
IA-GM: A Deep Bidirectional Learning Method for Graph Matching

Kaixuan Zhao, Shikui Tu, Lei Xu
Department of Computer Science and Engineering, Shanghai Jiao Tong University

Centre for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University
{zhaokx3, tushikui, leixu}@sjtu.edu.cn

Abstract

Existing deep learning methods for graph matching
(GM) problems usually considered affinity learning
to assist combinatorial optimization in a feedforward
pipeline, and parameter learning is executed by back-
propagating the gradients of the matching loss. Such a
pipeline pays little attention to the possible complemen-
tary benefit from the optimization layer to the learning
component. In this paper, we overcome the above lim-
itation under a deep bidirectional learning framework.
Our method circulates the output of the GM optimiza-
tion layer to fuse with the input for affinity learning.
Such direct feedback enhances the input by a feature
enrichment and fusion technique, which exploits and
integrates the global matching patterns from the devia-
tion of the similarity permuted by the current matching
estimate. As a result, the circulation enables the learn-
ing component to benefit from the optimization process,
taking advantage of both global feature and the em-
bedding result which is calculated by local propagation
through node-neighbors. Moreover, circulation consis-
tency induces an unsupervised loss that can be imple-
mented individually or jointly to regularize the super-
vised loss. Experiments on challenging datasets demon-
strate the effectiveness of our methods for both super-
vised learning and unsupervised learning.

Introduction
Many correspondence and similarity learning problems can
be naturally represented as graph matching (GM) problems
in real world applications such as shape matching (Belongie,
Malik, and Puzicha 2002), multimedia retrieval (Chu and
Chang 2015), object tracking and categorization (Duchenne,
Joulin, and Ponce 2011), etc. GM refers to establishing
correspondences between two graphs or among multiple
graphs, which are encoded by 1st-order node information
and 2nd-order structural information, even higher-order fea-
tures (Lee, Cho, and Lee 2011). In other words, GM is
to find a one-to-one mapping f : VB → VA between the
nodes of the two separate graphs such that (u, v) ∈ EB iff
(f(u), f(v)) ∈ EA, where GA = (VA, EA) and GB =
(VB , EB), with |VA| = |VB | = n, which is said to be exact
GM or isomorphism. However, due to the inevitable noise

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and deformation in practical applications, there is rarely ex-
actly the same two graphs. People consider the more loose
case, i.e., finding the correspondence between vertex sets of
given two graphs, so that the nodes and edges error of the
two graphs is minimized, which is called the inexact graph
matching (Livi and Rizzi 2013) or subisomorphism.

When taking the 2nd-order or edge features into consid-
eration, and suppose |VA| = n1 ≤ |VB | = n2, the pair-wise
graph matching problem can be formulated as the follow-
ing Lawler’s quadratic assignment problem (QAP) (Lawler
1963):

J(X) = xTKx, x = vec(X), (1)

X ∈ {0, 1}n1×n2 , X1n2 = 1n1 , XT1n1 � 1n2 .

where x denotes a column-wise vectorized replica of X,
K ∈ Rn1n2×n1n2 is the so-called affinity matrix, which is
constructed as a square symmetric positive matrix. Specifi-
cally, Kia;jb measures the similarity of attributes between
the pairs of candidate correspondences (i, j) ∈ EA and
(a, b) ∈ EB , where a diagonal element means node-to-
node affinity, and a non-diagonal element contains edge-
to-edge affinity. X is called assignment matrix indicating
the node correspondence, and it is a permutation matrix.
x ∈ {0, 1}n1n2×1 denotes a column-wise vectorized replica
of X. The general GM by QAP is known to be NP-hard, and
it is intractable to acquire a global optimum in the case of
large graphs. Therefore, researchers study approximate al-
gorithms to seek inexact solutions.

