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Abstract

Lane detection is one of the most important tasks in self-
driving. Due to various complex scenarios (e.g., severe oc-
clusion, ambiguous lanes, etc.) and the sparse supervisory
signals inherent in lane annotations, lane detection task is
still challenging. Thus, it is difficult for the ordinary convo-
lutional neural network (CNN) to train in general scenes to
catch subtle lane feature from the raw image. In this paper,
we present a novel module named REcurrent Feature-Shift
Aggregator (RESA) to enrich lane feature after preliminary
feature extraction with an ordinary CNN. RESA takes advan-
tage of strong shape priors of lanes and captures spatial rela-
tionships of pixels across rows and columns. It shifts sliced
feature map recurrently in vertical and horizontal directions
and enables each pixel to gather global information. RESA
can conjecture lanes accurately in challenging scenarios with
weak appearance clues by aggregating sliced feature map.
Moreover, we propose a Bilateral Up-Sampling Decoder that
combines coarse-grained and fine-detailed features in the up-
sampling stage. It can recover the low-resolution feature map
into pixel-wise prediction meticulously. Our method achieves
state-of-the-art results on two popular lane detection bench-
marks (CULane and Tusimple). Code has been made avail-
able at: https://github.com/ZJULearning/resa.

Introduction
Lane detection is an essential task in the computer vi-
sion community. It could serve as significant cues for au-
tonomous driving and Advanced Driver Assistance Sys-
tem (ADAS) (bar hillel et al. 2014) to keep a car from stay-
ing beyond lane markings. Detecting lanes in-the-wild is
challenging due to severe occlusion caused by other vehi-
cles, bad weather conditions, ambiguous pavement, and the
inherent long and thin property of the lane itself.

Modern algorithms (Chen and Chen 2017), (Bergasa et al.
2018), (Chen, Liu, and Lian 2019) typically adopt a pixel-
wise prediction formulation, i.e., treat lane detection as a se-
mantic segmentation problem, where each pixel in an image
is assigned with a binary label to indicate whether it belongs
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Figure 1: Feature aggregation illustration. (a) Com-
parison between CNN semantic segmentation and our
method (RESA). The segmentation method with ordinary
CNN suffers from bad performance due to severe occlusion.
(b) Illustration of feature aggregation. Spatial lane feature
can be enriched, owing to horizontal and vertical feature ag-
gregation in a layer. Thus, RESA can infer lanes even if
they are occluded. We add different strides to gather fea-
tures within different distances, which relieves information
loss problem during long-distance propagation.

to a lane. These methods solve the problem with an encoder-
decoder framework. They first apply a CNN as the encoder
to extract high semantic information into a feature map, then
use an up-sampling decoder to recover the feature map to
its original size and finally perform a pixel-wise prediction.
Due to the thin and long property of lanes, the number of
annotated lane pixels is far fewer than background pixels.
These methods often struggle to extract subtle lane feature
and may ignore the strong shape prior or high relevance be-
tween lanes, yielding inferior detection performance. The
more challenging case is that the lane may be almost en-
tirely occluded by crowded cars, and we can only conjecture
the lane with common sense. Therefore, low-quality fea-
ture extracted by ordinary CNN tends to drop subtle lane
features. Several methods try to pass spatial information
within feature maps, e.g., SCNN (Pan et al. 2018). SCNN
typically proposes a spatial convolution to pass informa-
tion between adjacent rows or columns within feature map.
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Nevertheless, the sequential information passing operation
is time-consuming, which leads to a slow inference speed.
Meanwhile, passing information between adjacent rows or
columns sequentially takes many iterations, and information
may be lost during long-distance propagation.

