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Abstract

Model object trackers largely rely on the online learning of
a discriminative classifier from potentially diverse sample
frames. However, noisy or insufficient amounts of samples
can deteriorate the classifiers’ performance and cause track-
ing drift. Furthermore, alterations such as occlusion and blur-
ring can cause the target to be lost. In this paper, we make
several improvements aimed at tackling uncertainty and im-
proving robustness in object tracking. Our first and most im-
portant contribution is to propose a sampling method for the
online learning of object trackers based on uncertainty ad-
justment: our method effectively selects representative sam-
ple frames to feed the discriminative branch of the tracker,
while filtering out noise samples. Furthermore, to improve
the robustness of the tracker to various challenging scenar-
ios, we propose a novel data augmentation procedure, to-
gether with a specific improved backbone architecture. All
our improvements fit together in one model, which we re-
fer to as the Uncertainty Adjusted Tracker (UATracker), and
can be trained in a joint and end-to-end fashion. Experiments
on the LaSOT, UAV123, OTB100 and VOT2018 benchmarks
demonstrate that our UATracker outperforms state-of-the-art
real-time trackers by significant margins.1

Introduction
Visual tracking aims to estimate the trajectory of a target
in a video sequence. It has wide applications ranging from
human motion analysis, human-computer interaction, to au-
tonomous driving. Modern CNN-based object trackers typi-
cally aim to learn a classifier that can quickly adapt to object
and background variations. In this so-called online learning
framework, earlier image frames together with the target lo-
cation are fed to an online learning classifier branch of the
tracker architecture. A serious issue is that due to limitations
in computing and memory resources, a tracker can only in-
clude a small number of frames for learning the classifier.
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1The code is available at. github.com/TrackerLB/UATracker
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Figure 1: Illustrative comparison of the sample selection
strategies by the state-of-the-art Dimp50 (left) and our pro-
posed UATracker (right). The y axis is the feature dimen-
sion, which represents (a feature representation of) the im-
age frames. The samples’ colours represent the time inter-
vals they belong to. The dashed line circles represent which
frames are chosen by the tracker to be fed into the online
learner. On the right, samples marked with black are se-
lected.

Thus, the success of a tracker heavily depends on the design
of a sensible strategy to select the most relevant frames.

Many classical trackers are based on correlation fil-
ters (Danelljan et al. 2015; Henriques et al. 2015; Danelljan
et al. 2016, 2017; Liu, Wang, and Yang 2015) and update the
learning model based on the previous frame. On the other
hand, the more recent Siamese trackers (Bertinetto et al.
2016b; Guo et al. 2017; Tao, Gavves, and Smeulders 2016;
Wang et al. 2018; Zhu et al. 2018; Li et al. 2018, 2019) typi-
cally use the first frame to provide a reasonable initialization
to the model. Meanwhile, CFNet (Valmadre et al. 2017) uses
a running average with a constant learning rate. This means
the influence of past frames to the model is decreasing expo-
nentially fast. Recently, trackers such as ATOM (Danelljan
et al. 2019) and Dimp (Bhat et al. 2019) were able to com-
bine features from earlier frames via an optimisation process
to predict the location of the target. However, the sample se-
lection is ad hoc and rudimentary: they simply include sam-
ples from the first frame and the last few frames.

We argue that these existing sampling strategies may not
select compact and representative samples. For one thing,
they tend to select clumps of samples from the same periods.
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But frames that are close to each other in time are likely
to yield similar feature representations, which increases the
redundancy of naively chosen samples.

