (Hou et al.
2017) added shortcut connections to integrate features at dif-
ferent levels within the HED architecture (Xie and Tu 2015).
(Chen et al. 2020) designed the modules FIA, HA, SR, and
GCF to make up the gap between different features and
solved the dilution problem in the feature transfer process.
(Feng, Lu, and Ding 2019) proposed the attentive feedback
modules and boundary-enhanced loss to optimize the struc-
ture and boundaries of salient objects. (Wang et al. 2019c)
designed an essential pyramid attention structure, which en-
ables the network to concentrate more on salient regions.
(Wang et al. 2019a; Wei, Wang, and Huang 2020; Wu, Su,
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and Huang 2019b) all adapted the recurrent structure to it-
eratively perform refinement. (Pang et al. 2020) proposed
AIM and SIM modules to better detect size-varying objects
and summarized the structure of multiple deep aggregation
models by simplified diagrams. We also show the simplified
structure of multi-cue models in Fig. 2.

Multi-Cue Models
Contour edge cue: (Zhao et al. 2019a) explicitly modeled
edge information for salient objects to solve the problem of
coarse object boundaries. (Wu, Su, and Huang 2019b) de-
signed a stacking cross refinement unit to simultaneously re-
fine multi-level features of salient object detection and edge
detection. In SOD task, different from EGNet, our structure
is multi-level interactive guidance and the internal and back-
ground noises of edge cues are suppressed by segmentation
features. Compared with S→E and E→S structure of SCRN,
TINet has a sparse guiding structure and uses two types of
features to guide one type of feature: E,S→S and E,S→E.

Standard edge cue: (Liu et al. 2019) expanded the role of
pooling in CNN by feature aggregation modules and demon-
strated that the guidance effect of standard edge (StdEdge)
from edge dataset (Arbelaez et al. 2011; Mottaghi et al.
2014) is better than contour edge (ConEdge) through exper-
iments. (Wu et al. 2019) utilized the StdEdge detection and
ConEdge detection together to improve the performance.
They both showed that the inner and outer edges of the fore-
ground contour are valuable, which indirectly shows that the
texture label we proposed that contains the inner details is
valuable for camouflaged objects with blurred boundaries.

Eye fixation cue: (Wang et al. 2019b) built an attentive
saliency network that learns to detect salient objects from
fixation maps that can be seen as the locally salient location
of the salient objects. As shown in Fig. 2 (g) (h), eye fixation
labels are in the form of spots or clouds similar to the local
saliency situation in Fig. 1. Therefore, in the case of blurred
foreground contour, we speculated that the internal details
would help to locate the camouflaged objects.

Proposed Method
In this section, we first explore the logical interrelations
between the contour edge maps, texture maps, and ground
truth. Then we discuss the functions of the feature interac-
tion guidance decoder and perception decoders. Finally, we
compare two interactive structures of TINet for SOD and
COD tasks in detail and introduce the boundary pixel weight
map.

Texture Label of TINet
The objects in SOD have clear boundaries and distinctive
foreground colors, which can be used as clues to find object-
s. The objects in COD are not so conspicuous and usually
have fuzzy boundaries, camouflage colors close to the back-
ground, camouflage shape, or even camouflage texture. By
observing the COD dataset, we find that the human think-
ing process of discovering the objects and confirming their
boundaries can be summarized as follows: inferring the w-
hole object by the local saliency region, local clear bound-
aries, or unique shape; comparing the texture of the object

with the background. We use the Canny algorithm to find
the obvious lines inside the objects and add contour edges to
get the texture map, which can help us find the above cues.
When making a texture label, the image is smoothed with
9x9 Gaussian kernel and the Canny threshold is 50-150. We
call them texture maps because these lines can represent the
texture of the objects abstractly. The relationship between
contour edge map (ConEdge), texture map (Texture), and
GT is as follows:

ConEdge+ Canny ×GT = Texture (1)

Perception Decoder
In the training stage, the perception decoders (PD) perceive
the camouflaged objects from different angles, including
holistic perception, edge perception, and texture perception.
All decoders participate in the training to help optimize the
parameters. In the testing stage, PDs refine the results of
the feature interactive guidance decoder (FGD) by means of
feedback and integration. Sometimes higher-level features
will lose some important feature information during feature
extraction. So the output features of the top FGM supervised
by interlayer supervision (ILS) are downsampled and fed
back to previous layers to refine them. After the top-down
feedback process, TINet uses perception modules (PM) to
progressively integrate features from down to up. Besides, if
only a segmentation task is needed, the PD on the left (Fig. 3
TPD) is not involved in the calculation and vice versa.