In this paper, we develop a REcurrent Feature-Shift Ag-
gregator (RESA) to gather information within feature maps
and pass spatial information more directly and efficiently.
As shown in Fig. 1 RESA can aggregate information ver-
tically and horizontally by shifting the sliced feature map
recurrently. RESA will first slice the feature map in vertical
and horizontal directions, then make each sliced feature re-
ceive another sliced feature adjacent to a certain stride. Each
pixel is updated simultaneously in several steps, and finally
each location can gather information in the whole space. In
this way, the information could be propagated between pix-
els in the feature map. RESA has three main advantages: 1)
RESA passes information in a parallel way, thus reducing
time cost significantly. 2) Information will be passed with
different strides in RESA. Thus different sliced feature maps
can be gathered without information loss during propaga-
tion. 3) RESA is simple and flexible to be incorporated into
other networks.

Then we propose the Bilateral Up-Sampling De-
coder (BUSD). BUSD has two branches. One is to catch
the coarse-grained feature, and the other is to capture the
fine-detailed feature. The coarse branch applies the bilin-
ear up-sample directly and produces a blurry image. In con-
trast, the detailed branch implements up-sample with a trans-
pose convolution and is followed by two non-bottleneck
blocks (Romera et al. 2017) to fix fine-detailed loss. Com-
bined with two branches, our decoder can recover the low-
resolution feature map into pixel-wise prediction meticu-
lously.

We evaluate our method on two popular lane detec-
tion benchmarks, i.e., CULane and Tusimple. Qualitatively,
RESA could well preserve the smoothness and continuity
of lane detection, as shown in Fig. 1. Furthermore, The ex-
periment results show that RESA achieves state-of-the-art
accuracy (75.3 F1-measure on CULane and 96.8% accuracy
on Tusimple).

The main contributions can be summarized as follow:
• We propose RESA to aggregate spatial information by

shifting sliced feature map recurrently in vertical and hor-
izontal directions. RESA can be easily incorporated into
other networks for better performance.

• The Bilateral Up-Sampling Decoder is further proposed
to recover low-resolution feature map meticulously.

• The network achieves state-of-the-art performance on
CULane and Tusimple benchmark. It can serve as a strong
baseline to facilitate future research on lane detection.

Related Work
Lane Detection
Lane detection methods can be classified into two classes:
traditional methods and deep learning-based methods. Tra-
ditional methods try to exploit hand-crafted low-level fea-
ture or specialized feature. Sun, Tsai, and Chan (2006) tries

to detect lanes in HSI color representation and Yu and Jain
(1997) extracts lane boundaries via Hough Transform. These
methods require a complex feature selection process and
have the weakness of poor scalability due to road scene vari-
ations. Recently, deep learning methods have shown superi-
ority in lane detection with the high capacity to learn lane
features in the end-to-end manner. Huval et al. (2015) are
the first to apply the deep learning method in lane detection
with CNN. Neven et al. (2018) propose to cast the lane de-
tection problem as an instance segmentation problem. Phil-
ion (2019) integrates the lane decoding step into the network
and draws lanes iteratively without the recurrent neural net-
work. Self-attention distillation (SAD) is proposed to allow
a model to learn from itself and gains substantial improve-
ment without any additional supervision or labels (Hou et al.
2019).

Spatial Information Utilization
There have been some other attempts to utilize spatial in-
formation in neural networks. ION (Bell et al. 2016) ex-
plores the use of spatial Recurrent Neural Networks (RNNs).
These RNNs pass spatially varying contextual information
both horizontally and vertically across an image. Liang et al.
(2016) constructs Graph LSTM to provide information prop-
agation route for semantic object parsing. SCNN (Pan et al.
2018) proposes to generalize traditional layer-by-layer con-
volutions to slice-by-slice convolutions within feature maps,
thus enabling message passing between pixels across rows
and columns in the same layer. SCNN propagates message
as residual and makes it easier to train than previous work,
but still suffers from expensive computation and information
loss during long-distance propagation. RESA is much more
computationally efficient than SCNN while gathering infor-
mation from sliced features with different strides to avoid
information loss.

Method
This section will demonstrate the details of our designed
model, including the overall network architecture, RESA,
and Bilateral Up-Sampling Decoder.

