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Abstract

Although recent work has achieved great progress in human
pose estimation (HPE), most methods show limitations in ei-
ther inference speed or accuracy. In this paper, we propose a
fast and accurate end-to-end HPE method, which is specif-
ically designed to overcome the commonly encountered jit-
ter box, defective box and ambiguous box problems of box-
based methods, e.g. Mask R-CNN. Concretely, 1) we propose
the ROIGuider to aggregate box instance features from all
feature levels under the guidance of global context instance
information. Further, 2) the proposed Center Line Branch
is equipped with a Dichotomy Extended Area algorithm to
adaptively expand each instance box area, and Ambiguity
Alleviation strategy to eliminate duplicated keypoints. Fi-
nally, 3) to achieve efficient multi-scale feature fusion and
real-time inference, we design a novel Trapezoidal Network
(TNet) backbone. Experimenting on the COCO dataset, our
method achieves 68.1 AP at 25.4 fps, and outperforms Mask-
RCNN by 8.9 AP at a similar speed. The competitive perfor-
mance on the HPE and person instance segmentation tasks
over the state-of-the-art models show the promise of the pro-
posed method. The source code will be made available at
https://github.com/zlcnup/CGANet.

Introduction
Human pose estimation (HPE) is a challenging yet funda-
mental computer vision problem whose goal is to deter-
mine the location of each body keypoint (e.g. eyes, shoul-
ders, knees and so on). The provided informative knowledge
is critical for tasks such as intelligent video surveillance,
human-computer interaction, virtual reality, etc.

There are generally two HPE approaches: bottom-up or
top-down. The bottom-up approach firstly regresses all key-
points of an image, and then assigns them to each person
instances (Insafutdinov et al. 2016; Cao et al. 2017; Kreiss,
Bertoni, and Alahi 2019; Cheng et al. 2020). Because of
the global regressing manner of keypoints, it is difficult to
adaptively handle scale variation of each instance and obtain
high accuracy. Meanwhile, it typically adopts complicated
post processing that could significantly reduce the inference
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Figure 1: Top: The speed-accuracy trade-off of single-model
methods on the COCO (Lin et al. 2014) val2017 set. The
green line is the speed with fixed input size (such as video),
which can better reflect the actual speed. But for testing
convenience and fair comparisons, we also test the average
speed (blue line) on the whole COCO val2017 set (used in
the experiments). The inference details please refer to sec-
tion Experiments. In particular, the result of CMU-Pose is
achieved on test-dev set with refinement. Bottom: (a) The
ambiguous center point heatmap predicted by the original
CenterNet, which has two Gaussian peaks with the same
score for one target (red and green dotted circle). (b) Illus-
trate the ambiguous box (blue and red boxes) caused by (a),
and the defective box (blue box) that excludes the keypoints
of eyes. (c) The center point heatmap after alleviating am-
biguity by center line heatmap. (d) The visualization after
Dichotomy Extended Area algorithm based on center line
heatmap.

speed (as shown in Fig. 1 and Table 4). In contrast, the top-
down approach firstly detects all person instances using the
detection model, and then runs the HPE model to regress the
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keypoints for each instance (Huang, Gong, and Tao 2017;
Papandreou et al. 2017; Fang et al. 2017; Chu et al. 2017;
Sun et al. 2019). These methods normalize all cropped in-
stances to regress the local keypoint heatmaps, thus usually
with higher accuracy. However, most of them are not end-
to-end trainable (i.e., separated model), which limits their
inference speed.

The framework of end-to-end trainable Mask-RCNN (He
et al. 2017) makes a good balance between accuracy and
speed, by normalizing the scale of each detected instance to
regress the local heatmaps and sharing the feature extractor
among all instances. However, (i) the ROIPooler of Mask-
RCNN fails to fully utilize multi-scale box instance informa-
tion. It only extracts instance features from specific feature
levels according to the box size and discards information
from the other feature levels. In addition, such box-based
methods still have the commonly encountered limitations in
the HPE task. (ii) Jitter box sensitivity, which leads the pre-
dicted keypoints to be greatly influenced and also to be jit-
tered. (iii) Defective box, which means that some keypoints
are excluded from the box and can never be regressed, e.g.,
the eyes excluded by the blue box in Fig. 1(b). (iv) Ambigu-
ous box, that is an instance detected in multiple boxes with
each of high confidence score, e.g.,, the two center points of
the same person shown in Fig. 1(a). In this case, it is difficult
to eliminate the redundant boxes with thresholding or NMS,
therefore, duplicated or ambiguous keypoint detection oc-
curs.