To address these issues, we propose a sampling approach
based on an uncertainty adjustment for online learning.
Firstly, the video frames are partitioned into clusters depend-
ing on time stamp information 2. Taking inspiration from
work on linear regression for heteroskedastic data (Kendall
and Gal 2017), we jointly incorporate uncertainty estima-
tion into our model’s target location procedure in an online
manner and retain this information for all historic frames.
Using it, an uncertainty-adjusted center is calculated for
each cluster, and the frame closest to the center is selected
as the representative frame, as long as its response score
is higher than a minimum threshold. Otherwise, the frame
is considered not to be representative, and the next closest
frame to the cluster centre is chosen instead. We refer to this
technique by Significant Sample Selection (S3). The method
is schematically illustrated in Fig. 1, which compares the
sample selection strategies of Dimp (left) with that of our
tracker UATracker (right). It is obvious that the sample se-
lection strategy of the UATracker has covered much more
representative samples and avoids anomalous samples, i.e.,
frames corresponding to outliers in feature space, where the
target is most likely blurred or occluded.

Our tracker is built upon the classic CNN framework with
a target classification branch and a target localisation branch
atop the convolutional layers. The classification network,
which is an online learning branch equipped with the S3
modules, identifies the coarse locations (bounding boxes).
These coarse locations are further fed into the target locali-
sation branch to estimate the precise target location.

Furthermore, we also propose two strategies to enhance
the tracker and improve its robustness. First of all, whilst
existing data augmentation methods such as translation
and flipping are widely used in in current trackers, prob-
lems such as occlusion, blurring and overlapping have not
been properly addressed in existing research. We propose a
”mixed-features” data augmentation method which creates
new samples by simulating occlusions and blurring. Whilst
previous work such as Mixup (Zhang et al. 2017) fused sam-
ples directly at the image level, we choose to fuse at the fea-
ture level, which we experimentally demonstrate to be more
effective. The proposal is aligned when added, which can
better simulate occlusion and blur. Finally, we introduce de-
formable convolutions into the backbone network, which are
trained in an end-to-end fashion together with our tracker.

Our main contributions can be summarized as follows:

• First, we improve the robustness by finding out the most
beneficial input training samples for the tracker, and re-
moving noisy samples as much as possible. Specifically,
a simple-yet-efficient Significant Sample Selection (S3)
strategy is proposed. The method relies on (aleatoric) un-
certainty adjustment, with the uncertainty estimation em-
bedded into the regression branch of the model through a

2This choice of clustering is a quick and efficient way to use
time stamp information as a similarity measure without the com-
putational hassle of using a more complicated kernel.

carefully designed loss function.

• To further improve the robustness of the tracker, a ”mixed-
feature” data augmentation method is proposed and ap-
plied to the classifier. The method consists in adding sam-
ples perturbed through simulated occlusions and blurring
to the training data set, and achieves significantly in-
creased performance in the event of actual target occlu-
sion or blur. Furthermore, we apply deformable convolu-
tion to the backbone of the network and perform an end-
to-end training.

• Our tracker achieves top performance on four bench-
marks: VOT2018, OTB100, LaSOT and UAV123. In par-
ticular, we improve the state-of-the-arts on the LaSOT and
UAV123 benchmarks by significant margins.

Related Work
In recent years, benefiting from the rapid development of
CNN and object detectors (Zhang et al. 2019b), visual
object tracking has achieved unprecedented progress. Ex-
isting visual object trackers can be roughly categorised
into two classes: detection-based tracking and template-
matching methods. In detection-based tracking, we treat
tracking as an online classification problem, classifying the
target and the background to locate the target, and capturing
the change in the scale of the target by searching on multi-
ple scales. Template-matching methods, in particular those
based on Siamese networks, have attracted more and more
researchers’ attention due to the end-to-end training ability
and high efficiency. The main component is a simple end-to-
end symmetrical network, which learns the similarity mea-
sure between the template and the search area through of-
fline fine-tuning. In the following, we introduce these two
methodologies in details.

