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Abstract

This paper presents an efficiently robust facial expression
recognition (FER) network, named EfficientFace, which
holds much fewer parameters but more accurate and ro-
bust to the FER in the wild. Firstly, to improve the ro-
bustness of the lightweight network, a local-feature extrac-
tor and a channel-spatial modulator are designed, in which
the depthwise convolution is employed. As a result, the net-
work is aware of local and global-salient facial features.
Then, considering the fact that most emotions occur as
combinations, mixtures, or compounds of the basic emo-
tions, we introduce a simple but efficient label distribution
learning (LDL) method as a novel training strategy. Exper-
iments conducted on realistic occlusion and pose variation
datasets demonstrate that the proposed EfficientFace is ro-
bust under occlusion and pose variation conditions. More-
over, the proposed method achieves state-of-the-art results
on RAF-DB, CAER-S, and AffectNet-7 datasets with accu-
racies of 88.36%, 85.87%, and 63.70%, respectively, and a
comparable result on the AffectNet-8 dataset with an accu-
racy of 59.89%. The code and training logs are available at
https://github.com/zengqunzhao/EfficientFace.

Introduction
Facial expression plays a vital role in communication, and
automatically recognize facial expression is extremely cru-
cial for its applications in various fields. In the field of
human-computer interaction (HCI), the environments adap-
tive systems, socially aware systems, or robots with social
skills can be built by detecting user’s affective states (Maat
and Pantic 2007; DeVault et al. 2014; Corneanu et al. 2016).
In the field of education, detecting students’ frustration can
help improve e-learning experience (Kapoor, Burleson, and
Picard 2007). In the field of medicine, the pain detection is
used for monitoring patient progress in the clinical setting
(Lucey et al. 2010; Kaltwang, Rudovic, and Pantic 2012;
Irani et al. 2015), the facial attributes such as expressions,
action units, arousal, and valence are used for classifying
autism spectrum disorder (ASD) (Wang et al. 2004; Dapretto
et al. 2006; Loth et al. 2018; Li et al. 2019a). In the field
of driver assistance, monitoring drowsiness or attentive and
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Figure 1: The comparison of CAM between the baseline and
proposed EfficientFace. The baseline denotes ShuffleNet-
V2. The images are from the test set of the RAF-DB dataset.
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Figure 2: The real-world facial expression can be viewed as
a combination of basic expressions. The label distributions
on the facial image are the output of the network trained in
our framework.

emotional status of the driver is critical for the safety and
comfort of driving (Khan et al. 2018; Jeong and Ko 2018).

Because deep learning has outstanding capacity in learn-
ing visual semantic features (LeCun, Bengio, and Hinton
2015), it was also successfully employed to facial expres-
sion recognition (FER) and has achieved excellent progress
(Zhao et al. 2016; Yu et al. 2018; Wang, Wang, and Liang
2019; Fu et al. 2020; Wang et al. 2020a; Wang, Shuai, and
Liu 2020; Chen et al. 2020b). However, deep learning mod-
els generally have excessive parameters and FLOPs, which
are inconvenient for practical application. To improve the ef-
ficiency of the FER model, some researchers have attempted
to design the real-time FER model from the temporal per-
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spective (Miao et al. 2019; Lee and Wong 2020; Koujan
et al. 2020). But it is more essential to design the lightweight
FER model in the spatial level, namely designing of the
lightweight static FER model. To achieve this purpose, it
is intuitive to utilize the state-of-the-art lightweight mod-
els which are proposed by researchers on model compres-
sion, such as the MobileNet series (Howard et al. 2017; San-
dler et al. 2018), and ShuffleNet series (Zhang et al. 2018;
Ma et al. 2018). However, due to the limited capacity of
the lightweight networks in feature learning and the chal-
lenges like occlusion and pose variation existed in FER in
the wild, employing the aforementioned networks to FER
directly may entail poor performance both in accuracy and
robustness. Therefore, a few researchers have paid atten-
tion to designing lightweight models for static FER. He-
witt and Gunes (Hewitt and Gunes 2018) designed three
kinds of lightweight FER models on mobile devices, and
Barros et al. (Barros, Churamani, and Sciutti 2020) pro-
posed a lightweight FER model named FaceChannel. How-
ever, the accuracy and robustness of these methods are
yet inferior. Ferro-Pérez and Mitre-Hernandez (Ferro-Pérez
and Mitre-Hernandez 2020) proposed ResMoNet for FER,
which can be used in resource-limited systems. Regrettably,
the ResMoNet is just evaluated on one lab-controlled FER
dataset but have not been compared with the state-of-the-art
FER methods.