To overcome the above limitations, we propose a simple
yet efficient Context-Guided Adaptive Network, as shown
in Fig. 2, which mainly consists of three parts: (i) ROIGu-
ider which fuses features hierarchically under global con-
text guidance, (ii) Center Line Branch (CLB) which adap-
tively extends each instance box area and alleviates am-
biguity, and (iii) Trapezoidal Network (TNet) for efficient
multi-scale feature aggregation. Concretely, to utilize multi-
level information for robust keypoint regression, ROIGuider
adaptively fuses multi-level box features and re-weights dif-
ferent channels under the guidance of global context infor-
mation via the Guided Fusion Module (GFM). To address
the defective box or ambiguous box problems, CLB adap-
tively adjusts the extended area for each box instance and
alleviates the ambiguity of center point by utilizing the cen-
ter line heatmaps in different directions. Further, we de-
sign a new backbone TNet that efficiently aggregates multi-
scale features with only a small number of channels. On the
COCO dataset, the results in person instance segmentation
and separated-model experiments show its competitive ef-
fectiveness. We also conduct single-model experiments to
show that our method achieves state-of-the-art performance
at both speed and accuracy (as shown in Fig.1). The main
contributions of our work can be summarized as follows:

• We propose ROIGuider to aggregate box instance features
from multiple levels under the guidance of global con-
text instance information. It effectively improves the ro-
bustness of keypoint regression with inaccurately detected
boxes, e.g. jitter box.

• To tackle the defective box and ambiguous box, we further

propose Center Line Branch with a simple Dichotomy Ex-
tended Area algorithm and Ambiguity Alleviation strat-
egy to adaptively extend each box instance area and alle-
viate prediction ambiguity.

• To generalize the benefits of ROIGuider for real-time
HPE, we design a novel backbone TNet to fuse multi-
scale features in a highly efficient manner.

• Experimental results show that our method outperforms
all single-model approaches significantly in terms of
speed and accuracy, and generalizes well to other visual
tasks, e.g., instance segmentation.
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Figure 2: Overview of the proposed approach, which is
mainly composed of anchor-free detection branch, center
line branch and keypoint branch (ROIGuider).

Related Work
Single-Model Methods. Single-model methods (Nie et al.
2019; Jin et al. 2020) are an end-to-end way to solve the
HPE task. OpenPose (Cao et al. 2017) proposes Part Affin-
ity Fields (PAFs) to learn a 2D vector field between two
keypoints to group into person instance. Associative Embed-
ding (AE) (Newell, Huang, and Deng 2017) introduces the
tag map, which labels each keypoint a tag. The keypoints
with similar tags are considered to belong to the same per-
son instance. HigherHRNet (Cheng et al. 2020) uses higher
resolution keypoint heatmaps to improve accuracy, and the
keypoints grouping method is the same as AE. Mask-RCNN
(He et al. 2017) predicts the bounding box of each instance,
and then use ROIPooler to select different level features to
infer the keypoints. Different from the anchor-based detec-
tion method of Mask-RCNN, we apply the anchor-free strat-
egy to our pipeline for pose estimation.
Separated-Model Methods. Separated-model methods (Ke
et al. 2018; Tang, Yu, and Wu 2018; Moon, Chang, and
Lee 2019; Zhang et al. 2020; Zhang, Tang, and Wu 2019;
Huang et al. 2020) use two or more models for per-
son detection and pose estimation, respectively. Hourglass
(Newell, Yang, and Deng 2016) repeatedly uses the bottom-
up and top-down structure to improve performance. Simple
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(Xiao, Wu, and Wei 2018) proposes a network that adds
some deconvolution layers on the ResNet (He et al. 2016)
and achieves better performance. HRNet (Sun et al. 2019)
achieves higher accuracy by maintaining high-resolution
representations throughout the whole network. Due to the
maintenance of high-resolution features, it does not perform
well in speed.

The Proposed Approach
In this section, we firstly give a brief overview of the pro-
posed approach. Next, we present ROIGuider for global
context-guided multi-level feature fusion and describe how
the Center Line Branch to tackle the more critical defective
box and ambiguous box problems. Finally, we demonstrate
the structure of the designed backbone TNet to make the
idea of ROIGuider more general.