Siamese Tracker. The Siamese tracker is based on the
Siamese network, which has the ability to perform offline
pre-training and high efficiency tracking under a single
simple framework. The network structure achieves high-
speed running and has attracted much attention. It uses a
symmetric Siamese network to learn the similarity mea-
sure between the object template and the search area.
SiamFC (Bertinetto et al. 2016b) performs similarity predic-
tion using a fully convolutional structure, obtaining a super
high-speed tracker. It treats the deep convolutional network
as a more general similarity learning problem in the initial
offline phase, and then performs a simple online estimation
of this problem during tracking. SiamRPN (Li et al. 2018)
combines the Siamese network with a regional proposal net-
work (RPN), which uses an end-to-end method for offline
training on large-scale image pairs. Unlike standard RPN,
SiamRPN uses the feature map of two branches (a template
branch and a search area branch) to extract proposal regions.
SiamRPN++ (Li et al. 2019) introduces a deeper feature net-
work into the SiamRPN (Li et al. 2018), which successfully
enables the Siamese network to perform end-to-end offline
pre-training on ResNet (He et al. 2016).

The main weakness of the Siamese trackers is that they
cannot integrate tracking samples of present frames into
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templates: similarity measures trained purely offline cannot
adapt to complex evolving tracking scenarios.

Detection-based Tracking. This line of tracking meth-
ods (Ma et al. 2015; Danelljan et al. 2016, 2017; Hong
et al. 2015; Li, Li, and Porikli 2015) converts object tracking
to classification problems by discriminating between targets
and backgrounds online. For example, the trackers (Nam and
Han 2015; Nam et al. 2016; Han, Sim, and Adam 2017)
based on discriminant correlation filters use the target in-
formation to continuously update the tracking template.

In recent years, feature representations have mainly been
extracted from pre-trained deep networks for image clas-
sification combined with online learning of correlation fil-
ters. CCOT (Danelljan et al. 2016) and ECO (Danelljan
et al. 2017) propose implicit interpolation models to for-
mulate learning problems in the continuous space domain
and achieve effective integration of multi-resolution deep
features. ATOM (Danelljan et al. 2019) attempts to bridge
object classification and location estimation in target track-
ing by building a multi-task tracking model which consists
of two parts: object classification and position estimation,
with the latter typically achieved through end-to-end offline
pre-training. Dimp (Bhat et al. 2019) designs a loss with dis-
criminating ability and learns the key parameters of loss fo-
cus through end-to-end training. This combined weight pre-
diction module can initialize the network well.

Although acceptable performance has been achieved by
detection-based trackers, their template updating strategies
are not constructed carefully. Early correlation filtering
methods simply use samples from the previous frame of the
tracking frame as training samples, which can be affected
by inaccurate target prediction. The recent Dimp (Bhat et al.
2019) and ATOM (Danelljan et al. 2019) trackers use the
first few frames of the tracking frame to construct a training
set. Considering the large variations of appearance targets
can exhibit in a long-term tracking procedure, a more sensi-
ble online sample selection strategy is needed.

Uncertainty Estimation for Computer Vision. In com-
plex problems involving a large amount of data and vari-
ables such as computer vision, errors can come from a wide
variety of potential sources, which means the need to quan-
tify this uncertainty and weigh intermediate predictions ac-
cordingly is particularly marked. Accordingly, uncertainty
estimation has a long history in the computer vision litera-
ture. In (Kendall and Gal 2017), the authors discuss differ-
ent types of uncertainty and propose a Bayesian deep learn-
ing framework that models both the aleatoric and epistemic
uncertainties. MonoPair (Chen et al. 2020) proposes an un-
certainty perception prediction module in the context of 3D
target detection. Gaussian-YOLO (Choi et al. 2019) learns
the uncertainty of bounding box (bbox) prediction values
through Gaussian modeling and loss function reconstruc-
tion. Monoloco (Feng, Rosenbaum, and Dietmayer 2018)
evaluates and visualizes the uncertainty of azimuth predic-
tion in pedestrian positioning.

We argue that it is also possible to use uncertainty to guide
the components of the network. Our tracker models the un-
certainty present in frame samples to be fed to the classifica-
tion branch of the model in order to better screen out noisy

samples and improve the robustness of the branch. This is
to the best of our knowledge the first time that uncertainty
estimation was embedded directly in the selection of inter-
mediary samples, and trained in an end-to-end fashion.