To take advantage of the strong shape priors of lanes
and captures spatial relationships of pixels across rows
and columns, we propose a novel RESA module to gather
information and enrich the feature map. After inserting
RESA into the encoder-decoder framework, our model
is constructed with three components: encoder, aggrega-
tor, and decoder. We select commonly used backbone like
ResNet (He et al. 2016), VGG (Simonyan and Zisserman
2015), etc as our encoder to extract preliminary feature
from raw image. Then RESA module is applied to aggre-
gate lane feature and get rich feature map. A novel Bilateral
Up-Sampling Decoder with coarse-grained branch and fine-
detailed branch is proposed to recover lanes smoothly and
continuously.

Architecture Design
The overall network architecture is shown in Fig. 2(a). The
framework is composed of three components:
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Figure 2: Architecture Design. (a) Overall architecture of our model, which is composed by encoder, RESA and decoder.
‘Dk’, ‘Uk’, ‘Lk’, ‘Rk’ denotes “up-to-down”, “down-to-up”, “right-to-left”, and “left-to-right” respectively at k-th iteration
in RESA. (b) RESA U module. In this module, information propagates ”down-to-up” with different strides recurrently and
simultaneously. (c) RESA R module. In this module, information propagates “left-to-right” with different strides recurrently
and simultaneously.

1. Encoder: A commonly used backbone network like VGG,
ResNet, and etc, is applied as a feature extractor. The size
of the raw input image is reduced to 1/8 after passing the
encoder. The preliminary feature will be extracted in this
stage.

2. RESA: REcurrent Feature Shift Aggregator (RESA) is
proposed for gathering spatial feature. In every iteration,
the sliced feature map will shift recurrently in 4 directions
and pass information vertically and horizontally. Finally,
RESA needs K iterations to ensure that each location can
receive information in the whole feature map.

3. Decoder: Decoder consists of bilateral up-sampling
blocks. Each block up-samples two times and finally re-
cover the 1/8 feature map to the original size. Bilateral
Up-Sampling Decoder is composed of the coarse-grained
branch and fine-detailed branch.
After up-sampled by the decoder, the output feature map

is used to predict each lane’s existence and probability dis-
tribution. A fully-connected layer is followed for existence
prediction, and the binary classification will be performed. A
pixel-wise prediction will be conducted for lanes probabil-
ity distribution prediction, which is the same as the semantic
segmentation task.

Recurrent Feature-Shift Aggregator
We propose REcurrent Feature-Shift Aggregator (RESA) to
gather spatial information by shifting the sliced feature map
horizontally and vertically. Specifically, assume we have a
3-D feature map tensor X of size C ×H ×W , where C, H ,
and W denote the number of channels, rows, and columns,

respectively. Xk
c,i,j means the value of feature map X at k-

th iteration where c, i and j indicate indexes of channel, row
and column, respectively. Then the forward computation of
RESA is defined as follow:

Zk
c,i,j =

∑
m,n

Fm,c,n ·Xk
m,(i+sk) mod H,j+n−1, (1)

Zk
c,i,j =

∑
m,n

Fm,c,n ·Xk
m,i+n−1,(j+sk) mod W , (2)

Xk′

c,i,j = Xk
c,i,j + f(Zk

c,i,j), (3)

sk =
L

2K−k
, k = 0, 1, · · · ,K − 1, (4)

where K = blog2Lc, k is the iteration number. L in Eq. (1)
and Eq. (2) is W and H , respectively. f is a nonlinear acti-
vation function as ReLU. The X with superscript ′ denotes
the element that has been updated. sk is the shift stride in k-
th iteration. Eq. (1) and Eq. (2) show vertical and horizontal
information passing formulas. F is a group of 1-d convo-
lution kernel, which size is Nin × Nout × w, where Nin,
Nout and w denote the number of input channels, the num-
ber of output channels and kernel width. Both Nin and Nout

are equal to C. Z in Eq. (1) and Eq. (2) is intermediate re-
sults for information passing. Note that feature map X is split
into H slices in the horizontal direction and W slices in the
vertical direction as shown in Fig 2(b) and Fig. 2(c). We im-
plement recurrent feature-shift information passing simply
by index calculation with no other complicated operations.
Shift stride sk is controlled by iteration number k, which
determines the information passing distance dynamically.