Architecture
We illustrate the proposed approach in Fig. 2. The backbone
network, such as TNet or Feature Pyramid Networks (FPN)
(Lin et al. 2017), produces pyramid features. The highest
resolution features (L0, stride=4) followed by five branches
are used to predict center point heatmaps, width and height
map, offset map and center line heatmaps of two directions.
The first three are the same as CenterNet (Zhou, Wang, and
Krähenbühl 2019). The center line heatmaps combine the
Dichotomy Extended Area algorithm and Ambiguity Alle-
viation strategy to extend and refine each instance boxes
dynamically. After passing through the keypoint branch of
ROIGuider, the extracted hierarchical box features are em-
ployed to predict the keypoints of each instance. Consider-
ing the size of L3 in the pyramid features is too small, only
the features L0 ∼ L2 in the keypoint branch are used.
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Figure 3: The structure of GFM and shuffle. ”
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denote element-wise multiplication and element-wise addi-
tion, respectively.

ROIGuider
The box-based HPE model is very sensitive to the box ac-
curacy, such as jitter box which appears most frequently in
the human detector. In order to improve the robustness of
the HPE model to inaccurate boxes, we propose the ROIGu-
ider. Instead of selecting aligned features from a certain level

according to the box size, as done in Mask-RCNN, we inte-
grate all levels of features under the guidance of high-level
features. This is because that high-level box instance fea-
tures are not sensitive to location, and have more global con-
text semantic information. By using the high-level instance
features to guide the weighting of position-sensitive low-
level features, the influence of box location on the low-level
features can be reduced, and the robustness can be improved.
The ROIGuider also frees the model from having to care-
fully select different levels of aligned features for different
datasets or outputs.

As shown in Fig. 2, we use ROIAlign and instance boxes
to get the aligned features LAi ∈ RNb×C×Hi×Wi from the
pyramid features L0 ∼ L2, whereNb is the number of boxes
and i denotes the level of features. C is the channel number
of features.Hi andWi are the height and width of the corre-
sponding aligned features. Then, LAi is subsampled by a se-
ries of Residual Blocks (RB) and gradually merged to obtain
the new LAi . Finally, inspired by (Hu, Shen, and Sun 2017),
the LAi is adaptively weighted under the guidance of LAi+1
to enhance features discriminability in the reverse path.

As shown in Fig. 3, the reverse path is mainly com-
posed of shuffle (Shi et al. 2016) and Guided Fusion Mod-
ule (GFM). Unlike previous methods of using deconvolution
(Xiao, Wu, and Wei 2018), we use the shuffle to increase the
feature size. The operation is more efficient, and it can alle-
viate the aliasing effect caused by the deconvolution. When
the input feature size is (C,H,W ) and the scale factor is r,
the output feature size is ( Cr2 , rH, rW ) after the shuffle.

The mutual guidance of different level features is mainly
completed by GFM. GFM has two inputs, called guided fea-
tures LAi+1 and concatenate features CAi respectively. In or-
der to acquire the global context information of LAi+1, we
use pooling operation to generate statistics for each channel
in LAi+1. The LAi+1 will be squeezed to C × 1 × 1 global
information descriptor di+1. Each channel is 1 × 1 number
with global information for that channel. The value of c-th
descriptor dci+1 for the feature map LAi+1 ∈ RC×Hi+1×Wi+1

can be calculated by

dci+1 =
1

Hi+1 ×Wi+1

Hi+1∑
x=1

Wi+1∑
y=1

LAi+1(x, y). (1)

We adopt the sigmoid function g(x) to learn the nonlinear
interactions between channels. The guided features Fg can
be generated by Fg = f(g(Wd)), where f(x) is convolution
operation. To reduce the gradient degradation and improve
the optimization speed, we also adopt the identity mapping
like ResNet (He et al. 2016). The final output of GFM is
calculated by

OGFM = Fg � CAi + CAi . (2)

where � denotes element-wise multiplication.

Center Line Branch
Although ROIGuider can improve the robustness of key-
points regression under the inaccurate boxes, there is noth-
ing to do with more critical defective box and ambiguous box
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problems. So we further address them by proposing Center
Line Branch (CLB), which is equipped with the simple Di-
chotomy Extended Area algorithm and Ambiguity Allevia-
tion strategy.