The perception module (PM) realizes the fusion of fea-
tures of the same type. PM can be divided into three type-
s according to the different supervision labels and they are
texture perception module (TPM) for COD, edge percep-
tion module (EPM) for SOD, and holistic perception module
(HPM). Generally, high-level features have richer seman-
tic information, while low-level features preserve more de-
tails including background noise and foreground details. In
Fig.3, the HPM utilize the high-level segmentation features
f is to guide the low-level segmentation features f i−1s to ob-
tain new low-level segmentation features. The new features
will be fed to the next HPM. In detail, HPM has two step-
s: first, high-level features f is and low-level features f i−1s
are fused by element-wise multiplication, where background
noise of f i−1s is suppressed and foreground details are pre-
served. Then the fused features are used to guide the low-
level features f i−1s by element-wise addition. The element-
wise multiplication is relatively rough. If the semantic in-
formation of high-level features is not accurate, some useful
details of low-level features will be mistakenly suppressed.
So the element-wise addition can also be understood as sup-
plementing the details of low-level features to prevent the
wrong fusion of high-level features. There are CBR (convo-
lution, batch normalization, and Relu) before and after each
operation. The process of PM can be represented as follows:

f
i−1
s = C(f

i−1
HPM ) = C(C(f

i−1
s ) + C(C(f

i
s) ∗ C

2
(f
i−1
s ))) (2)

f
i−1
t = C(f

i−1
TPM ) = C(C(f

i−1
t ) + C(C(f

i
t ) ∗ C

2
(f
i−1
t ))) (3)

where each of C(·) is CBR. i represents the level of the
features. C2(·) indicates that the features pass through two
CBRs. ∗ is element-wise multiplication. f i−1HPM and f i−1TPM
are features before passing through the last CBR in Fig.3
HPM, TPM.
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Figure 3: An overview of the proposed TINet. ResNet-50 is used as the backbone encoder. FGD-S and FGD-T realize interactive
guidance. PD consists of feedback and integration components. Multiple PMs form the integration part. Multi-level supervision
and interlayer supervision (MLS and ILS) are used to assist training. Features outside the encoder are unified into 64 channels.
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Figure 4: (b) (c) (f) (g) show the effect of interactive guid-
ance. (b) (d) show the effect of multi-level interaction op-
timization. (d) is the edge map of EGNet generated by ex-
plicitly modeling only the lowest level edge features. (f) (h)
show the advantages of texture features over edge features.

Feature Interaction Guidance Decoder
In Fig.3, FGD-S and FGD-T are complementary decoders
composed of multiple FGM-S and FGM-T modules, which
can effectively use multi-level segmentation features and
texture features to progressively refine the camouflaged ob-
ject detection and texture detection level by level. For FGD-
S, the high-level segmentation and texture features with rich
semantic information help the low-level segmentation fea-
tures suppress background noise and save the detailed infor-
mation in camouflaged object areas. The internal high-level
texture information of the camouflaged object helps to lo-
cate and infer the whole camouflaged object. For FGD-T,
two high-level guiding features effectively suppress back-
ground noise and constrain the diffusion of low-level texture
features. The refined texture features contain sufficient inter-
nal details, which helps to infer more accurate segmentation

features. Fig. 4 (f) (g) show the difference between with and
without guidance S→T.

The feature interaction guidance module (FGM) is an en-
hanced version of PM. FGM module adds another type of
high-level features to achieve dual guidance on the basis of
PM. FGM-S adds the guidance of high-level texture features
f it to low-level segmentation features f i−1s . Element-wise
multiplication is used to enhance the localization effect of
texture features on segmentation features. FGM-T is simi-
lar to FGM-S. The difference is that FGM-T use concatena-
tion operation to merge the high-level segmentation features
f is with low-level texture features f i−1t on channel axis for
suppressing background noise and preventing the diffusion
of inaccurate texture features. Here, another CBR is adopt-
ed to turn 128 channels back to 64. The processes in the
dotted boxes in Fig. 3 FGM-S, FGM-T can be described as
follows:

f
i−1
FGM−S = C(C(f

i
t ) ∗ C

2
(f
i−1
s )) (4)

f
i−1
FGM−T = C(C(Cat(C(f

i
s), C

2
(f
i−1
t ))) (5)

f i−1FGM−S and f i−1FGM−T are the outputs of the dotted boxes.
FGM-S and FGM-T both use two types of high-level fea-
tures to guide and optimize one type of low-level features.
The whole process is expressed as follows:

f
i−1
s = C(f

i−1
HPM + f

i−1
FGM−S) (6)

f
i−1
t = C(f

i−1
TPM + f

i−1
FGM−T ) (7)

For f i−1HPM and f i−1TPM , please refer to Eq. 3.