3549



W s1 = 1

s2 = 2

X0 X1 X2 X3 X4 ... Xw2 Xw1X0 X1 X2 X3 X4 ... Xw2 Xw1HH

Figure 3: Information passing in RESA when s1 = 1 and
s2 = 2. X0 can receive information from X0,X1,X2 and
X3 only in two iterations.

Also, note that the information passing has four direc-
tions. We use “down-to-up” (shown in Fig. 2(b) RESA U),
“up-to-down” as vertical information aggregator and “left-
to-right” (Fig. 2(c) RESA R), “right-to-left” as horizontal
information aggregator. The convolution layer weights with
the same shift stride are shared across all slices in the same
direction.

We take “right-to-left” information passing as a demon-
stration, and the detail is shown in Fig. 3. At k = 0 iteration,
s1 = 1 and Xi in each column can receive Xi+1 shifted
feature. Because of recurrently shifting, columns at tail can
also receive feature on the other side, i.e., Xw−1 can receive
X0 shifted feature. At k = 1 iteration, s2 = 2 and Xi in
each column can receive Xi+2 shifted feature. Take X0 as
an example, X0 can receive X2 information in the second
iteration, considering X0 has received information from X1

while X2 has received information from X3 in the previ-
ous iteration, now X0 has received information from X0,
X1, X2, and X3 in total only in two iterations. The next it-
erations are similar to the above procedure. After the all K
iterations, each Xi can aggregate information in the whole
feature map when iteration k = K finally.

Analysis. RESA applies feature-shift operation recur-
rently in 4 directions and enables every location to perceive
and aggregate all spatial information in the same feature
map. Lane detection is a task that highly relies on surround-
ing clues. For example, a lane is occluded by several cars,
but we can still inference it from other lanes, car direction,
road shape, or other visual clues. RESA aggregates feature
from other locations to enrich the feature map and helps
model to conjecture lanes like humans. The novel and pow-
erful RESA module mainly has three advantages, which are
concluded as follows:

1. Computationally efficient. Traditional information pass-
ing methods like Markov Random Field (MRF) or Con-
ditional Random Field (CRF) (Krähenbühl and Koltun
2011), where each pixel receives all other pixel informa-
tion in a fully connected way, always suffer from its in-
tensive and redundant computation. Some methods like
SCNN (Pan et al. 2018) implement a more effective in-
formation passing scheme, i.e., slice-by-slice convolution.
However, this RNN-like way still consumes much time
as the complexity is increased linearly with the spatial

size grows, and the sequential propagation cannot fully
utilize computation resources. RESA’s complexity is re-
lated to spatial size at a log level, and all locations are
updated in a parallel way at every iteration. Each location
can aggregate information from in the whole feature map
in blog2Lc iteration.

2. Feature information gathered effectively. The sliced fea-
ture information will not only be passed to adjacent slice
but also be passed to sliced feature map with different
strides, i.e., sk = 1, 2, 4, 8, · · · . Therefore, each pixel
can gather information from the sliced feature map with-
out information loss during propagation. As shown in
Fig. 5, RESA can get better performance than SCNN
since SCNN only passes feature information to adjacent
and loses information during propagation.

3. Easy to be plugged into other networks. Without bells and
whistles, the structure is quite concise. Firstly, the imple-
mentation of RESA is simple, which only needs index
operation in the feature map. Secondly, RESA doesn’t
change the shape of the input feature map, which can
be treated as a feature enhancement module. An ideal
place is after a feature extraction CNN like VGG (Si-
monyan and Zisserman 2014), ResNet (He et al. 2016),
MobileNet (Howard et al. 2017), and etc. Finally, the
computational time of RESA can be almost ignored. To
sum up, RESA can be plugged into other CNN networks
flexibly. Since RESA is powerful in feature aggregation,
scene understanding, and object detection with distinct
geometry prior are suitable application scenarios.