Given an image I ∈ RH×W×3, the CLB separately pre-
dicts features M̂x ∈ R

H
s ×

W
s ×1 and M̂y ∈ R

H
s ×

W
s ×1,

where H,W are the height and width of the input image,
and s = 4 is the output stride. M̂x and M̂y represent
the predicted Gaussian center lines in the x and y direc-
tions, respectively. We do not use simultaneous prediction
M̂xy ∈ R

H
s ×

W
s ×2, because we find it difficult to regress to

the ideal Gaussian lines. Since the Gaussian lines in the x
and y directions have the same form, in the following sub-
sections, we will only introduce the y direction in detail.
Center Line Regression. Given an annotated box (x1,
y1, x2, y2) in an image, firstly it is transformed to the
feature-map scale. We get the center line {(x, y)|x =⌊
x1+x2

2

⌋
, y1 ≤ y ≤ y2, y ∈ N} with line width d =⌈

r
6 + 0.5

⌉
. We calculate the radius of the center point r =

b−
√
b2−4c
2 so that the minimum IOU = (H−r)(W−r)

2HW−(H−r)(W−r)
between ground-truth box and box generated within r is
not less than miniou = 0.3, where b = H+W

s , c =
HW (1−miniou)
s2(1+miniou) . Then, a 2D Gaussian kernel K(x, y) =

exp(− (x−x0)
2+(y−y0)2
2σ2 ) is applied to generate the ground-

truth center line heatmap Mgt
y , where σ = 1.4 in our pa-

per. In order to make the center line regression continuous
and have clear boundaries, we follow (Lin et al. 2018; Li,
Su, and Wang 2020) to automatically penalize the weight of
easy positive samples during training. The loss of y direction
can be calculated by

Ly = 1
N

∑
M

{
M̂α
y · ‖M̂y −Mgt

y ‖22, Mgt
y < thre

(1− M̂y)
α · ‖M̂y −Mgt

y ‖22, else,
(3)

where thre denotes the threshold of easy positive samples,
N is the number of easy positive samples, and α is the hyper
parameter to control the degree of penalty. We set thre =
0.1 and α = 1 in our work. It should be noted that sigmoid
function is applied to M̂y = 1

1+exp(−M̂y)
.

Dichotomy Extended Area. During the inference stage, the
easiest way to alleviate the defective box problem is to ex-
tend all the box instance areas at a certain ratio. However,
this way cannot make dynamic adjustments for each box in-
stance, so it may have negative impacts on some boxes. We
propose a simple Dichotomy Extended Area algorithm to
solve the problem with the help of center line heatmap. For
a coarse box (x̂1, ŷ1, x̂2, ŷ2) predicted by partial Center-
Net, its top point and bottom point lie at p̂t = ( x̂1+x̂2

2 , ŷ1)

and p̂b = ( x̂1+x̂2

2 , ŷ2), respectively. As shown in Algorithm
1, take the extended upper boundary (top point) as an ex-
ample. First of all, the maximum extended range ratio and
the threshold (thre) of center line heatmap are set accord-
ing to the height and width of the box. The upper bound-
ary is then extended directly to the maximum offset. Un-
der the offset, it is determined whether the score of the
center line map is less or more than the thre, and then ac-
cording to it to decide whether the upper boundary moves

down or up to offset
2 . In our work, we only need less than

MAX ITERS = 10 iterations to get a good result, and
the process can be easily extended to multi-box and multi-
boundary forms to reduce the computing time. Fig. 1(d)
shows the area extended result from Fig. 1(b) (blue box) by
employing the proposed algorithm.

Algorithm 1 Dichotomy Extended Area (one box, upper
boundary).

Input: (x̂1, ŷ1, x̂2, ŷ2), M̂y , ratio and thre
Output: The extended box (x̂1, ŷ1, x̂2, ŷ2)

1: offset = ratio · ŷ2−ŷ12 ;n iter = 0
2: ŷ1 = ŷ1 − offset
3: while n iter ≤MAX ITERS do
4: offset = offset

2 ;n iter = n iter + 1

5: if M̂y(
x̂1+x̂2

2 , ŷ1) ≤ thre then
6: ŷ1 = ŷ1 − offset
7: else
8: ŷ1 = ŷ1 + offset
9: end if

10: end while
11: return (x̂1, ŷ1, x̂2, ŷ2)

Ambiguity Alleviation. The ambiguous box problem is
mainly caused by the duplication of the Gaussian center
point in the heatmap Ĥdet, as shown in Fig. 1(a). With the
help of center line heatmap M̂ , there is a simple and clear
way to tackle this problem through

Ĥdet = Ĥα
det · (M̂x · M̂y)

β , (4)

where α and β are used to control the balance Ĥdet and M̂ .
Fig. 1(c) shows the result of multiplying Fig. 1(a) by center
line heatmap. Obviously, the heatmap in the red dotted circle
is significantly weakened.