Traditional GM methods are mostly investigated on pre-
defined affinity models, e.g., the elements of K is given by
a Gaussian kernel with Euclidean distance between the fea-
tures of nodes and edges. Then, the assignment matrix X is
solved by either a combinatorial optimisation algorithm (Xu
and Oja 1990; Conte et al. 2004; Livi and Rizzi 2013) or a
learning algorithm (Xu 1994, 1995; Dang and Xu 2000; Xu
and King 2001; Liu, Qiao, and Xu 2012). However, prede-
fined hand-crafted structures and affinity functions are lim-
ited to capture the inherent structure of a real-world match-
ing problem. A better GM approximation algorithm does not
necessarily lead to higher matching accuracy, if the affin-
ity model is inappropriate for the practical GM task with
noise and uncertainty. Early methods tackled this issue by
learning a set of parameters in the affinity function (Cae-
tano et al. 2009; Leordeanu, Sukthankar, and Hebert 2012).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3474

Recently, deep learning frameworks were adopted in (Zan-
fir and Sminchisescu 2018) for learning the affinity matrix,
forming an end-to-end model for GM. It should be noted
that this line of efforts on learning affinity is parallel to the
previous research on devising approximate GM algorithms
using predefined affinity. Later in (Wang, Yan, and Yang
2019a), deep graph embedding models were employed to
learn both intra-graph and cross-graph affinity functions, re-
laxing a special form of Lawler’s QAP as a linear assignment
problem that can be efficiently solved. Furthermore, a QAP
network was presented to directly learn with the affinity ma-
trix, and then the matching problem became a vertex clas-
sification task (Wang, Yan, and Yang 2019b). However, the
existing methods of learning GM mainly focus on devising a
learning component to assist the combinatorial optimization
in a feedforward pipeline, paying little attention to the pos-
sible feedback benefits from the optimization component to
the learning component.

A new direction is firstly suggested under the bidirectional
intelligence framework (Xu 2019b), featured by two key
ideas. The first is to alternatively perform a bottom-up learn-
ing and a top-down optimizer to benefit from each other.
The second is feature enrichment (Xu 2018) that facilitates
learning affinity with chessboard-like inputs for solving trav-
eling salesman problem (TSP) and GM. One general scheme
IA-DSM is further suggested in (Xu 2019a) to tackle dou-
bly stochastic matrix (DSM) featured combinatorial tasks,
including TSP and GM. Here, we concentrates on the GM
task to consolidate the IA-DSM scheme by further develop-
ing an IA-DSM-GM (or shortly IA-GM) method, with not
only the bottom-up and the top-down improved to suit the
GM problems but also supervised and unsupervised learn-
ing performed individually or jointly.

Our main contributions are summarized as follows:

• We develop an IA-GM method that alternates a top-down
GM optimization component and a bottom-up graph
structural embedding component, such that the two com-
ponents can benefit from each other. The top-down imple-
mentations suggested in (Xu 2019a) is simply replaced by
the Sinkhorn and Hungarian computation. The bottom-up
is improved by learning graph neural network instead of
an ordinary deep learning, with a feature enrichment and
fusion technique to integrate the feedback directly from
the optimization component and the similarity matrix be-
tween two input graphs.

• This IA-GM solver can be trained not only in an unsuper-
vised way as suggested in (Xu 2019a) but also in a su-
pervised way as those recent studies with help of ground-
truth correspondences. With these ways implemented ei-
ther individually or jointly, one is always benefited from
a cycling consistency induced by bidirectional iteration.
The consistency is featured by a cross-entropy loss be-
tween the assignment estimation through combinatorial
optimization and the matching probability via learning.

• This IA-GM method is further extended to be able to learn
the features over both directed and undirected graphs.
This is fulfilled by introducing a weights-shared residual
gated graph neural network (SR-GGNN), where we fuse

each node’s own features and it’s incoming and outgoing
edges information into next level.

• Experiment results including ablation studies demonstrate
the effectiveness of our presented components, i.e., the
SR-GGNN, learning the similarity between the graphs,
learning the fusion of extracted similarity with the GM
solution feedback. Results on benchmark datasets indi-
cate that our method outperforms peer methods in both
supervised and unsupervised learning.