To address the dilemma between saving computa-
tional overheads and enhancing performance, based on the
lightweight backbone network, we propose a more robust
and accurate network from the perspective of the feature ex-
traction and training strategy. First of all, to obtain robust fa-
cial features, given the characteristics of the human face and
issues of occlusion and pose variation in the wild, a channel-
spatial modulated and locality-aware lightweight network
is proposed, the proposed network is aware of the global-
salient and local facial features. Concretely, a local-feature
extractor and a channel-spatial modulator are designed and
implemented in the backbone network. Regarding the FER
in the wild, such a method can enhance the performance of
the lightweight model prominently but with a negligible in-
crease of computational overheads. The visualization results
of class activation mapping (CAM) (Zhou et al. 2016) are
displayed in Figure 1.

Additionally, the psychologist’s study (Plutchik 1980) and
previous FER work (Zhou, Xue, and Geng 2015; Jia et al.
2019) have shown that the most emotions occur as combi-
nations, mixtures, or compounds of the basic emotions, and
multiple emotions always have different intensities in a sin-
gle facial image, especially in the real world (see Figure 2).
Therefore, to further improve the performance of the FER
model, training the FER models by label distribution called
label distribution learning (LDL) instead of a single label
seems more reasonable. Furthermore, there are researches
have demonstrated that the LDL can also address the noise
problem caused by the subjectiveness of annotators and am-
biguous in facial images (Gao et al. 2017; Chen et al. 2020a).
For the LDL, a key issue is how to construct label distri-
bution. Previous work acquired label distribution by utiliz-
ing distribution annotations (Zhou, Xue, and Geng 2015;

Jia et al. 2019), face affinity graph (He et al. 2017), label
smoothing (Gao et al. 2017; Ling and Geng 2019) or auxil-
iary label space graphs (Chen et al. 2020a). Different from
these methods, we propose a simple but efficient method
by training a deep convolutional neural network (DCNN)
named label distribution generator (LDG) to generate the la-
bel distribution directly. The experiments demonstrate that
training with generated label distribution can enhance the
performance of the lightweight networks remarkably.

In summary, this paper has the following contributions:

• A novel lightweight network named EfficientFace for
practical facial expression recognition is presented. The
proposed EfficientFace with few parameters and FLOPs,
designed from the view of the feature extraction and train-
ing strategy, is robust and accurate for FER in the wild.

• A local-feature extractor and a channel-spatial modula-
tor are designed from the view of the feature extraction
to learn local facial features and global-salient features.
As a result, the network can learn comprehensive facial
features and is robust under occlusion and pose variation
conditions. In the view of the training strategy, a simple
but efficient LDL method is proposed by designing the
LDG, which enhanced the performance of the Efficient-
Face remarkably.

• Experiments conducted on realistic occlusion and pose
variation datasets indicate that the proposed method is ro-
bust towards occlusion and pose variation problems. With
few parameters and FLOPs, our method achieves state-
of-the-art results on RAF-DB, CAER-S, and AffectNet-
7 datasets, and a comparable result on the AffectNet-8
dataset.

Related Work
Lightweight FER Models
For efficient FER models, only a little work has focused
on the design of the lightweight FER model. Hewitt and
Gunes (Hewitt and Gunes 2018) proposed three variants of
established CNN architectures, namely the AlexNet variant,
VGGNet variant, and MobileNet variant, which are utilized
to FER on mobile devices. Barros et al. (Barros, Chura-
mani, and Sciutti 2020) proposed a lightweight FER model,
named FaceChannel, which has ten convolutional layers in-
cluding four pooling layers and applied shunting inhibitory
fields in the last layer. Ferro-Pérez and Mitre-Hernandez
(Ferro-Pérez and Mitre-Hernandez 2020) proposed a net-
work named ResMoNet for FER in resource-limited sys-
tems. Specifically, the proposed ResMoNet is composed
of five types of block, namely Stem Block, Mobile Block,
Residual Block, Transition Block, and Dense Block, and
generates a less number of parameters and multi-add opera-
tions. However, these methods or have inferior performance
or are not evaluated on in-the-wild FER datasets.