Efficient Trapezoidal Network
More generally, we do not constrain the idea of ROIGuider
to only box instances. We extend it to the more general situ-
ation and design an efficient backbone to improve the over-
all performance of the model, named Trapezoidal Network
(TNet). With the help of high-level features to guide the
weighting of low-level features, the low-level features can
adaptively learn the features discriminability. In this way,
the backbone does not need too many channels to achieve
high performance.

The structure of TNet is shown in Fig. 4. The input image
I is firstly passed through feature extractor fRB to extract
features LI = fRB(I), where fRB consists of a number of
Residual Blocks (RB). Then LI passes through 1 × 1 and
3 × 3 convolutions respectively to generate the next depth
input features Ldi and Ldi+1, where d and i denote the depth
of network and the level of scale. For any depth d, we can
generate features {Ld0, Ld1, ..., Ldi } by employing the same
manner. It should be noted that each feature Ldi is merged
with the previous RB downsampled features Ldi−1. That is,

Ldi = fRB(L
d
i−1) + Ldi . (5)
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Finally, the outputs {Od0 , Od1 , ..., Odi } of depth d can be cal-
culated by

Cdi = C(S(Ldi+1), L
d
i ); (6)

Odi = GFM(Ldi+1, C
d
i ) + Cdi , (7)

where C and S represent concatenate and shuffle operation
respectively.
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Figure 4: The structure of TNet.

Total Loss
The keypoint ground-truth heatmaps are generated by apply-
ing the 2D Gaussian kernel around the keypoint locations.
In the keypoint heatmap loss Lkm, the peak of the Gaussian
distribution is treated as the positive sample while any other
pixel is treated as the negative sample. We use the modi-
fied focal loss like (Law and Deng 2018; Zhou, Wang, and
Krähenbühl 2019) as the objective function. Given the pre-
dicted keypoint heatmap K̂ and ground-truth heatmap K,
the Lkm can be calculated by

Lkm = −1
N

∑
p

{
(1− K̂p)

αlog(K̂p), Kp = 1

(1−Kp)
βK̂α

p log(1− K̂p), else,
(8)

where N is the number of annotated keypoints, and p de-
notes the each position of K̂ and K. We set the hyper-
parameters α = 2 and β = 4 in our work.

The final total loss L is composed of center point heatmap
loss Ldet, width-height map loss Lwh, offset map loss Loff ,
center line heatmap loss Lx and Ly , keypoint heatmap loss
Lkm and their corresponding weights. That is,

L = ωdetLdet + ωwhLwh + ωoffLoff
+ωxLx + ωyLy + ωkmLkm,

(9)

where ωkm = 3.0, ωwh = 0.1, and other weights are 1.0 in
our work. The Ldet, Lwh and Loff are the same as Center-
Net.

Experiments
In this section, we evaluate our approach on the COCO
dataset (Lin et al. 2014), which contains over 200, 000 im-
ages and 250, 000 person instances labeled with 17 key-
points. It is divided into train2017/val2017/test-dev2017
sets with 57k, 5k and 20k images respectively. Our mod-
els are trained on the train2017 set without using extra data.
We adopt the typical average precision (AP) and average re-
call (AR) as the evaluation metric. We report the inference
time (speed) of models using one batch size on the same

environment equipped with a single NVIDIA GTX 2080Ti
GPU, CUDA V10.0 and PyTorch 1.4. The inference time
includes model inference time with COCO max detections
(maxDets=20) and the post-processing time of getting the
final keypoint coordinates. In addition, we also conduct the
HPE separated model and person instance segmentation ex-
periments to verify the effectiveness and generality of our
approach.

Implementation Details
We use data augmentation with random scale between 0.6 ∼
1.5, random rotation between −45◦ ∼ +45◦, random trans-
lation between−40 ∼ +40 and random flip to crop an input
image patch. The aligned feature sizes are 1

16 , 1
32 and 1

64
of the training input size, respectively. We use the SGD op-
timizer for 95 epochs, with an initial learning rate of 1e-2
(dropped to 1e-3 and 1e-4 at the 70th and 85th epochs, re-
spectively). For the pre-training TNet, we only modify the
prediction layer to accommodate the classification problem
on the ImageNet (Krizhevsky, Sutskever, and Hinton 2012)
dataset.