Related Work
Advances in Learning GM
Traditionally, building affinity model and solving the cor-
respondence problem are two independent steps, and the
affinity functions are usually hand-crafted. In 2009, (Cae-
tano et al. 2009) first proposed the use of parametric mod-
els to learn affinity. More generally, (Cho, Alahari, and
Ponce 2013) designed a unified parameterized graph struc-
ture learning model, by turning a joint feature map into a
vector, where each element denotes node-to-node (or edge-
to-edge) similarity. A discriminative score function is given
by introducing weights on all elements of this feature map.
This formulation includes several learning methods as spe-
cial cases, e.g., (Torresani, Kolmogorov, and Rother 2008;
Leordeanu, Sukthankar, and Hebert 2012). However, such
predefined parametric affinity model is prone to the limited
flexibility of the affinity metric in the real-world matching.

Recently, a seminal work by (Zanfir and Sminchisescu
2018) provided an end-to-end model that learns an appropri-
ate affinity matrix K ∈ Rn1n2×n1n2 for GM problem, but
the affinity learning and GM optimization are still consid-
ered in an orthogonal way. Later, deep graph embedding net-
works were adopted in (Wang, Yan, and Yang 2019a) to cap-
ture the high-order structure into a node-wise affinity matrix,
relaxing the QAP into a linear assignment problem, and (Yu
et al. 2020) proposed a loss function that includes the Hun-
garian attention mechanism. Regarding the affinity matrix as
an association graph for graph embedding, a network solver
was proposed in (Wang, Yan, and Yang 2019b) for Lawler’s
QAP. Although learning has been shown extremely help-
ful for solving the GM optimization, whether the optimiza-
tion component can assist the learning part in turn is not
investigated. Different from (Zanfir and Sminchisescu 2018;
Wang, Yan, and Yang 2019a,b; Yu et al. 2020) which consid-
ers learning and optimization in a feedforward pipeline, our
method cycles the GM solution to further enrich the struc-
tural features, correct or enhance the affinity learning. There-
fore, our method can make the learning component and op-
timization component benefit from each other.

A general bidirectional learning scheme, called IA-DSM,
was first sketched in (Xu 2019a) for solving DSM featured
combinatorial task, under the framework of bidirectional in-
telligence system. In the system, two domains are defined:
A-domain, which denotes the real bodies or patterns in the
Actual world, and I-domain, which denotes the Inner cod-
ing domain. The IA-DSM is featured by an alternation of
A-mapping (from A-domain into I-domain along inbound
direction) and I-mapping (from I-domain into A-domain

3475

along outbound direction). Taking traveling salesman prob-
lem (TSP) for example, it was suggested in (Xu 2019a) to
follow AlphaGo (Silver et al. 2016) to use a Convolutional
Neural Network (CNN) to implement the A-mapping. The
CNN embeds the current state into a policy and a value, to
guide the I-mapping which is implemented by a class of neu-
ral networks algorithms for iteratively solving TSP.

Our methods falls in the framework of IA-DSM, but has
the following developments. First, there is no detailed im-
plementation of IA-DSM on the GM task in (Xu 2019a), and
our method fills in the blank. Actually, our method is the first
one to show that the IA-DSM works well for combinatorial
tasks. Second, we use graph neural networks (GNN) instead
of CNN for the A-mapping. Third, we use the optimization
process by the Sinkhorn and Hungarian computation for the
I-mapping.

GNN for Graph Representation
For GM, the representation learning of each graph in a
pair should be able to influence each other through some
mechanism such as sharing weights and cross-graph at-
tention, which is more conducive to learning affinity. Re-
cently, works on GM have used GNNs to encoder the graph
features. Graph convolutional network (GCN) module was
adopted for learning embedding on individual graphs in
(Nowak et al. 2017; Wang, Yan, and Yang 2019a), on the
association graph by the affinity matrix for QAP in (Wang,
Yan, and Yang 2019b). Cross-graph communication was fur-
ther considered in (Li et al. 2019; Wang, Yan, and Yang
2019a).

We also use GNN for graph embedding in the learning
component. We devise our network, called SR-GGNN, by
modifying the gated GNN in (Li et al. 2015), and we fuse
each node’s own feature and it’s incoming and outgoing
edges information into next level. This multi-directional in-
formation dissemination and merge process is more useful
than the graph embedding in (Wang, Yan, and Yang 2019a)
to learn higher-order features, especially on directed graphs.
For the output for each node, we introduce residual learning
to optimize feature representation performance.