Methods of Label Distribution Learning
Zhou et al. (Zhou, Xue, and Geng 2015) introduced the label
distribution learning into FER and achieved better perfor-
mance than the single-label learning method. In their study,
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Figure 3: The overall structure of the proposed method. The proposed method is composed of two parts: the EfficientFace
employed to recognize facial expression and the Label Distribution Generator (LDG) employed to generate label distribution as
a ground-truth for training EfficientFace. DWConv denotes depthwise convolution, GAP denotes global average pooling, and
FC denotes a fully-connected network.

the label distributions come from the annotations. Due to
the difficulty of annotating label distribution for each im-
age, some researchers have attempted to construct label dis-
tribution for images automatically. Gao et al. (Gao et al.
2017) utilized the normal distribution to construct label dis-
tribution based on the single label, and they applied such a
method in age estimation, head pose estimation, multi-label
classification, and semantic segmentation to address the la-
bel ambiguity. For the particularity of the human face, He
et al. (He et al. 2017) utilized a face affinity graph to con-
struct label distribution for age estimation. Ling et al. (Ling
and Geng 2019) constructed label distribution by the dis-
cretized Gaussian distribution with adaptive variance. The
latest work (Chen et al. 2020a) proposed auxiliary label
space graphs based on facial action units and landmark for
label distribution learning.

Method
To decrease the computational overheads of the FER model,
the state-of-the-art lightweight network ShuffleNet-V2, con-
sists of Conv1, Stage2, Stage3, Stage4, and Conv5, is em-
ployed as a backbone network in our method. To handle
the problems of occlusion and pose variation existed in the
real-world scenario, a local-feature extractor and a channel-
spatial modulator are designed. Furthermore, a novel la-

bel distribution learning method is proposed, which is con-
sistent with the psychologist’s theory (Plutchik 1980). In
the following subsections, we first introduce the proposed
local-feature extractor and channel-spatial modulator, then
we give the details of the proposed label distribution gener-
ator and label distribution loss. The overall structure of the
proposed method is shown in Figure 3.

Channel-Spatial Modulated and Locality-Aware
Lightweight Network
Previous work has indicated that learning local facial fea-
tures is favorable to FER in the wild (Li et al. 2019c; Wang
et al. 2020b). However, those methods acquiring local fea-
tures based on the facial landmarks, which is inefficient.
Therefore, we propose an efficient local-feature extractor to
learn local region features, and the local region features are
obtained at a feature level and supplemented into global fea-
tures in a residual form. The architecture of the local-feature
extractor is shown in the upper left of Figure 3. Specifically,
given a input facial image with size of 224 × 224 × 3, af-
ter the Conv1, the low-level global feature maps Fconv1 ∈
RH×W×C can be obtained, where H = W = 56, C = 29.
The Fconv1 is first split into four feature patches and each
feature patch denoted by F i

conv1 ∈ RH′×W ′×C , where
i ∈ {1, 2, 3, 4}, H ′ = W ′ = 28. Then, each feature patch
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F i
conv1 is processed by two corresponding 3 × 3 convolu-

tions. The depthwise convolution is used to decrease compu-
tation overheads. After two convolution layers, the learned
local facial features F i

local ∈ RH′/2×W ′/2×C′
can be ob-

tained, where C ′ = 116. The four local facial features are
finally concatenated along the spatial axis and then the local
features Flocal ∈ RH′×W ′×C′

are obtained. It should men-
tion that dividing the feature maps into four patches con-
forms the action units related to expression.