Component Params Speed AP
(a) FPN-50 + ROIPooler 34.7M 13.5fps 57.5
(b) FPN-50 + ROIGuider 37.3M 18.0fps 60.5
(c) TNet-D1W64 + ROIGuider 20.1M 27.8fps 61.9

(d∗) + Fixed Extend Area 20.1M 27.2fps 62.2
(d) + Dichotomy Extended Area 20.2M 26.4fps 63.0
(e) + Ambiguity Alleviation 20.2M 26.4fps 63.2
(f) + ROIGuider (× 2) 26.9M 23.4fps 64.4

Table 1: Ablation study of different components on the
COCO val2017 set. ROIPooler represents the original com-
ponent with a series of convolutions used in Mask-RCNN. It
should be noted that experiments (d∗) and (d) are mutually
exclusive. All results are obtained with input size 384.

Ablation Study
The ablation study is conducted with input size 384 on the
COCO val2017 set. We present the number of parameters,
speed and AP to illustrate the effectiveness of each compo-
nent. The results are shown in Table 1.
ROIPooler vs. ROIGuider. To verify the effectiveness of
the proposed ROIGuider, we consider using Mask-RCNN’s
ROIpooler with a series of 3×3 convolutions as the baseline.
Compared with ROIPooler (a), our proposed ROIGuider (b)
has a considerable improvement (+3.0 AP) with faster speed
(+4.5 fps). This demonstrates that guiding and fusing corre-
sponding instance features at different levels can effectively
improve accuracy.
Backbone. We further design the backbone TNet based on
the idea of ROIGuider and we replace FPN to the TNet-
D1W64. It can be seen from (b) and (c) that, compared with
FPN, TNet can obtain 1.4 AP improvement by using only
half of the parameters, and it has considerable real-time in-
ference speed (27.8 fps). It is worth mentioning that the time
to complete the training is only 1/4 ∼ 1/3 of the FPN.
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Center Line Branch (CLB). Experiments (d) and (e) show
the effect of CLB to assist in extending the instance area
and alleviating the ambiguity of keypoints. The comparison
with (c) shows that the branch is very lightweight, only in-
creasing the parameter amount of 0.1M. The proposed Di-
chotomy Extended Area algorithm (d) can improve 1.1 AP
with a slight reduction in speed (1.4 fps). However, using a
fixed ideal ratio for all box instances to expand the area (d∗)
can only increase by 0.3 AP. Alleviating the ambiguity can
further increase 0.2 AP without reducing the speed.
Cascade ROIGuider. From the experiment (f), it can be ver-
ified that our cascade ROIGuider can further improve accu-
racy. Since the input feature size of ROIGuider is very low
(lower than 24 × 24), it does not bring a large amount of
calculation. The results show that the operation can improve
1.2 AP, only 3.0 fps speed drop.

ratio
thre 0.05 0.06 0.07 0.08 0.09 0.1 0.15

0.05 62.6 62.6 62.6 62.7 62.6 62.6 62.5
0.07 62.8 62.8 62.8 62.9 62.8 62.7 62.6
0.08 62.8 62.8 62.9 63.0 62.9 62.8 62.7
0.09 62.8 62.8 63.0 63.0 62.9 62.9 62.7
0.1 62.7 62.7 62.8 62.9 62.9 62.8 62.7
0.15 62.3 62.4 62.6 62.7 62.6 62.6 62.6

Table 2: The effect of ratio and thre in different settings. Re-
sults are obtained with input size 384 on the TNet-D1W64.

Method Params Speed AP
(a) Mask-RCNN (R50-FPN) 56.4M 14.9fps 60.7
(b) PifPaf (ResNet-50) 24.1M 9.2fps 62.9
(c) SimplePose + Flip 123.0M 2.2fps 65.8
(d) HigherHRNet-W32 28.6M 13.7fps 54.1
(e) + Adjust Refine 28.6M 6.3fps 63.6
(f) + Flip 28.6M 2.0fps 67.1
(g) Ours (TNet-D1W64) 26.9M 21.1fps 68.1
(h) + Flip 26.9M 12.4fps 69.5
(i) + 55 epochs (150 epochs) 26.9M 12.4fps 70.3

Table 3: Comparisons of running speed and parameters with
state-of-the-art single-model methods on the COCO val2017
set. HigherHRNet is trained 300 epochs. All results are ob-
tained with input size 512.