Methodology
Our model is built upon the Dimp tracker (Bhat et al. 2019),
which involves a target classification branch and a target lo-
calization branch. The classification network is an online
learning branch and identifies the coarse locations. These
coarse locations are further fed to the target localization
branch to estimate the precise target location, as shown in
Fig. 2. The target localization branch is not shown here,
please refer to ATOM (Danelljan et al. 2019) for details. As
mentioned above, we propose several improvements aimed
at better keeping track of uncertainty in the model and im-
proving the robustness of the model. Below, we explain in
more details the architecture and training procedure for our
full model, including all of our improvements.

General Architecture and Training Procedure
Architecture. The main architecture of our tracker is com-
posed of two branches, as seen in Fig. 2. The middle branch
takes as input a reference frame together with bounding
boxes indicating the target position, and outputs a feature
representation of the target appearance. The bottom branch
takes as input a single test frame. The final feature repre-
sentation of the test frame obtained by the bottom branch of
the model is convolved with a filter ω to reach a score map
(heat map) representing the probability of the target being
in a certain region of the test frame. The filter ω is trained
using the labels of the training frames via online learning.

Online Learning Loss. The online-learning tracker trains
the classification branch by using the previous sampled
frames as training samples, and minimizing the discrepancy
between the tracking response and a Gaussian prior c cen-
tered at the centre of the bounding box label. Denote the
training samples as xm. Whenever a new sample frame is
added, the parameters of the classification branch are up-
dated by minimizing the following objective function:

L(ω) =
1

M

M∑
m=1

‖r(xm ∗ ω, cm)‖2 + λ ‖ω‖2 , (1)

where the samples {1, 2, . . . ,M} are chosen as described
below, cm is set to a Gaussian prior at the target location, ∗
denotes a multi-channel convolution. λ is a hyper-parameter,
xm∗ω is the tracking response obtained by convolution, and
r is a point-wise loss function.

By optimizing Eq. (1) with a conjugate gradient descent
method, the model predicts the target response map to esti-
mate the coarse locations of a tracked object, which is shown
in Fig. 2. The Dimp (Bhat et al. 2019) tracker will feed some
features of earlier frames in the model predictor to obtain
a more robust model to estimate the score map of the test
frame. As explained above, performance of this online learn-
ing branch is heavily dependent on the quality of the samples
it is based on, which can be subject to errors since they rely
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Figure 2: Architecture for the UATracker, which converts the feature map into a response map and provides the coarse locations
of the target by online learning. Specifically, selected features are chosen by our S3 strategy to replace original training samples
for online learning, and the classification branch finally obtains the response score map of the test frame. Note that the mixed-
feature is used in the training of the classification branch. The top branch is a Visualization of the middle branch.

on previous iterations of the model. We propose to embed
uncertainty estimation directly into the loss of the regression
branch of the model, and further use it as a weight to aver-
age the samples in each interval and find the most reliable
sample. The specific method is described below.

Uncertainty-sensitive Online Learning
As mentioned in the introduction, on top of the main online
learning classification branch, our tracker involves a separate
regression branch which estimates the shape of the target
and is trained to compute the Intersection Over Union (IOU)
of the target with any bbox proposal. Here, we augment this
branch with joint uncertainty prediction, and further use this
measure of uncertainty to decide which frames are fed to the
online learning branch at test time.

In (Kendall and Gal 2017), an ingenious technique is de-
veloped to perform linear regression on heteroscedastic data
by predicting both the output and the uncertainty jointly.
Taking inspiration from this, we develop a technique to in-
corporate such methods in our deep learning context. Specif-
ically, we enhance the regression branch of our model with
joint uncertainty prediction. Our regression branch takes as
input a proposal bounding box, and outputs a real number es-
timating the IOU between the target and the bbox proposal.
We further augment the network so that it includes a mea-
sure of uncertainty σ: let us write IOUθ for the regression
branch of our network (where θ represents the weights of
the neural network). Our output is then two dimensional:

(y, σ) = IOUθ(B). (2)

Here, σ will be an estimate of the (aleatoric) uncertainty as-
sociated with the IOU prediction y returned by the network
IOU. To train the network based on the ground truth IOU
calculated with the labels, we use the following loss:

L(θ) =
∑
i

[
1

2
exp(−σi)‖yi − ŷi‖2 +

1

2
σi

]
. (3)

Note that this loss function does not require explicit ’labels’
for the uncertainty σ: the loss function simply directly en-
courages σ to take a high value whenever the error ‖yi−ŷi‖2
is large. Thus, trained jointly with the predictions yi and our
special loss function, σ can estimate the noise of the input
data, which will help us filter out unreliable samples from
the training set we feed to the online learning branch.