Because there is a lot of redundant information in global
facial features (Zhong et al. 2012, 2014), the channel-spatial
modulator is introduced to highlight the crucial global fea-
tures after the Stage2. Allow for computational overheads,
the channel-spatial modulator is designed based on BAM
(Park et al. 2018). The architecture of the channel-spatial
modulator is shown in the upper right of Figure 3. Con-
cretely, after the Stage2, the high-level global feature maps
Fstage2 ∈ RH′×W ′×C′

are obtained, firstly, the channel
heatmaps Mc(Fstage2) ∈ RC′

and the spatial heatmaps
Ms(Fstage2) ∈ RH′×W ′

are computed at two paralleled
branches respectively, then the whole heatmaps M(Fstage2)
can be computed and normalized as:

M(Fstage2) = σ(Mc(Fstage2) +Ms(Fstage2)) (1)

where σ is a sigmoid function. The channel heatmaps
Mc(Fstage2) and spatial heatmaps Ms(Fstage2) are all re-
sized to RH′×W ′×C′

before addition. Finally, the modulated
global feature maps can be computed as:

Fmodulated = Fstage2 ⊗M(Fstage2) (2)

where ⊗ denotes element-wise multiplication.
After the extraction of local features and modulation of

global features, the final global-local features can be com-
puted as:

Ffinal = Flocal + Fmodulated (3)

As a result, the network achieves the ability to learn both
global-salient and local facial features but with a slight in-
crease in computation overheads. It should be noted that
the local-feature extractor and channel-spatial modulator are
adopted only after Stage2. The reason why employing such a
strategy is: on the one hand, excessive use of designed mod-
ules will increase the overheads of the FER model; on the
other hand, the size of the deeper feature maps is tiny, and
those feature maps are not feasible for extracting local facial
features.

The comparison of CAM between the baseline and Effi-
cientFace shown in Figure 1. Compared with the baseline
network, the EfficientFace-based CAM results pay attention
to broader regions related to facial expression under frontal
and non-frontal conditions. Moreover, the proposed model
can focus on the non-occlusion regions and neglect the oc-
clusion regions under occlusion conditions.

Constructing Label Distribution and Loss Function
Due to the difficulty of annotation, the emotion distributions
of the facial images are often unavailable. To this end, we

design a label distribution generator (LDG) to generate la-
bel distribution for training. The structure of the LDG is pre-
sented in Figure 3. The proposed LDG is pre-trained on FER
datasets and fixed in training phase.

Given a facial image s with label l ∈ {0, 1, ..., c − 1},
where c is the number of the expression categories. The
function of the LDG is to generate a distribution d =

(d0, d1, ..., dc−1), where
∑c−1

i=0 di = 1. After the FC layer
of LDG, a feature vector v = (v0, v1, ..., vc−1) can be ob-
tained, then the d can be computed by a softmax function:

di =
exp(vi)∑c−1
j=0 exp(vj)

(4)

where i ∈ {0, 1, ..., c− 1}
Regarding the conventional FER method, the single label

l is used as a ground-truth called single label learning (SLL).
While in our LDL method, the generated label distribution is
adopted as a ground-truth. The cross-entropy is employed to
measure the distance between the prediction of EfficentFace
and the output of LDG. Hence, a label distribution loss can
be defined as:

L = − 1

N × c

N−1∑
i=0

c−1∑
j=0

dij log(d̃
i
j) (5)

where N is the number of samples; d̃ = (d̃1, d̃2, ..., d̃c−1)
is the predicted label distribution of EfficientFace and∑c−1

j=0 d̃j = 1; the superscript i and subscript j denote sam-
ple and expression category respectively.

It should be noted that the LDG is trained using a single
label and employed only in the training phase. After the Ef-
ficientFace is fully trained, only the EfficientFace is needed
and abandoning the rest of the part. In the inference phase,
the FER result of a facial image is the index of the maximum
probability in d̃ = (d̃0, d̃1, ..., d̃c−1).

Experiments
Datasets

To verify the effectiveness of the proposed method, we con-
duct the experiments on three popular in-the-wild facial ex-
pression datasets: RAF-DB (Li and Deng 2018), CAER-S
(Lee et al. 2019), and AffectNet (Mollahosseini, Hasani,
and Mahoor 2017), and five realistic occlusion and pose
variation datasets: FED-RO (Li et al. 2019c), Occlusion-
AffectNet, Occlusion-RAF-DB, Pose-AffectNet and Pose-
RAF-DB (Wang et al. 2020b).