Interactive Guidance Structure
In this section, we compare two interactive structures for
SOD and COD tasks. On the right side of Fig.3, we get struc-
ture 2 by changing the input f it of the FGM-S module to
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(f) are multiplied to get the weight of edge pixels (d). (d) is
dilated to obtain (g). The last row shows more examples.

f i−1t and compare the supervision effects of ConEdge and
texture labels. We find that texture label and structure 1 have
the best performance in COD task and ConEdge label and
structure 2 have the best performance in SOD task, which is
shown in Tab. 2. In COD task, the low-level texture features
f i−1t of camouflaged object are not clear and easy to gener-
ate error guidance. However, high-level texture features f it
are beneficial to localization, so the guidance effect of high-
level texture features is better. In SOD task, the boundary
of salient object is relatively clear and the low-level edge
features have high credibility. Therefore, the guidance ef-
fect of relatively accurate low-level edge features f i−1e is
better. Fig. 4 (b) (c) (f) (g) show the effectiveness of inter-
active guidance. (d) is the edge map of EGNet generated
by explicitly modeling and only the lowest level edge fea-
tures are used. (b) shows the effect of multi-level interactive
optimization of our model. (g) (h) show the advantages of
texture features over contour edge features in COD.

Boundary Pixel Perception Loss
The accuracy of the boundary directly affects the detection
result, so BPP loss with corner perception capability focus-
es on the boundary and trains the pixels around it differently.
Usually, the straight boundaries are relatively easy to detec-
t and the obvious raised and sunken parts are easily mis-
judged. BPP initially assigns weights to get mapi,j accord-
ing to the GT, as shown in Eq.8. In Eq.9, we get the weight
of the ConEdge pixels. Strengthening the training of the pix-
els on both sides of the boundary helps the model distinguish
the local details accurately. Eq.10 uses the dilation operation
to spread the influence range of the ConEdge weight. The fi-
nal weight map (g) is used to improve binary cross entropy
(BCE) and IoU loss. IoU loss helps to optimize the glob-
al structure (Rahman and Wang 2016). BCE and IOU treat
pixels equally. We design (g)w to make up for this weakness
and help them focus on pixels near key boundaries.

mapij =

∣∣∣∣∣∣
∑
m,nεRij

gtmn∑
m,nεRij

1
− 0.5

∣∣∣∣∣∣ (8)

wedgeij = ConEdge×mapij (9)

wij = dilate(wedgeij) (10)

L
w
bce = −

∑H
i=1

∑W
j=1(1 + wij)

∑1
l=0 1(gij = l)logPr(pij = l|ψ)∑H

i=1

∑W
j=1(1 + wij)

(11)

L
w
iou = 1−

∑H
i=1

∑W
j=1(gtij ∗ pij) ∗ (1 + wij)∑H

i=1

∑W
j=1(gtij + pij − gtij ∗ pij) ∗ (1 + wij)

(12)

Lw = L
w
bce + L

w
iou (13)

Lbpp = L
s
+L

e
=

5∑
i=2

1

2i−1
L
si
w +

1

2
L
ils−s
w +

5∑
j=2

1

2j−1
L
ej
w +

1

2
L
ils−e
w

(14)

Hyperparameter setting:Rij is a square with a side length of
25 centered on (i,j), and (m,n) is a point inRij . We use max-
pooling and avg-pooling to implement dilation, which is ex-
plained in detail in the supplementary materials. In Eq.11,
1(·) is the indicator function and lε {0, 1} is pixel label. pij
and gij are the model prediction and ground truth of the pixel
at (i, j). Pr(·) refers to the prediction probability. ψ repre-
sents the model parameters. In Eq.14, Lsiw and Lejw are multi-
level supervision for optimizing training. Lils−sw and Lils−ew
are interlayer supervision.