We propose the Significant Sample Selection (S3) strat-
egy to obtain high-quality representative samples.

We propose the Significant Sample Selection (S3) strat-
egy to obtain high-quality representative samples. We divide
the set of previous frames into intervals, and select a repre-
sentative frame from each interval taking into account to the
uncertainty of the output of each sample. For each interval
J , we select a representative sample by assigning a weight to
each sample based on the uncertainty computed by (2) and
then calculating the average value:

x̃ =
1∑

j∈J exp(−σj)
∑
j∈J

exp(−σj)xj , (4)

where xj is the feature representations for j ∈ J . We select
the j ∈ J which minimises the distance |xj− x̃| as a prelim-
inary choice. If the score returned by xj is above a predeter-
mined threshold, the sample is retained as the representative
sample of the interval. Otherwise, the next nearest sample is
chosen. This reduces the impact of poorly-tracked samples,
(which may involve occlusions etc.): only samples which are
known to contain high confidence information about the tar-
get can be part of the template training set. This ensures that
the template is not contaminated by poor-quality frames.

Two Effective Ways to Improve the Model
If the training data lacks diversity, a well-trained model can
generalize poorly. To further improve the generalization per-
formance of the tracker, we propose two methods:(1) aug-

3584



+ =

𝜆′* 𝑥𝑗 (1− 𝜆′)* 𝑥𝑖 𝑥

Figure 3: Visualization of the mixed-feature method.

menting the data with more diverse artificial samples,and (2)
improving the robustness of the model architecture.

Mixed-feature Method for the Training. When train-
ing the classification branch we employ a data augmentation
strategy which we refer to as the ”mixed-feature” method.
We perturb each sample frame xi by a small multiple of
another sample xj in feature space, and retain the label of
the first sample. This induces smoothness of the branch, and
improves robustness w.r.t. alterations of the feature maps.
Since CNN feature maps retain image-like appearance, one
can think of such perturbations as slightly more abstract ana-
logues of occlusions or blur (as Figure 3 illustrates).

More precisely, our method is as follows. At each itera-
tion of the SGD procedure, we randomly select two sam-
ple frames (xi, yi) and (xj , yj) in feature space. Then, we
randomly select a parameter λ from a Beta distribution
β(0.1, 0.1) (this encourages choices of λ which are close
to 0 and 1). We then form a virtual sample (x̄, ȳ) as follows:

x̄ = λxj + (1− λ)xi, (5a)
ȳ = yi1λ<0.5 + yj1λ≥0.5, (5b)

where 1 stands for the indicator function. Thus, the label
is simply set to that of yi if λ < 0.5 (i.e. x̄ is closer to
xi than xj), and to that of yj otherwise. Recall that the la-
bels cj are Gaussians centered around the presumed cen-
tre yj of the target, so equivalently, the label centres satisfy
c̄ = ci1λ<0.5 + cj1λ≥0.5. We then feed the pair (x̄, ȳ) (or
equivalently (x̄, c̄)) to the offline target classification branch.

Deformable Convolutions for the Backbone. Tradi-
tional CNNs’ fixed convolution kernel size limits their abil-
ity to model effects such as geometric deformation (Dai
et al. 2017). To improve robustness to geometric deforma-
tions, DCN (Dai et al. 2017) introduced ”deformable convo-
lutions”, which dynamically adjust the receptive field. Sim-
ilarly, inspired by DCN-V2 (Zhu et al. 2019), we replace
all 3 ∗ 3 conv layers in the layer2-layer4 stage of our back-
bone (ResNet50) by deformable convolutions. We introduce
this modification into our backbone and carry out the train-
ing with the other branches in an end-to-end fashion. Further
training details are described in the experiments Section.