RAF-DB The RAF-DB dataset contains 30,000 facial im-
ages annotated with basic or compound expressions by 40
trained human coders. Consistent with the most previous
work, only images with seven basic emotions, i.e., neutral,
happiness, sadness, surprise, fear, disgust, and anger, are
used, including 12,271 images as training data and 3,068
images as test data.
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Datasets Methods # Params (M) # MFLOPs Accuracy (%)

RAF-DB

Baseline 1.26 147.79 82.23
Baseline + Local-Feature Extractor 1.27 152.79 83.57

Baseline + Channel-Spatial Modulator 1.27 153.79 83.12
Baseline + Local-Feature Extractor + Channel-Spatial Modulator 1.28 154.18 83.83

CAER-S

Baseline 1.26 147.79 79.52
Baseline + Local-Feature Extractor 1.27 152.79 80.68

Baseline + Channel-Spatial Modulator 1.27 153.79 80.48
Baseline + Local-Feature Extractor + Channel-Spatial Modulator 1.28 154.18 81.48

Table 1: Evaluation of each component in EfficientFace on RAF-DB and CAER-S. The models are trained from scratch.

Datasets Methods # Params (M) # MFLOPs Accuracy (%)

LDG (SLL) 23.52 4109.48 86.93
Baseline (SLL) 1.26 147.79 84.58

RAF-DB Baseline (LDL) 1.26 147.79 87.87
EfficientFace (SLL) 1.28 154.18 85.66
EfficientFace (LDL) 1.28 154.18 88.36

LDG (SLL) 23.52 4109.48 84.81
Baseline (SLL) 1.26 147.79 84.06

CAER-S Baseline (LDL) 1.26 147.79 85.74
EfficientFace (SLL) 1.28 154.18 84.51
EfficientFace (LDL) 1.28 154.18 85.87

Table 2: Evaluation of the proposed label distribution learning on RAF-DB and CAER-S. The models are pre-trained on the
MS-Celeb-1M dataset. The SLL and LDL denote single label learning and label distribution learning respectively.

CAER-S The CAER-S dataset was created by selecting
static frames from the CAER (Lee et al. 2019) dataset with
65,983 images and has been divided into two sets: training
set (44,996 samples) and test set (20,987 samples). Each im-
age is assigned to one of seven basic expressions.

AffectNet The AffectNet dataset contains about 450,000
images that are manually annotated with 11 expression
categories. The seven expression categories denoted by
AffectNet-7 contain seven basic expressions, while the eight
expression categories denoted by AffectNet-8 with the ad-
dition of contempt expression. For AffectNet-7, there are
283,901 images as training data and 3,500 images as test
data, and for AffectNet-8, there are 287,568 images as train-
ing data and 4,000 images as test data.

Realistic Occlusion and Pose Variation Datasets To ex-
amine the performance of the FER model under real-world
occlusion and pose variation conditions, Li et al. (Li et al.
2019c) collected and annotated a facial expression dataset
with real occlusion (FED-RO) in the wild. The FED-RO
contains 400 images in total, and the images were cate-
gorized into seven basic expressions. Wang et al. (Wang
et al. 2020b) built four subsets, Occlusion-AffectNet, Pose-
AffectNet, Occlusion-RAF-DB, and Pose-RAF-DB, from
the validation set of AffectNet-8 and the test set of RAF-DB
respectively. The Occlusion-AffectNet and Occlusion-RAF-
DB contain 683 and 735 images in total respectively. The
Pose-AffectNet contains 1,948 and 985 faces with an angle
larger than 30◦ and 45◦ respectively in total, and the Pose-
RAF-DB contains 1,248 and 558 faces with an angle larger

than 30◦ and 45◦ respectively in total.

Experiment Setting
For images on all the datasets, the face region is detected
and aligned using Retinaface (Deng et al. 2020) and then
cropped and resized to 224× 224 pixels. The random crop-
ping and random horizontal flipping are employed to avoid
over-fitting. The proposed EfficientFace and LDG are all
pre-trained on the face recognition dataset MS-Celeb-1M
(Guo et al. 2016). For LDG, the 50-layer Residual Network
is adopted as the backbone network. For EfficientFace, pa-
rameters were optimized via the SGD optimizer with an ini-
tial learning rate of 0.1 and a mini-batch size of 128. All the
models are trained on the NVIDIA GeForce Titan Xp GPU
based on the open-source PyTorch (Paszke et al. 2019) plat-
form.