Experiments
Datasets and Evaluation Metrics
We evaluate the proposed architecture on four COD dataset-
s: CAMO-Test (Le et al. 2019), CPD1K-Test (Zheng et al.
2019), CHAMELEON, COD10K-Test (Fan et al. 2020a)
and five SOD datasets: ECSSD (Yan et al. 2013), PASCAL-
S (Li et al. 2014), DUT-OMRON (Li et al. 2014), DUTS,
HKU-IS-Test (Li and Yu 2015). Six metrics are adopted to
evaluate the performance of TINet and other models. The
first two metrics are mean absolute error (MAE) (Perazz-
i et al. 2012) and F-measure (Fβ) (Achanta et al. 2009),
which are widely used in previous models (Fan et al. 2020c;
Zhang et al. 2020). Fβ is formulated as the weighted har-
monic mean of Precision and Recall, β2 is generally set to
0.3. We calculate the maximal Fβ values from PR curves,
denoted as Fmax and use an adaptive threshold that is twice
the mean value of the prediction to calculate Favg . Weight-
ed F-measure (Fwβ ) defines a weighted precision, which is
a measure of completeness for improving F-measure. Struc-
tural similarity measure (Sα, α = 0.5) (Fan et al. 2017) and
E-measure (Em) (Fan et al. 2018) are also useful for evalua-
tion of saliency maps. For MAE, smaller is better. For other
metrics, bigger is better.

Implementation
We combine the training datasets of CAMO-Train, CPD1K-
Train, COD10K-Train and take them as the COD training
dataset, which follows SINet (Fan et al. 2020a). We use
DUTS-TR (Wang et al. 2017) as training dataset for SOD.
ResNet-50 (He et al. 2016) are adopted as backbone. Hor-
izontal flip, random crop, and multi-scale input images are
used for data augmentation. Warm-up and linear decay s-
trategies are used. The maximum learning rate is 5e-3 for
the backbone and 0.05 for other parts. Stochastic gradient
descent is adopted to train the network with the momentum
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COD

COD-Model CAMO-TE CHAMELEON-TE COD10K-TE CPD1K-TE
Fwβ Em Sm MAE Fwβ Em Sm MAE Fwβ Em Sm MAE Fwβ Em Sm MAE

CPDR19 .550 .802 .726 .115 .706 .878 .853 .052 .508 .763 .747 .059 .589 .700 .828 .010
EGNetR19 .616 .832 .748 .100 .752 .897 .871 .042 .574 .808 .774 .047 .690 .790 .870 .007
SCRNR19 .635 .847 .770 .091 .748 .894 .874 .043 .588 .799 .790 .046 .652 .723 .862 .010
ITSDR20 .611 .833 .754 .099 .689 .873 .832 .053 .570 .796 .773 .049 .405 .614 .726 .017
GateNetR20 .643 .850 .768 .091 .756 .897 .874 .041 .602 .807 .793 .043 690 780 869 .007
GCPANetR20 .590 .821 .759 .108 .681 .866 .847 .053 .526 .755 .766 .056 .638 .722 .857 .008
MINetR20 .629 .832 .746 .093 .771 .929 .855 .036 .607 .848 .770 .042 .706 .876 .847 .006
SINetR20 .606 .834 .751 .100 .740 .899 .869 .044 .551 .797 .771 .051 .587 .725 .849 .010
F3NetR20 .664 .839 .779 .091 .765 .909 .867 .041 .615 .836 .787 .046 .754 .916 .873 .006
Ours(E+STR1) .668 .843 .774 .089 .774 .904 .866 .041 .625 .833 .789 .044 .748 .897 .874 .006
Ours(T+STR1) .678 .847 .781 .087 .783 .916 .874 .038 .635 .848 .793 .043 .787 .930 .885 .005

SOD

SOD-Model DUTS-TE DUT-OMRON HKU-IS ECSSD PASCAL-S
Fwβ Em Sm MAE Fwβ Em Sm MAE Fwβ Em Sm MAE Fwβ Em Sm MAE Fwβ Em Sm MAE