S3 Mixed-feature DCN AUC Precision FPS
0.654 0.827 45

X 0.671 0.872 45
X 0.663 0.861 45

X 0.664 0.862 45
X X 0.673 0.875 45
X X 0.671 0.873 45

X X 0.669 0.870 45
X X X 0.676 0.879 45

Table 1: Ablation study of our UATracker on the UAV123
benchmark. S3 denotes our significant sample selection.
”DCN” and ”Mixed-feature” refer to the use of deformable
convolutions in the backbone and our mixed-feature data
augmentation technique respectively. The baseline perfor-
mance is reported by the state-of-the-art Dimp50 tracker.

Experiments
Implementation Details
All the experiments were carried out with Pytorch on an In-
tel i5-8600k 3.4GHz CPU and a single Nvidia GTX 1080ti
GPU with 24GB memory. The UATracker was implemented
based on the Dimp architecture (Bhat et al. 2019), by using
ResNet50 + DCNV 2 (He et al. 2016; Zhu et al. 2019) as
backbone. We choose 10 as the size of the time intervals. All
experiments reported are the average of multiple runs: VOT
is the average of 15 runs, whilst OTB, UAV123 and LaSoT
are the average of 5 runs. When the maximum score in the
response score map of the current target is less than 0.2 times
the maximum score in the first frame, we conclude that the
target may have been lost and accordingly expand the search
area to retrieve it.

Ablation Study
We verify the effectiveness of our methods and compare the
effects of all three modules proposed in this paper. Ablation
studies were performed on the UAV123 (Mueller, Smith, and
Ghanem 2016) and LaSoT (Fan et al. 2019) datasets.

Significant Sample Selection. We compare our sample
selection method with the following situations: 1. Randomly
selecting one of several samples as the updated sample. 2.
The GMM (Gaussian Mixture Model) from ECO applied to
the baseline. 3. Using the standard mean when selecting the
memory sample. 4. Directly using IoU prediction as the sam-
ple selection method. The results are shown in Table 2. Our
method clearly outperforms the other four selection methods
above. Compared with the baseline, it increased the AUC
by 1.7% (from 0.654 to 0.671). As shown in Table 1, when
combined with mixed-feature and DCN in backbone, our
method performs best by a significant margin: it increased
the AUC by 2.2% as compared with baseline. Note also that
each of the three techniques (S3, mixed-feature and DCN)
provides noticeable improvements in all combinations, with
our S3 sampling strategy providing the greatest benefits.

Mixed-feature in the Training. From the results in Ta-
ble 1, we see that the mixed-feature data augmentation in
the training has a positive effect on the results. The AUC
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RS GMM SM IOU-pre Ours
AUC 0.662 0.656 0.659 0.655 0.671
Precision 0.859 0.852 0.854 0.849 0.872

Table 2: Comparison of different sample selection methods
on the UAV123 dataset. ’RS’ refers to random selection,
whilst ’GMM’ refers to the Gaussian Mixture Model from
ECO. ’SM’ is the standard (non-weighted) mean strategy
and IOU-pre means directly using IoU prediction as the sam-
ple selection method.

Tracker EAO Accuracy Robustness
Ours 0.458 0.614 0.159
Dimp50 0.440 0.597 0.153
SiamRPN++ 0.414 0.600 0.234
ATOM 0.401 0.590 0.204
SiamMask 0.380 0.609 0.276
LADCF 0.389 0.503 0.159
MFT 0.385 0.505 0.140
DaSiamRPN 0.383 0.544 0.276
UPDT 0.378 0.536 0.184
RCO 0.376 0.507 0.155

Table 3: Performance comparison on VOT-2018.

score when it works alone is from 0.654 to 0.663. The best
result is when it works in combination with S3 and DCN.