Different Settings in Dichotomy Extended Area
In the Dichotomy Extended Area algorithm, both the max
extended range (ratio) and the threshold (thre) of the cen-
ter line heatmap are the main parameters that affect the ac-
curacy. Table 2 shows the model accuracy (AP) of ratio
and thre in different settings. In order to reduce the num-
ber of iterations, the ratio we set is relatively small. It can
be seen from the results that AP first rises and then falls
with the increase of ratio and thre, and the thre = 0.08 and
ratio = 0.09 are a set of ideal parameters. In our experi-
ments, this settings of ratio and thre are robust under dif-

ferent models and input sizes. It can increase 1.1 ∼ 1.4 AP
steadily, without setting them separately for each situation.

Method Params
FLOPs

Speed
Memory AP

Hourglass (8-stage) 25.1M
19.5G

-
- 66.9

Simple (ResNet-50) 34.0M
4.0G

423sps
7829M 70.5

HRNet-W32 28.5M
7.7G

235sps
10955M 74.5

Ours (D3W64) 24.7M
7.2G

503sps
6645M 74.9

Table 4: Comparisons with state-of-the-art methods on the
HPE separated-model experiments during training. The re-
sults are obtained on 3*NVIDIA GTX 2080Ti GPUs with
a batch size of 64 per GPU and an input image size of
256× 192.

Comparisons of Running Speed and Parameters
We compare the performance of our model in terms of pa-
rameters, speed and accuracy with other state-of-art methods
(Mask-RCNN (He et al. 2017), PifPaf (Kreiss, Bertoni, and
Alahi 2019), SimplePose (Li, Su, and Wang 2020), High-
erHRNet (Cheng et al. 2020)) in the same environment. The
compared results are shown in Table 3. Our method has a
similar pipeline with Mask-RCNN (a). Compared with it,
we achieve a considerable improvement of 7.4 AP. However,
the amount of parameters (26.9M) is only half of its, and the
speed is faster (+6.2 fps). PifPaf’s network (b) is lightweight,
but the post processing of getting the final keypoints takes
a lot of time, accounting for more than 60% of the total
time. Compared with it, our method does not require com-
plex post processing and achieves the improvement of 5.2
AP and 2.3x speedup. SimplePose (c) makes improvements
to CMU-pose (Cao et al. 2017), but uses a larger backbone.
Our method only uses about 1 / 5 of the parameters, and
achieves 5.6x speedup and higher accuracy (+3.7 AP). The
post processing of HigherHRNet (d ∼ f) significantly im-
proves its accuracy, which will lead to a great reduction in
speed. For example, the officially provided model trained
300 epochs with input size 512 has the accuracy/speed of
54.1 AP/13.7 fps, 63.6 AP/6.3 fps after Refine operation
(identifying missing points), 67.1 AP/2.0 fps after flipping
test. Compared with HigherHRNet, the results show that our
method is significantly better than it in terms of accuracy
and speed, especially in the absence of refining operations
(+14.0 AP). It is worth noting that HigherHRNet is trained
300 epochs, and our model is only trained 95 epochs. We
further increase the number of epochs (total 150 epochs),
and our model can be further improved.

TNet on Separated-Model Experiments
In order to verify the effectiveness of the designed TNet,
we follow the general top-down process to conduct the ex-
periments on the separated model. We compare the memory
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Method Backbone Input Size AP AP50 AP75 APM APL AR
separated-model methods

Integral Pose (Sun et al. 2018) ResNet-101 256× 256 67.8 88.2 74.8 63.9 74.0 -
CPN (Chen et al. 2018) ResNet-Inception 384× 288 72.1 91.4 80.0 68.7 77.2 78.5

RMPE (Fang et al. 2017) PyraNet (Yang et al. 2017) 320× 256 72.3 89.2 79.1 68.0 78.6 -
Simple (Xiao, Wu, and Wei 2018) ResNet-152 384× 288 73.7 91.9 81.1 70.3 80.0 79.0

HRNet-W32 (Sun et al. 2019) HRNet-W32 384× 288 74.9 92.5 82.8 71.3 80.9 80.1
HRNet-W48 (Sun et al. 2019) HRNet-W48 384× 288 75.5 92.5 83.3 71.9 81.5 80.5