Bilateral Up-Sampling Decoder
The main task of the decoder is up-sampling the feature
map to the input resolution. Most decoders utilize the bi-
linear upsampling procedure to recover the final pixel-wise
prediction, which is easy to obtain coarse results but may
lose details. Some methods (Romera et al. 2017) use stack-
ing convolutional operations and deconvolutional operations
to get refined upsampling results. For the motivation above,
we combine their advantages and propose Bilateral Up-
Sampling Decoder (BUSD). The decoder is composed of
two branches, one is to recover the coarse-grained feature,
and the other is to fix fine-detailed loss. The structure is
illustrated in Fig. 4. Input will pass two branches, and 2x
up-sampled output with half number of channel will be pro-
duced. After passing these stacked decoder blocks, the 1/8
feature map produced by RESA will be recovered to the
same size as the input image.

Coarse Grained Branch. The coarse-grained branch will
output a rough up-sampled feature from the last layer
quickly, which may ignore details. A simple and shallow
path is designed. We first apply 1× 1 convolution to reduce
the number of channel by a factor 2 of the input feature map,
and a BN (Ioffe and Szegedy 2015) is followed. A bilinear
interpolation is used directly to up-sample the input feature
map. At last, the ReLU is performed.

Fine Detailed branch. The fine-detailed branch is used
to fine-tune subtle information loss from the coarse-grained
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Dataset #Frame Train Validation Test Resolution Scenario Type #Lane
TuSimple 6,408 3,236 358 2,782 1280 × 720 highway ≤ 5
CULane 133,235 88,880 9,675 34,680 1640 × 590 urban, rural and highway ≤ 4

Table 1: Datasets description.

Input

Conv1x1

Bilinear
interpolate

Transpose
Conv

Non bottleneck

Non bottleneck

Output

Coarse grained branch Fine datailed branch

ReLU

ReLU

Figure 4: Bilateral Up-Sampling Decoder. Decoder up-
samples feature map to 2x size. It is composed by coarse
grained branch (left) and fine detailed branch (right). Coarse
grained branch is used to get a rough up-sampled feature
quickly and ignore much detail. Fine detailed branch is used
to fine-tune subtle information loss.

branch, and the path is deeper than the other. We use trans-
pose convolution with stride 2 to up-sample feature map and
reduce the number of channel by a factor 2 simultaneously.
ReLU is followed the up-sampling as the similar design used
in the coarse-grained branch. Non-bottleneck block (Romera
et al. 2017) consists of four 3×1 and 1×3convolutions with
BN and ReLU, which can keep the shape of the feature map
and extract information efficiently in a factorized way. We
stack two non-bottleneck after the up-sampling operation.

Experiment
Dataset
We conduct experiments on two widely used lane detection
benchmark datasets: CULane dataset (Pan et al. 2018) and
Tusimple Lane detection benchmark1. The CULane dataset
consists of 55 hours of videos which comprises urban and
highway scenarios. It consists of nine different scenarios,
including normal, crowd, curve, dazzle night, night, no line,
and arrow in the urban area. Tusimple dataset is collected
with stable lighting conditions in highways. The details of
datasets are showed in Table 1.

CULane. For CULane dataset, each lane is treated as a
30-pixel-width line. Intersection-over-union (IoU) is calcu-
lated between predictions and ground truth. Predicted lanes
whose IoU are larger than a threshold (0.5) are considered

1https://github.com/TuSimple/tusimple-benchmark/

as true positives (TP). The F1-measure is taken as the evalu-
ation metric, which is defined as: F1 = 2×Precision×Recall

Precision+Recall ,
where Precision = TP

TP+FP and Recall = TP
TP+FN , FP

and FN is false positive and false negative respectively.