Ablation Studies
Effectiveness of Each Component in EfficientFace To
verify the effectiveness of each component in Efficient-
Face, we conduct ablation studies on RAF-DB and CAER-S
datasets. Specifically, the ShuffleNet-V2 is employed as a
baseline in experiments, then the local-feature extractor and
channel-spatial modulator are added to the baseline, respec-
tively. The four kinds of methods are trained with the same
setting and using the conventional single label for training.
As shown in Table 1, due to the use of depthwise convo-
lution in the local-feature extractor and the lightweight of
the channel-spatial modulator, the proposed EfficientFace
achieves a tiny increase of computation overheads compared
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Methods # Params (M) # MFLOPs Accuracy (%)

IPA2LT (Zeng, Shan, and Chen 2018) >23.52 >4109.48 86.77
Separate-Loss (Li et al. 2019b) 11.18 1818.56 86.38

gACNN (Li et al. 2019c) >134.29 >15479.79 85.07
RAN (Wang et al. 2020b) 11.19 14548.45 86.90

LDL-ALSG (Chen et al. 2020a) 23.52 4109.48 85.53
DDA-Lose (Hossein and Qi 2020) 11.18 1818.56 86.90

SCN (Wang et al. 2020a) ∼11.18 ∼1818.56 87.03
SCN∗ (Wang et al. 2020a) ∼11.18 ∼1818.56 88.14

EfficientFace (Ours) 1.28 154.18 88.36

Table 3: Comparison with state-of-the-art methods on RAF-DB. ∗ RAF-DB and AffectNet are jointly used for training.

Methods # Params (M) # MFLOPs Accuracy (%)

ResNet-18 (He et al. 2016) 11.18 1818.56 84.67
ResNet-50 (He et al. 2016) 23.52 4109.48 84.81

MobileNet-V2 (Sandler et al. 2018) 2.23 312.86 79.23
Res2Net-50 (Gao et al. 2019) 23.66 4278.60 85.35
CAER-Net-S (Lee et al. 2019) ∼2.12 ∼1717.65 73.51

EfficientFace (Ours) 1.28 154.18 85.87

Table 4: Comparison with state-of-the-art methods on CAER-S.

with the baseline network. When the local region features
are considered by implementing local-feature extractor, the
recognition accuracy outperforms the baseline network by
1.34% and 1.16% on RAF-DB and CAER-S, respectively.
Moreover, the channel-spatial modulator enhances the ac-
curacy of the baseline by 0.89% and 0.96% on RAF-DB
and CAER-S, respectively. The reason why EfficientFace
achieves better performance lies in the supplement of local
facial features and the attention of the global-salient facial
features, such two techniques not only contribute to the com-
prehensiveness of the facial feature but also can handle the
occlusion and pose variance problems well.

Effectiveness of Label Distribution Learning To verify
the effectiveness of the proposed label distribution learn-
ing method, we conduct ablation studies on RAF-DB and
CAER-S datasets. The comparison between label distribu-
tion learning (LDL) in which label distribution is obtained
by the LDG and conventional single label learning (SLL) is
presented. And the comparison between LDL-based base-
line and LDL-based EfficientFace is presented as well. As
shown in Table 2, regarding the proposed EfficientFace,
the LDL-based accuracies outperform the SLL-based ac-
curacies by 2.70% and 1.36% on RAF-DB and CEAR-S
datasets, respectively. Even for the baseline network, the
performance utilizing LDL is much better than SLL. More-
over, it is gratifying that the performance of the LDL-based
EfficientFace outperforms the LDG even though the param-
eters and FLOPs of the EfficientFace far less than LDG. The
reason why LDL-based methods achieve excellent perfor-
mance lies in two aspects: one is that label distribution is
more close to the real-world human expression which occurs
as combinations of the basic emotions, the other is that the
label distribution is generated by the LDG which is capable
of relieving label noise problem (Gao et al. 2017). Hence,

the LDL-based method is adopted in the following experi-
ments.