Ours TNet-D3W96 384× 288 75.8 92.6 83.6 72.7 81.4 81.1
single-model methods

CMU-Pose (Cao et al. 2017) ∗ - - 61.8 84.9 67.5 57.1 68.2 66.5
Mask R-CNN (He et al. 2017) ResNet-50-FPN ∼ 800 63.1 87.3 68.7 57.8 71.4 -

AE (Newell, Huang, and Deng 2017) ∗† Hourglass ∼ 512 65.5 86.8 72.3 60.6 72.6 70.2
PifPaf (Kreiss, Bertoni, and Alahi 2019) ResNet-152 ∼ 641 66.7 - - 62.4 72.9 72.2

SPM (Nie et al. 2019) ∗† Hourglass - 66.9 88.5 72.9 62.6 73.1 -
HigherHRNet (Cheng et al. 2020) ∗ HRNet-W32 ∼ 512 66.4 87.5 72.8 61.2 74.2 -
HigherHRNet (Cheng et al. 2020) ∗1 HRNet-W48 ∼ 512 67.8 88.3 74.8 62.5 75.2 72.3

Ours TNet-D3W96 ∼ 512 68.8 88.0 75.8 64.2 76.0 78.0

Table 5: Comparisons between different methods on the COCO test-dev2017 set. ”+” involving ensemble models for inferring.
”*” indicates using refinement. ”†” means using multi-scale test. ”1” using the improved version in mmpose (MMPose 2020).

usage and speed of training with the recent state-of-the-art
methods(Hourglass (Newell, Yang, and Deng 2016), Simple
(Xiao, Wu, and Wei 2018), HRNet (Sun et al. 2019)). For
fair comparisons with the previous top-down work, we use
the human detection results (55.8 AP) similar to (Xiao, Wu,
and Wei 2018; Sun et al. 2019) (56.0 AP).

The compared results are shown in Table 4. Compared
to the Simple (ResNet-50) model, our TNet-D3W64 model
uses fewer parameters while with an improvement of 4.4
AP, a faster training speed (+80 sps) and a lower memory
usage (-1184 MB). Compared with HRNet-W32, our TNet-
D3W64 model outperforms it by 0.4 AP but with nearly half
the memory consumption and a 2.2x speedup.

Method Input Size Params AP
Mask-RCNN (FPN-50) ∼ 384 42.3M 38.6
Mask-RCNN (FPN-50) ∼ 512 42.3M 41.6

Ours (TNet-D1W64) ∼ 384 20.2M 41.6
Ours (TNet-D1W64) ∼ 512 20.2M 45.1

Table 6: The results of person instance segmentation on the
COCO val2017 set.

Person Instance Segmentation
We also conduct instance segmentation (person category)
experiments to verify the generality of our method. We sim-
ply change the number of channels in the output layer to fit
the person segmentation task. Therefore, there is no signifi-
cant change in the complexity of our model. The parameters
of training are not refined and most of them are inherited
from the pose estimation task. Table 6 shows the results of
our method in comparison with the Mask-RCNN baseline.
Our models can outperform Mask-RCNN 3.0∼ 3.5 AP with
only half of the parameters. This demonstrates the general-
ity of our model to handle different tasks with competitive
performance.

Figure 5: Qualitative results of our model on the COCO
dataset (drawn with different color maps). From top to bot-
tom are the results of the separated-model HPE, single-
model HPE and person instance segmentation, respectively.

Results on the COCO tes-dev2017 Set
Table 5 shows the results on the COCO test-dev2017 set.
Most methods use refinement or multi-scale test to im-
prove accuracy. Without bells and whistles, our models can
achieve state-of-the-art results on both single-model and
separated-model experiments. It is worth noting that our
models also have great advantages in speed. We also show
some qualitative results on the COCO dataset in Fig. 5.

Conclusion
In this paper, we propose a simple yet efficient pose esti-
mation method, which is equipped with ROIGuider, Center
Line Branch (CLB) and TNet. The ROIGuider can enhance
the robustness of regressing keypoints. We propose the CLB
to solve the defective box and ambiguous box problems. We
further design a new backbone TNet to improve the overall
performance of our model. The experiments are conducted
on the COCO dataset and the results show that our model
can achieve state-of-the-art accuracy and speed.
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