Methods
Overview of Our Method
The proposed bidirectional learning method for the task
of GM falls in the IA-DSM framework (Xu 2019a), and
thus is called as IA-DSM-GM or shortly IA-GM. The
scheme sketched in Fig.6 of Ref.(Xu 2019a) is refined and
also extended into the one shown in Fig.1(a). It consists
of a top-down I-mapping (blue arrows), a bottom-up A-
mapping (purple arrows). The top-down optimization com-
ponent takes the probabilistic assignment matrix U0 as input
and computes the optimal matching matrix V∗ at the output
which satisfies the binary constraints as given in Eq.(1). The
bottom-up learning component is fed with the pair of graphs
extracted from real-world images, learns the node-wise and
structure-wise affinity across graphs by a GNN module, fuse
all the information by certain network layers, and finally

computes a policy, i.e., the probability matrix P whose en-
tries indicate the confidences of node correspondences be-
tween two graphs. The policy P is used to guide matching
procedure of the optimization component effectively search-
ing for the optimal matching against noise. The key differ-
ence from those recent studies featured by merely feedfor-
ward pipeline is that our bidirectional method further enable
the optimization component to assist the learning part. This
is achieved by a direct feedback of the estimate GM solu-
tion into the graph embedding, and fulfilled by a proposed
technique called feature enrichment and fusion.

For fair comparisons, we try to keep the configuration de-
tails of the learning component and the optimization compo-
nent, similar to a recent state-of-the-art method (Wang, Yan,
and Yang 2019a), i.e., we use GNN for graph embedding and
use Sinkhorn layer and Hungarian computation for match-
ing procedure. We also present an improvement by devising
a SR-GGNN, as given in Fig.1(c)), to learn the intra-graph
and cross-graph affinity, the high-order structure, more effi-
ciently than the GNN in (Wang, Yan, and Yang 2019a). The
permutation cross-entropy loss was also adopted to measure
the error between predicted DSM and ground truth permu-
tation matrix for supervised training. It should be noted that
the development from the feedforward pipeline in (Wang,
Yan, and Yang 2019a) to our bidirectional IA-GM can also
be generalized to (Wang, Yan, and Yang 2019b; Wang et al.
2020) to directly learn Lawler’s QAP. The IA-alternation of
learning and optimization will iteratively improve the GM
solution, better than the corresponding feedforward one.

Feature Extracting
There exist two ways for keypoints feature extraction. One
is shape context (Belongie, Malik, and Puzicha 2002) for
the CMU House/Hotel datasets, getting the feature h(0) as:

h(0) = [h1, . . . , hn], hi = Shape Contexts(Pi) (2)

where Pi denotes the i-th node, Shape Contexts(Pi) is re-
ferred to (Belongie, Malik, and Puzicha 2002) for details.

The other way constructs the feature by interpolating on
CNN’s feature map for PASCAL VOC Keypoints datasets.
In line with (Wang, Yan, and Yang 2019a), we adopt the
VGG-16 architecture (Simonyan and Zisserman 2014) to ex-
tract the node-features U from the output of relu4 2 layer
and the edge-features F from relu5 1 layer, i.e.,

hi = fcat(Interp(Pi,U), Interp(Pi,F)) (3)

where Interp(Pi,U/F) means bilinear interpolation of
point Pi from U or F, and fcat denotes concatenation.