Comparison with State of the Arts
We compare the proposed method to several state-of-
the-art methods on RAF-DB, CAER-S, AffectNet-7, and
AffectNet-8 datasets. Due to the fact that most previous
work in FER do not pay attention to the computation over-
heads, those methods do not present the metric of computa-
tion complexity. Hence, we compute the number of param-
eters and FLOPs of all the models compared in experiments
using the same setting. For the methods of IPA2LT (Zeng,
Shan, and Chen 2018) and gACNN (Li et al. 2019c), only
the lower limit values are provided (the symbol > is used).
Due to the methods of SCN (Wang et al. 2020a), CAER-Net-
S (Lee et al. 2019), SNA-DFER (Fu et al. 2020), VGGNet-
Variant (Hewitt and Gunes 2018), and Mobile-Variant (He-
witt and Gunes 2018) do not have publicly available imple-
mentations, the codes of those methods are first reproduced
to the best of our understanding and then computed the num-
ber of parameters and FLOPs (the symbol∼ is used). The re-
mainder is all computed according to the open-source code.

Table 3 and Table 4 show the results on RAF-DB and
CAER-S, respectively, and Table 5 shows the results on
AffectNet-7 and AffectNet-8. Due to the CAER-S dataset
is proposed recently, and only (Lee et al. 2019) evaluates
their method on it, we conduct several experiments utiliz-
ing some state-of-the-art networks on it, such as ResNet-18,
ResNet-50, MobileNet-V2, and Res2Net-50. For AffectNet,
some work verifies their methods on AffectNet-7 but oth-
ers on AffectNet-8, while we conduct experiments and com-
pare with other state-of-the-art methods both on AffectNet-7
and AffectNet-8. Due to the AffectNet dataset has an imbal-
anced training set but a balanced validation set, consistent
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Datasets Methods # Params (M) # MFLOPs Accuracy (%)

AffectNet-7

IPA2LT (Zeng, Shan, and Chen 2018) >23.52 >4109.48 57.31
gACNN (Li et al. 2019c) >134.29 >15479.79 58.78

IPFR (Wang, Wang, and Liang 2019) 21.80 5729.12 57.40
Separate-Loss (Li et al. 2019b) 11.18 1818.56 58.89

FMPN (Chen et al. 2019) 21.80 5729.117 61.52
VGG-FACE (Kollias et al. 2020) 145.00 15490.46 60.00

SNA-DFER (Fu et al. 2020) ∼2.47 ∼763.09 62.70
LDL-ALSG (Chen et al. 2020a) 23.52 4109.48 59.35

DDA-Loss (Hossein and Qi 2020) 11.18 1818.56 62.34
EfficientFace (Ours) 1.28 154.18 63.70

AffectNet-8

Weighted-Loss (Mollahosseini, Hasani, and Mahoor 2017) 57.03 710624.57 58.00
VGGNet-Variant (Hewitt and Gunes 2018) ∼6.54 ∼80.44 58.00

MobileNet-Variant (Hewitt and Gunes 2018) ∼0.074 ∼13.56 56.00
RAN (Wang et al. 2020b) 11.19 14548.45 59.50

ESR-9 (Siqueira, Magg, and Wermter 2020) 0.37 1164.43 59.30
SCN (Wang et al. 2020a) ∼11.18 ∼1818.56 60.23

EfficientFace (Ours) 1.28 154.18 59.89

Table 5: Comparison with state-of-the-art methods on AffectNet-7 and AffectNet-8.

Datasets Methods # Params (M) # MFLOPs Accuracy (%)

FED-RO

VGG-16 (Simonyan and Zisserman 2014) 134.29 15479.79 60.15
ResNet-18 (He et al. 2016) 11.18 1818.56 64.25
gACNN (Li et al. 2019c) >134.29 >15479.79 66.50
RAN (Wang et al. 2020b) 11.19 14548.45 67.98

EfficientFace (Ours) 1.28 154.18 68.25

Occlusion-AffectNet
ResNet-18 (He et al. 2016) 11.18 1818.56 49.48
RAN (Wang et al. 2020b) 11.19 14548.45 58.50

EfficientFace (Ours) 1.28 154.18 59.88

Occlusion-RAF-DB
ResNet-18 (He et al. 2016) 11.18 1818.56 80.19
RAN (Wang et al. 2020b) 11.19 14548.45 82.72

EfficientFace (Ours) 1.28 154.18 83.24

Table 6: Comparison with state-of-the-art methods on FED-RO, Occlusion-AffectNet, and Occlusion-RAF-DB.