DCN in the Backbone. From Table 1, we see that adding
DCNs into the backbone has a positive effect. This alone
bumps up the AUC from 0.654 to 0.664, but works best in
combination with the S3 and mixed-feature strategies.

Analysis of Occlusion and Blurring. We choose videos
with obvious occlusion and blur properties from the OTB
dataset (Wu, Lim, and Yang 2015), and calculate the mean
of the average overlap rate obtained in each video. As shown
in Fig. 4, our tracker’s performance on these videos is sig-
nificantly better than the baseline(Dimp50), which further
proves the effectiveness of our method at managing situ-
ations involving occlusion or blur. In particular, for some
videos, the low overlap score exhibited by the baseline
means that the target may be lost, whilst our tracker still
performs well. This implies that our tracker is demonstrably
less likely to lose the target due to temporary occlusions or
blur.

Effectiveness of S3 in Different Trackers. We further
verified the role of the S3 modules on different trackers in-
cluding ECO (Danelljan et al. 2017), ATOM (Danelljan et al.
2019), Dimp50 (Bhat et al. 2019) and UpdateNet (Zhang
et al. 2019a). We applied the S3 module on the basis of
GMM. S3 is directly applied to ECO instead of replacing the
original sample selection strategy. Our conclusion is that the
introduction of this sample update strategy is clearly effec-
tive, not just on the Dimp50 tracker but on all other track-
ers we tried. The experiments were conducted on the La-
SOT testing dataset. Table 4 shows the statistical results of
different trackers with and without their S3 update module.
Especially, when only the S3 module is used, the OTB per-

Iro
nm

an
Sk
at
in
g1

Ca
rD
ar
k

Fi
sh

Bo
ar
d

Ti
ge
r2

Ti
ge
r1

Fo
ot
ba
ll1

W
al
ki
ng
2

W
al
ki
ng Su
v

Li
qu
or

Fa
ce
Oc
c1

Fa
ce
Oc
c2

Bi
rd
2

Bl
ur
Ca
r1

Cl
ifB
ar

Gi
rl2

Hu
m
an
3

Hu
m
an
4-
2

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 O
ve

rl
ap

(I
O

U
)

baseline
Ours

Figure 4: Comparison of the average overlap rate of our
method and the baseline(Dimp50) in videos featuring occlu-
sion or blur in the OTB dataset.

Tracker Success Rate Normalized Precision
ECO 0.324 0.338

ECO+S3 0.391 0.493
UpdateNet 0.475 0.560

UpdateNet+S3 0.490 0.583
ATOM 0.515 0.576

ATOM+S3 0.532 0.612
Dimp50 0.569 0.643

Dimp50+S3 0.584 0.667

Table 4: Effectiveness of our S3 for different trackers.

formance is 0.701 (Dimp: 0.684).

State-of-the-art Comparison
OTB Dataset. The object tracking benchmark
(OTB100) (Wu, Lim, and Yang 2015) consist of 100
fully annotated videos. All OTB sequences are manually
tagged with one or more of 11 typical tracking interference
properties making tracking more challenging. Two evalu-
ation metrics of success rate and precision are included.
Trackers were ranked using the area under the curve (AUC)
for each success plot. We use the success rate and precision
plot in the one-pass evaluation (OPE) as the evaluation
metrics for the results reported in the paper.

We compared the UATracker on OTB100 and the subset
of this dataset consisting of videos tagged as featuring occlu-
sions with state-of-the-art trackers including Dimp50 (Bhat
et al. 2019), ATOM (Danelljan et al. 2019) and DaSi-
amRPN (Zhu et al. 2018), ECO-HC (Danelljan et al. 2017),
SiamRPN (Li et al. 2018), SRDCF (Danelljan et al. 2015),
Staple (Bertinetto et al. 2016a), CF2 (Valmadre et al. 2017)
and CNN-SVM (Hong et al. 2015). Fig. 5 shows that our
tracker achieves the best performance as measured by the
AUC score. Our UATracker further improves the results
with an AUC score of 70.9%. Specifically, compared with
Dimp50, UATracker improved the AUC score by 2.5%, and
increased the AUC score by 5.2% in the occlusion attribute.