Representation Learning for Graph Affinity
For the graph embedding module, we use a Siamese net-
work (Bromley et al. 1994), which consists of twin net-
works, for two input graphs respectively. The parameters
between the twin networks are shared, encouraging that two
similar graphs should be encoded close to each other in the
embedding space. The node embedding is learnt from its
node attributes and from neighborhood structure propaga-
tion. Specifically, we devise each of the twin networks based

3476

Figure 1: An overview of IA-GM. (a) The pipeline of IA-GM for graph matching problem, where fsimilarity and fenrich are
implemented by Eq.(7) and Eq.(9) respectively; (b) An example graph to explain the construction of adjacency matrix; (c) The
structure of the residual gated graph neural network with weights-sharing.

on Gated GNN (GGNN). Initialized at h(0) by Eq.(2)&(3)
the embedding h after l + 1 iterations is computed as:

h
(l+1)
i = fGRU (h

(l)
i ,a

(l)
i), (4)

a
(l)
i = faggr(fin(A

in
i ,h

(l)
i), fout(A

out
i ,h

(l)
i), fself (h

(l)
i))

where the adjacency matrix of a graph A = [Ain;Aout] ∈
Rn×2n, Ain and Aout encodes incoming edges and outgo-
ing edges respectively. An example of adjacency matrix is
illustrated in Fig.1(b). The separation of incoming and out-
going edges allows the model to deal with both directed and
undirected graphs.

It can be observed from Eq.(4) that multi-directional in-
formation transmission is enabled for each node. fin, fout
and fself are the functions to pass information along the in-
coming edges of the node, via the outgoing edges, within the
node itself, respectively. Here, we adopt the simple linear
mapping for the above three message-passing functions. In-
stead of a

(l)
i =

∑
j→i h

(l)
j in the original GGNN, all the in-

formation is aggregated by the function faggr, which is im-
plemented as a concatenation followed by a fully-connected
layer. Then, the aggregated information is fed into a gated
recurrent unit (GRU) to update the embedding vector, with

the GRU function fGRU (h
(l)
i ,a

(l)
i) given by:

z
(l+1)
i = σ(Wzh

(l)
i + Uza

(l)
i)

r
(l+1)
i = σ(Wrh

(l)
i + Ura

(l)
i)

h̃
(l+1)
i = tanh(Wh(h

(l)
i

⊙
r
(l+1)
i) + Uha

(l)
i)

h
(l+1)
i = (1− z

(l+1)
i)

⊙
h
(l)
i + z

(l+1)
i

⊙
h̃
(l+1)
i

(5)

where z and r are the update and reset gates,
⊙

is the
Hadamard point-wise multiplication operator.

Taking the idea of residual network (He et al. 2016), we
compute the final embedding xi for the i-th node by adding
a skip connection from h(0) to h(L),

xi = Relu
(
g(h

(L)
i) + Wsh

(0)
i

)
(6)

where g is a fully-connected layer, L is the layer number
of GGNN, Ws is a parameter to match the dimensions
via shortcut connections. We call the above procedure by
Eq.(4)-(6) as weights shared residual gated graph neural
network (SR-GGNN). The details of SR-GGNN are summa-
rized in Fig.1(c). Compared with the embedding network by
(Wang, Yan, and Yang 2019a), our SR-GGNN not only en-
hances the encoding of structure affinity between two graphs
into the node-to-node affinity, allowing for more accurate re-
duction of the affinity matrix K in Eq.(1) into a linear one,
but also allows to process directed graph data and accelerate
the training process.

3477

For a graph with n nodes, the graph embedding is given
by X = [x1, . . . ,xn]. Next, we calculate the similarity ma-
trix between two input graphs via cosine similarity or vector
inner product:

B = fsimilarity(Λ1X1,Λ2X2) (7)

where Λ1,Λ2 ∈ Rd×d are learning parameters, and X1, X2

are the graph representations of two graphs respectively.

Feature Enrichment and Affinity Fusion
We directly feed the output by the top-down optimization
component, i.e., the permutation or matching matrix V∗ for
the node correspondence, back into the learning component.
In an intermediate training step, the matrix V∗ may be an
inexact but close to optimal solution, and the information of
how good the current approximation is to the optimal one
is helpful for the embedding component to adjust the pa-
rameters. In addition to backpropagating the error gradients,
we propose a feature enrichment and fusion technique to ap-
propriately exploit this direct feedback, enhancing the graph
structure affinity embedding. This can be fulfilled by notic-
ing the following matching consistency:

X2 ← (V∗)TX1; X1 ← V∗X2 (8)
where X1,X2 ∈ Rn×d are embeddings of two input graphs
with feature dimension d. Based on the correspondence by
Eq.(8), we fuse the graph affinity in the embedding space
with the one permuted by V∗ in a linear mixture:

B∗ = α1B + α2B
′

(9)

where B is given by Eq.(7), and B
′

is the similarity between
the embeddings of the permuted graphs, being computed by
replacing X1,X2 with V∗X2, (V∗)TX1 in Eq.(7). α1 and
α2 are the contribution ratios for the two terms. For super-
vised learning, we trust the learning component (B term)
more when datasets is simpler, and conversely we trust the
optimization component (B

′
term) more. For unsupervised

learning, we set a larger ratio of α2/α1 to optimize the so-
lution space iteratively, and more details will be discussed
in the experimental section. Finally, B∗ is considered as a
chessboard-like image as illustrated in Fig.1(a), and fed into
the next network layers for further processing.

The IA Alternation
Our method is featured by an alternation of learning com-
ponent and optimization component. Since the two com-
ponents corresponds to A-mapping and I-mapping respec-
tively, we called it IA-alternation following the convention
in (Xu 2019b). GM is to optimize an objective, e.g., Eq.(1),
with respect to a permutation matrix. Similar to (Wang, Yan,
and Yang 2019a), the above graph embedding model allows
reducing the second-order affinity matrix K into a linear
one, and thus GM can be subsequently solved efficiently by
Sinkhorn normalization and Hungarian computation.

Based on the similarity B∗ computed by Eq.(9), we cal-
culate the probability matrix P, which satisfies P = [pij]
and 0 ≤ pij ≤ 1,

∑
j

pij = 1 as follows:

P = F (B∗,W) = softmax(W � αB∗) (10)

where W ∈ Rd×d is a parameter to be learned, α is a large
super-parameter used to push the probability values towards
zero or one. Then, we assign P to be U0,

U0 = P. (11)

U0 is regarded as the linear affinity matrix, and is taken as
an initialization to guide the Sinkhorn iterative computation
for searching a good DSM U∗.

Following (Adams and Zemel 2011), the Sinkhorn nor-
malization S(X) is defined recursively for 1 ≤ k ≤ K as:

Sk(X) =

{
exp(X), if k = 0
τc(τr(S

k−1(X))), otherwise.
(12)

U∗ = Sinkhorn(U0) = SK(U0/τ) (13)
where τc(X) = X� (1n1T

nX) is the column normalization
operator and τr(X) = X � (X1n1T

n) is the row normal-
ization operator, with� denoting the element-wise division.
When given the number of iterations K, we can calculate
a DSM via Eq.(13). τ is an introduced temperature param-
eter (Emami and Ranka 2018). In the limit τ → 0, each
element of U∗ is closer to one or zero, i.e., U∗ is closer to a
permutation matrix. To satisfy the binary constraints of per-
mutation matrix, we discretize U∗ via Hungarian algorithm,
and obtain permutation matrix V∗ as the predicted solution:

V∗ = Hungarian(U∗),V∗ = [v∗ij], i, j = 1, ..., n. (14)

It should be noted that the Eq.(11) passes the learning
output P to the input of the matching procedure, while the
Eq.(9) feeds the matching output V∗ back to the learning
component. This completes a circle of IA-alternation. The
matrix P encodes the affinity between graphs via graph em-
bedding, and it serves like a searching policy in AlphaGo to
guide the optimization component. The predicted GM solu-
tion V∗ enhances the affinity learning by feeding back the
deviation of the similarity permuted by V∗, so that the affin-
ity is learnt more appropriate for the GM optimization to cal-
culate correct correspondence. Therefore, the IA-alternation
benefits the algorithm from both sides.

Loss Function
We utilize the ground truth label to supervise the end-to-
end training of our method. The objective is to minimize the
following permutation cross-entropy loss:

min− 1

n

∑
i,j

[
ugtij ln u∗ij + (1− ugtij) ln (1− u

∗
ij)
]
, (15)

where U∗ = [u∗ij], Ugt = [ugtij], u
gt
ij ∈ {0, 1} denotes the

ground truth permutation matrix. Proposed in (Wang, Yan,
and Yang 2019a), the permutation loss has been demon-
strated its effectiveness for the combinatorial nature GM,
better than the structured max-margin loss (Cho, Alahari,
and Ponce 2013) and the pixel offset loss (Zanfir and Smin-
chisescu 2018).