Tusimple. For Tusimple dataset, the evaluation metric is
accuracy. It is defined as follow: accuracy =

∑
clip Cclip∑
clip Sclip

.
in which Cclip is the number of lane points predicted cor-
rectly (mismatch distance between prediction and ground
truth is within a certain range) and Sclip is the total number
of ground truth points in each clip. We also evaluate the rate
of false positive (FP) and false negative (FN) on prediction
results.

Following (Hou et al. 2019), we first resize the origi-
nal images to 288 × 800 for CULane and 368 × 640 for
Tusimple, respectively. We use SGD (Bottou 2010) with
momentum 0.9 and weight decay 1e-4 as the optimizer to
train our model, and the learning rate is set 2.5e-2 for CU-
Lane and 2.0e-2 for Tusimple, respectively. We use warm-
up (Doll, Girshick, and Noordhuis 2017) strategy in the first
500 batches and then apply polynomial learning rate decay
policy (Mishra and Sarawadekar 2019) with power set to 0.9.

The loss function is the same as SCNN (Pan et al. 2018),
which consists of segmentation BCE loss and existence clas-
sification CE loss. Considering the imbalanced label be-
tween background and lane markings, the segmentation loss
of background is multiplied by 0.4. The batch size is set 8
for CULane and 4 for Tusimple, respectively. The total num-
ber of training epoch is set 50 for the TuSimple dataset and
12 for the CULane dataset. All models are trained with 4
NVIDIA 2080Ti GPUs (11G Memory) in Ubuntu. All ex-
periments are implemented with Pytorch1.1.

In our experiments, we use ResNet (He et al. 2016)
and VGG (Simonyan and Zisserman 2014) as backbone. In
ResNet, we add an extra 1×1 convolution to reduce the out-
put channel to 128. The modification of VGG is the same as
SCNN.

Main Results
We show the results of our method on two lane detec-
tion benchmark datasets and compare it with other pop-
ular lane detection methods. For CULane dataset, several
popular lane detection methods, including ResNet50 (Chen
et al. 2017), Res34-VP (Liu, Zeng, and Meng 2020), SCNN,
Res34-SAD (Hou et al. 2019), Res34-Ultra (Qin, Wang,
and Li 2020), PINet (Ko et al. 2020), CurveLane (Xu et al.
2020) are used for comparison. Our RESA adopts ResNet-
50 as the backbone, which is marked as RESA-50. The
result is shown in Table 2. Through the overall design,
RESA outperforms all baselines in the CULane dataset and
achieves state-of-the-art result. Meanwhile, RESA-50 can
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Category Res50 Res34-VP SCNN Res34-SAD Res34-Ulrta PINet CurveLane-L RESA-34 RESA-50
Normal 87.4 90.4 90.6 89.9 90.7 90.3 90.7 91.9 92.1

Crowded 64.1 69.2 69.7 68.5 70.2 72.3 72.3 72.4 73.1
Night 60.6 63.8 66.1 64.6 66.7 67.7 68.2 69.8 69.9

No line 38.1 43.1 43.4 42.2 44.4 49.8 49.4 46.3 47.7
Shadow 60.7 62.5 66.9 67.7 69.3 68.4 70.1 72.0 72.8
Arrow 79.0 83.5 84.1 83.8 85.7 83.7 85.8 88.1 88.3

Dazzle light 54.1 61.4 58.5 59.9 59.5 66.3 67.7 66.5 69.2
Curve 59.8 64.7 64.4 66.0 69.5 65.6 68.4 68.6 70.3

Crossroad 2505 2141 1990 1960 2037 1427 1746 1896 1503
Total 66.7 70.9 71.6 70.7 72.3 74.4 74.8 74.5 75.3

Runtime (ms) - 26 116 <51 6 40 - 22 28

Table 2: Comparison with state-of-the-art results on CULane dataset with IoU threshold = 0.5. For crossroad, only FP are
shown. Res50 indicates deeplab (Chen et al. 2017) using resnet50 as backbone.