LaSOT Testing Set. LaSOT (Fan et al. 2019) is a long-
term tracking dataset, composed of 1400 video sequences,
each with an average of 2512 frames. The shortest and
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Figure 5: Success plot on the OTB100 dataset benchmark.
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Figure 6: EAO ranking of the tested trackers on VOT2018.

longest videos have 1000 and 11397 frames respectively.
They are divided into 70 categories, and each category con-
tains twenty video sequences. Each video sequence presents
different challenges. As shown in Fig. 7, we compare the
UATracker with state-of-the-art trackers including Dimp50,
Dimp18, ATOM, SiamRPN++ (Li et al. 2019), VITA (Song
et al. 2018), SiamFC, ECO, ECO-HC and CFNet. Our
tracker obtains the best AUC score: 0.590. Compared to
Dimp50, the UATracker improves the normalized precision
and AUC scores by 2.5% and 3.7%, respectively.

UAV123 Dataset.The UAV123 dataset (Mueller, Smith,
and Ghanem 2016) contains a total of 123 video se-
quences and more than 110K frames. Data sets can be eas-
ily integrated with visual tracker benchmarks. It includes
all bounding boxes and attribute annotations of the UAV
dataset. As shown in Fig. 8, we compare the UATracker
with state-of-the-art trackers including Dimp50, Dimp18,
ATOM, SiamRPN++, DaSiamRPN, SiamRPN, ECO, ECO-
HC and SRDCF. Specifically, compared to Dimp50, our UA-
Tracker improved the AUC score by 2.2%, and increased the
AUC score by 2.4% in the occlusion category.

Experiments on the VOT2018 Dataset. In the visual ob-
ject tracking (VOT) benchmark, we choose VOT2018 (Kris-
tan et al. 2018) to evaluate our tracker. VOT2018 includes
60 public sequences with different challenging factors. The
VOT benchmark evaluates trackers by using a reset-based
approach. When the tracker does not overlap with the ground
truth, the tracker is reinitialized after five frames. Trackers
are evaluated by expected average overlap (EAO), which is
the inner product of empirically estimated average overlap
and typical sequence length distribution. In addition, accu-
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Figure 8: Success plot on the UAV123 benchmark.

racy (A) and robustness (R) are reported.
We compare our UATracker with the 9 state-of-the-art

trackers on VOT-2018 in Fig. 6. Table 3 reports the de-
tails of the comparison with Dimp50 (Bhat et al. 2019),
SiamRPN++ (Li et al. 2019), ATOM (Danelljan et al.
2019), LADCF (Xu et al. 2018), MFT (Kristan et al. 2018),
SiamMask (Wang et al. 2019), DaSiamRPN (Zhu et al.
2018), UPDT (Bhat et al. 2018) and RCO (Kristan et al.
2018). Our UATracker achieves the best accuracy and EAO.
Our EAO score of 0.458 is significantly better than Dimp50,
SiamRPN++ and other state-of-the-art trackers. In particu-
lar, our tracker outperforms the state-of-the-art Dimp50 by
1.8%, SiamRPN++ by 4.4% and ATOM by 5.7%, significant
margins for object tracking on this challenging benchmark.

Conclusion
In this paper, we proposed the significant sample selection
(S3) approach, which incorporates uncertainty estimation
into the tracking framework and later relies on it to select
more representative frame samples as a training set for the
classifier branch of the network. This strategy better filters
out noisy samples and makes the tracker demonstrably more
robust. Moreover, we introduced two further improvements
including a novel data augmentation procedure to increase
robustness, and all our improvements fit together in one
model, which we refer to as the UATracker and is trainable in
a joint and end-to-end fashion. Experiments on the OTB100,
LaSOT, UAV123 and VOT2018 benchmarks demonstrate
that the proposed tracker improves object tracking perfor-
mance, with striking contrast with the state-of-the-arts.
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