CPDR19 .795 .904 .869 .043 .719 .873 .825 .056 .876 .952 .906 .034 .898 .949 .918 .037 .803 .887 .847 .072
EGNetR19 .816 .907 .887 .039 .738 .874 .841 .053 .887 .956 .918 .031 .903 .947 .925 .037 .807 .879 .853 .075
PoolNetR19 .817 .912 .887 .037 .725 .874 .831 .054 .888 .959 .919 .030 .904 .948 .926 .035 .823 .890 .867 .065
SCRNR19 .803 .902 .885 .040 .720 .869 .837 .056 .878 .954 .917 .033 .900 .942 .927 .037 .816 .888 .867 .065
GCPANetR20 .821 .913 .891 .038 .735 .869 .839 .056 .889 .956 .920 .031 .900 .950 .925 .036 .821 .901 .866 .062
MINetR20 .825 .917 .884 .037 .738 .873 .833 .055 .899 .961 .920 .028 .911 .953 .925 .033 .821 .899 .857 .064
F3NetR20 .835 .918 .888 .035 .747 .876 .839 .053 .900 .959 .917 .028 .912 .946 .924 .033 .827 .895 .860 .063
Ours(E+STR1) .836 .918 .891 .035 .748 .876 .840 .053 .905 .960 .921 .027 .911 .950 .924 .034 .826 .897 .861 .062
Ours(E+STR2) .842 .925 .891 .035 .754 .876 .842 .051 .906 .960 .922 .027 .914 .953 .926 .033 .829 .901 .861 .062

Table 1: Quantitative evaluation for COD and SOD. We compare 13 COD and 23 SOD methods on 4 COD and 5 SOD datasets.
E, T, STR1, STR2 stand for ConEdge label, Texture label, and Structure 1, 2. R: ResNet-50, ResNeXt-101 or ResNet-101 as
backbone; V: VGG16 as backbone. The comparison algorithms before 2019 are introduced in the experimental analysis section.

of 0.9 and the weight decay of 5e-4. Batchsize and maxi-
mum epoch are set to 32 and 45 respectively. We train the
model on a PC with 16GB RAM and an RTX 2080Ti GPU.
We resize images to 352× 352 in the inference stage.

Comparative Experiment of Label and Structure
For COD and SOD, we use different labels and structures
to compare the effects of different combinations in Tab.2.
The boundaries of the objects in the COD dataset are fuzzy,
so the high-level texture features refined by segmentation
features have better inference and guidance effect on the
low-level segmentation features. However, the boundaries
of the objects in the SOD task are relatively clear, the
low-level edge features optimized by high-level segmenta-
tion features can guide the same level segmentation fea-
tures well. ConEdge+Stucture2 and Texture+Struture1 are
the best combinations for SOD and COD, respectively. We
use these combinations in ablation experiments. It is worth
noting that the loss of the above experiments is optimized
by weight map. We use the weight map of (Wei, Wang, and
Huang 2020) to perform the experiment of the COD part in
Tab.2 again. The performance of the texture label in struc-
ture 1 is better than the ConEdge label.

Ablation Analysis
To analyze the role of various components of TINet, a series
of experiments are shown in Tab.3. R, G, and P represent
backbone (ResNet-50), interactive guidance decoder (FGD),

and perception decoder (PD). RGP is supervised by segmen-
tation labels and interactive guidance doesn’t work. After
adding the guidance of texture (edge) features to segmen-
tation features, the performance is improved. At this time,
because the texture (edge) features are not refined by the
high-level segmentation features, the guidance effect can be
further improved. In bi-directional guidance (↔), the seg-
mentation features suppress the outward diffusion of texture
features and the optimized texture features can effectively
infer the segmentation features. The same is true for edge
features in the SOD task.

Multi-level supervision, BCE loss, and IoU loss are used
in the experiments. Because these training methods have
been verified in many algorithms, we only add weighted loss
in the last 4 experiments to verify the effect of weight maps.
In the 6th line, we compare the scores of output in ILS su-
pervision position to illustrate the improvement brought by
HPD. The 7th line shows the difference between concatena-
tion and multiplication operations in FGD-T(E). When con-
catenation is replaced by multiplication, the scores will get
worse. The 8th line removes the guidance of the same type
features in FGM-T(E) and FGM-S to verify the effect of d-
ual guidance. Baseline is the RGP without IoU loss.

Comparison with State-of-the-arts
We compare the proposed method with 13 state-of-the-art
methods for COD, including CPD (Wu, Su, and Huang
2019a), EGNet, SCRN (Wu, Su, and Huang 2019b), ITS-
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Figure 6: Qualitative comparisons with state-of-the-art algorithms.