achieve 36fps, which denotes our method is efficient in com-
putation and can be used in real-time applications. More-
over, it is observed that our method obtains superior per-
formance in almost all scenarios, which strongly suggests
the effectiveness and the generality of RESA.For Tusimple
lane detection benchmark, six methods are used for com-
parison, including ResNet18, ResNet34, ENet (Paszke et al.
2016), LaneNet (Wang, Ren, and Qiu 2018), ENet-SAD,
and SCNN. We use ResNet-18/34 as the backbone, and
they are marked as RESA-18/34. The result is shown in Ta-
ble 3. RESA-34 achieves 96.82% accuracy, which also out-
performs the state-of-the-art. We also analyze FP and FN
for each method. It is noteworthy that the FP of RESA is
far below other algorithms, which means that RESA gains
higher precision on the lane detection task and contributes
to achieving higher accuracy.

To further explain the effectiveness of our method, we
show the qualitative results of our algorithm and others in
the CULane dataset. As Fig. 5 shows, segmentation methods
cannot preserve lane markings’ smoothness and continuity
due to severe occlusion. In contrast, SCNN could partially
address the problem by passing spatial information and im-
prove the performance, but the result is still unsatisfying. It
can be observed that the predictions of SCNN become im-
precise at the bottom of the image, where can only be in-
ferred by the surrounding feature. It indicates that informa-
tion may be lost in SCNN during long-distance propagation.
Among these methods, RESA could capture the spatial re-
lationship of the pixel across rows and columns and aggre-
gate information from the sliced feature map with different
strides. Therefore, the results of RESA are more robust and
contain less noise. This demonstrates that RESA owns much
stronger capability to capture structural prior objects than
traditional segmentation modules and SCNN.

Ablation Study

In the Method section, we discuss Recurrent Feature-
Shift Aggretator (RESA) and Bilateral Up-Sampling De-
coder (BUSD) and analyze the advantages of each mod-
ule, respectively. To verify the importance of each proposed
component, we make detailed ablation studies in this sec-
tion.

Network Accuracy FP FN
ResNet-18 92.69% 0.0948 0.0822
ResNet-34 92.84% 0.0918 0.0796

ENet 93.02% 0.0886 0.0734
LaneNet 93.38% 0.0780 0.0224

ENet-SAD 96.64% 0.0602 0.0205
SCNN 96.53% 0.0617 0.0180

RESA-18 (ours) 96.70% 0.0395 0.0283
RESA-34 (ours) 96.82% 0.0363 0.0248

Table 3: Comparison with state-of-the-art results on Tusim-
ple dataset. ResNet-18/34 indicates deeplab (Chen et al.
2017) using resnet18 and resnet34 as backbone.

raw 

image

label

Seg

SCNN

RESA

Figure 5: Examples results from CULane dataset with seg-
mentation method, SCNN, and RESA.

Effect of Each Component. We first investigated the ef-
fectiveness of the Bilateral Up-Sampling Decoder module
and RESA module. For the baseline, we select ResNet-34 as
the backbone. After being extracted from the backbone, the
feature map is up-sampled 8x directly using bilinear interpo-
lation as SCNN does. The output is used as regression and
finally gets the probability distribution of each lane.

To make comparison, we replace bilinear interpolation
with Bilateral Up-Sampling Decoder and then insert RESA
between backbone and decoder step by step. We summarize
the performance of each module in Table 4. As we can see,
both modules can strongly improve lane detection perfor-
mance, which proves the capabilities of proposed modules.

Effectiveness of Feature Aggregation. In this section, we
investigate the effect of the direction in RESA. As we add
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Baseline BUSD RESA F1

X 65.1
X 68.6 (+3.5)

X 74.3 (+9.2)
X X 74.5 (+9.4)

Table 4: Experiments of the proposed modules on CULane
dataset with ResNet-34 backbone. Baseline stands for 8x up-
sampling directly after backbone.

more directions in RESA, we can get higher F1-measure.
The result is shown in Table. 5. Furthermore, we study the
feature aggregation method in Eq. 3. We replace the addi-
tion operator by maximum operator. The result shows that
the maximum operator has similar performance as addition
operator.