Datasets Methods # Paprams (M) # MFLOPs Accuracy (%)
Pose > 30◦ Pose > 45◦

Pose-AffectNet
ResNet-18 (He et al. 2016) 11.18 1818.56 50.10 48.50
RAN (Wang et al. 2020b) 11.19 14548.45 53.90 53.19

EfficientFace (Ours) 1.28 154.18 57.36 56.87

Pose-RAF-DB
ResNet-18 (He et al. 2016) 11.18 1818.56 84.04 83.15
RAN (Wang et al. 2020b) 11.19 14548.45 86.74 85.20

EfficientFace (Ours) 1.28 154.18 88.13 86.92

Table 7: Comparison with state-of-the-art methods on Pose-AffectNet and Pose-RAF-DB.

with RAN (Wang et al. 2020b) and SCN (Wang et al. 2020a),
an oversampling strategy 1 is employed.

From Table 3, Table 4, and Table 5 it can be witnessed
that the proposed method outperforms all of these state-of-
the-art methods in terms of accuracy on RAF-DB, CAER-
S, and AffectNet-7. Furthermore, our method possesses the
minimum number of parameters and FLOPs among all com-
pared methods. That is to say, our method is excellent both

1https://github.com/ufoym/imbalanced-dataset-sampler

in saving computation overheads and recognition accuracy.
For AffectNet-8 our method achieves a comparable result.
It is noteworthy that the proposed method has a large gap
of accuracy between AffectNet-7 and AffectNet-8, in which
the AffectNet-8 added expression of contempt based on
AffectNet-7. We argue that there exists a lot of noise anno-
tations of the eighth expression categories in the AffectNet
test data (see Figure 4).
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Figure 4: Facial images with the annotation of contempt
were selected randomly from the test data of the AffectNet
dataset. It can be seen that many facial images do not belong
to the expression of contempt.

Robustness Under Realistic Occlusion and Pose
Variation Conditions
Occlusion and pose variation are two vital issues for FER
in the real world. To evaluate the proposed method under
the real-world scenario, we conduct several experiments on
datasets with realistic occlusion and pose variation.

Evaluation Under Realistic Occlusion To evaluate the
proposed method under the realistic occlusion condition,
several experiments are conducted on FED-RO, Occlusion-
AffectNet, and Occlusion-RAF-DB datasets, and the exper-
iment setting is the same as the previous work. As shown in
Table 6, the proposed method achieves the best performance
on FED-RO, Occlusion-AffectNet, and Occlusion-RAF-DB
datasets both in computation overheads and accuracy. These
results prove that the proposed method has superior robust-
ness under occlusion conditions.

Evaluation Under Realistic Pose Variation To evaluate
the proposed method under realistic pose variation condi-
tions, we conduct experiments on Pose-AffectNet and Pose-
RAF-DB. From Table 7 it can be caught that the perfor-
mance of the proposed method is superior to compared
methods. Moreover, comparing the accuracy between angle
larger than 30◦ and 45◦, the proposed method achieves a
tinier gap of accuracy, which indicates that our method pos-
sesses fantastic robustness to pose variation.

Conclusion
This paper proposes a lightweight and robust facial expres-
sion recognition network named EfficientFace for practical
FER in the wild. Specifically, in the view of the feature ex-
traction, a local-feature extractor and a channel-spatial mod-
ulator are proposed. As a result, the learned facial features
stay robust under occlusion and pose variation conditions.
Owing to the real-world facial expression is more like a dis-
tribution instead of a single emotion, and the noise problem
existed on facial expression datasets, a novel LDL method is
proposed by designing of the LDG. Even with few parame-
ters and FLOPs, the proposed method achieves state-of-the-
art results on several datasets compared with those methods

which have enormous parameters and FLOPs. And exten-
sive experiments conducted on realistic occlusion and pose
variation datasets also indicate that the excellent robustness
of the proposed method.
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