Model
COD SOD

CAMO CHAME OMRON PASCAL-S
Fwβ MAE Fwβ MAE Fwβ MAE Fwβ MAE

E+S2 .674 .089 .770 .040 .754 .051 .829 .062
T+S2 .668 .091 .773 .039 .747 .055 .825 .064
E+S1 .668 .089 .774 .041 .748 .053 .826 .062
T+S1 .678 .087 .783 .038 .734 .056 .824 .064

Table 2: Comparative experiment of label and structure. E,
T, S1, S2 stand for ConEdge, Texture labels, Structure 1, 2.

D (Zhou et al. 2020), GateNet (Zhao et al. 2020), GC-
PANet (Chen et al. 2020), MINet, SINet, F3Net (Wei, Wang,
and Huang 2020), etc. 23 SOD methods used for compar-
ison are CPD, EGNet, PoolNet (Liu et al. 2019), SCRN,
GCPANet, MINet. F3Net, etc. For fair comparisons, we use
saliency maps provided by the authors or generated by their
codes. To save space, Tab.1 does not show the algorithms
of earlier years, which are the comparative algorithms in the
papers of SINet and MINet (Pang et al. 2020).

Quantitative Evaluation Tab. 1 COD part shows the Fwβ ,
Em, Sm, MAE scores of the proposed model and COD
state-of-the-arts algorithms on 4 COD datasets recommend-
ed by (Fan et al. 2020a). Due to the positioning and inferring
function of texture features, texture label brings a signifi-
cant improvement to the network compared with ConEdge
label under the same network structure 1. Tab. 1 SOD part
shows the scores of the proposed model and SOD state-of-
the-art algorithms on 5 widely used datasets and proves that
the guidance effect of low-level edge features is better. It
can be seen that our model performs favorably against oth-
er methods in terms of multiple measures on two types of
tasks, which demonstrates the effectiveness of our network.

Qualitative Evaluation Fig. 6 shows the visual examples
produced by our model and others. We visualize the fea-

Model
COD (T+S1) SOD (E+S2)

CHAME DUTS-TE
Fwβ MAE Fwβ MAE

Baseline .686 .053 .808 .042
RGP .760 .044 .828 .040
PGRGP[T(E)→S] .764 .042 .830 .039
PGRGP[T(E)↔S] .772 .041 .834 .037
PGRGP[T(E)↔S] + w .783 .038 .842 .035
ILS .775 .039 .839 .036
w/o Cat .773 .040 .837 .037
w/o T(E)→T(E), S→S .767 .042 .834 .038

Table 3: Ablation analysis. R, G, and P represent backbone
(ResNet-50), interactive guidance decoder (FGD), and per-
ception decoder (PD), respectively. → represents single di-
rection guidance of texture (or ConEdge) features to seg-
mentation features.↔ represents bi-directional guidance. w
indicates that the loss function uses the weight map.

tures in the ILS-T position to show how our model enhances
the internal texture of the objects and suppresses the back-
ground. The refinement of texture features is synchronized
with the optimization of segmentation features. Our method
performs better in various challenging scenarios.

Conclusions
In this paper, we propose a structurally symmetric frame-
work named TINet, which interactively refines multi-level
texture and segmentation features by FGD decoders. HPD
and TPD (EPD) decoders realize the integration function to
improve the results of FGD. The edge weight map is de-
signed to help the model pay more attention to the pixels
around the key parts of the boundaries. By slightly adjusting
the structure and label, our models perform favorably against
the state-of-the-art models on COD and SOD datasets.
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Appendix
Parameter Setting
The dilation operation in Eq.10 is implemented by max-
pooling and avg-pooling. Because the variable parameter-
s include the size and type of pooling, to simplify the ex-
periment, we fixed the size to adjust the pooling type. The
sizes of the three pooling operations are fixed to 3x3, 11x11,
and 21x21, respectively. Since the max-pooling and the avg-
pooling have different effects, we adjust their combination-
s to achieve the best results. The dilation operation helps
to spread the influence range of the ConEdge weights. The
closer to the edge, the greater the weight of the pixels. The
optimal weight map is obtained by the following equation:

wij = wedgeij +maxpooling3×3(wedgeij)

+ avgpooling11×11(wedgeij) + avgpooling21×21(wedgeij) (15)
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