Method Precision Recall F1-measure
RESA U 74.2 70.6 72.4

RESA UR 75.1 72.3 73.7
RESA LRDU 76.7 72.3 74.4
RESA DULR 76.1 72.9 74.5
RESA DULR† 76.0 72.8 74.4

Table 5: Effectiveness of feature aggregation of RESA on
CULane dataset with ResNet-34 backbone. † means maxi-
mum feature aggregation method.

Iteration In RESA. In this section, we explore the ef-
fect of different iterations in RESA. Theoretically, as the it-
eration increases, each slice of feature map can aggregate
more information, which contributes to obtain better per-
formance. To illustrate more iterations can bring up better
performance, we make comparison between different iter-
ations, i.e., iteration = 1, · · · , 5. As shown in Table 6,
the performance will be better as the iteration increases.
However, more iterations lead to more computational time
cost. It is a trade-off between performance and computa-
tional resources. To strike a balance between them, we select
iteration = 4 as our final choice.

Iter Precision Recall F1-measure
1 74.7 71.7 73.2
2 74.4 72.4 73.4
3 74.8 72.5 73.6
4 76.1 72.9 74.5
5 76.9 72.1 74.5

Table 6: The performance of the model by using different
iterations on CULane dataset with ResNet-34 backbone.

Compare RESA with SCNN. SCNN (Pan et al. 2018) has
shown message passing scheme could improve the lane de-
tection performance but extra more parameters could merely
bring about little improvement. Thus, we compare the RESA
with SCNN to verify the effectiveness of our method. We
try to add RESA and SCNN with different backbones (e.g.
ResNet, VGG). We conduct experiment to compare the per-
formance with SCNN. The experiment results are shown in

Table 7. The result shows that RESA outperforms SCNN
and brings significant improvement.

Method Precision Recall F1-measure
VGG16 62.2 60.3 61.2

VGG16 + SCNN 72.4 72.1 72.3
VGG16 + RESA 74.1 72.5 73.3

ResNet34 66.2 64.2 65.1
ResNet34 + SCNN 73.9 71.5 72.7
ResNet34 + RESA 76.1 72.9 74.5

Table 7: The comparison between SCNN and RESA trained
using VGG16 and ResNet34 as backbone.

Computational Efficiency. We also conduct experiment
to compare the running time of our method with LSTM,
SCNN. The running time of these methods are recorded with
the average time for 1000 runs. We use different convolution
kernel widths (7, 9, 11) to compare the efficiency. SCNN
propagates information in a sequential way, i.e., a slice does
not pass information to the next slice until it has received
information from previous slice. Thus, this kind of message
passing requires much computational cost due to sequential
computing. In contrast, our RESA passes information in a
parallel way. As shown in Table 8, RESA is around 10 times
faster than SCNN with the same kernel width, which makes
it promising to apply our method to real-time applications.

Method LSTM SCNN RESA
Kernel width - 7 9 11 7 9 11
Runtime (ms) 108.0 43.5 44.0 44.6 3.8 4.0 4.4

Table 8: Runtime of LSTM, SCNN, and RESA. The iteration
in RESA is 4.

Conclusion
In this paper, we propose two components tailored for lane
detection: Recurrent Feature-Shift Aggretator (RESA) and
Bilateral Up-Sampling Decoder (BUSD). RESA takes the
advantage of strong shape priors of lanes and captures spa-
tial relationships of pixels across rows and columns. It shifts
sliced feature map recurrently in vertical and horizontal di-
rections and enables each pixel to gather global informa-
tion. Besides, it can be plugged into other networks eas-
ily. The Bilateral Up-Sampling Decoder is proposed to com-
bine coarse grained feature and fine detailed feature in up-
sampling stage. Our method is evaluated on two popular lane
detection benchmark datasets, i.e., Tusimple and CULane
and achieves the state-of-the-art performance.
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