In addition to the above supervised loss, our method can
also be extended to work without supervision. This nature is
induced by a cycling consistency between the affinity learn-
ing output and matching optimization output during the IA-
alternation. Specifically, we maximize the index alignment

3478

Method

Accuracy(%) Class
aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

GMN 37.24 51.34 49.71 46.60 76.34 70.73 64.47 61.32 34.41 55.53 60.10 56.24 57.72 52.89 33.96 73.60 62.24 42.26 83.39 89.48 57.98
PIA-GM 49.68 62.07 58.88 55.93 76.49 70.54 68.51 69.72 38.30 60.28 49.28 61.07 61.60 61.71 45.03 79.50 64.60 54.35 82.13 90.03 62.97
PIA-GM(SR-GGNN) 49.84 66.92 59.61 54.23 76.82 76.95 68.22 70.23 38.42 62.67 44.14 64.97 66.75 57.76 44.62 81.32 66.32 52.65 79.70 89.85 63.60
PCA-GM 50.23 61.32 60.52 54.19 77.87 73.65 68.88 69.98 39.86 63.01 52.48 63.90 62.94 64.52 44.08 82.03 68.23 51.90 77.50 90.93 63.90
Ours 51.57 66.60 63.08 56.01 80.07 74.05 68.01 72.06 38.88 65.69 73.64 65.05 67.12 66.08 44.94 82.01 68.12 59.38 78.46 90.88 66.58
PCA-GM* 51.67 61.98 68.24 55.65 80.82 71.64 74.43 66.49 38.45 59.90 73.44 59.07 56.97 60.49 43.76 88.38 58.78 53.78 90.21 90.66 65.24
Ours* 53.91 67.73 68.79 60.15 80.28 75.06 76.96 72.00 40.23 65.55 79.56 65.36 66.16 67.43 46.28 87.39 65.41 58.51 89.36 90.68 68.84

Table 1: Supervised learning on Pascal Keypoints datasets. Methods with superscript * denote in-class training and testing,
otherwise cross-class. The best results for each semantic class and average accuracy are marked in bold.

by cross-entropy between probability matrix P from the
learning component and matching matrix V∗ by the opti-
mization component, i.e., aligning v∗ij with pij :

max
∑
i,j

v∗ij ln pij +R(θ) (16)

where R(θ) = −‖θ‖2 is a regularization term over the pa-
rameters θ. This comes from Equation (7) of Ref.(Xu 2019a)
and is similar to the AlphaGo Zero’s cross-entropy loss be-
tween the neural network’s move probability and the tree
search policy (Silver et al. 2017). It is different from max-
imizing the correlation between the confidence matrix and
its binary version by the power method (Leordeanu, Suk-
thankar, and Hebert 2012). It is noted that the Eq.(15) and
Eq.(16) can be optimized individually or jointly.

Experiments
In this section, we evaluate our model on benchmark
datasets. Consistent with the literature, we define the match-
ing accuracy as 1

n (V
∗∧Vgt), where V∗ ∈ {0, 1}n×n is the

GM solution, ∧ is the Logical AND, and Vgt is the ground
truth permutation matrix.

Supervised Learning
We use PASCAL VOC dataset with keypoints annotation
(Bourdev and Malik 2009) for the case of supervised learn-
ing. The dataset contains 20 semantic classes with 3510
pairs of annotated examples for training and 841 pairs for
testing. PASCAL Keypoints is a challenging dataset because
there are not only differences in angle, size and style be-
tween the paired images, and but also inaccurate keypoints
information and varying number of keypoints from one class
to another. For fair comparisons, we construct training and
testing sets according to the following two scenarios:
• cross-class: Each pair of data used for training and testing

is randomly selected from all 20 semantic classes.
• in-class: For each class, we build a random subset for

training, while the rest are for testing.
We include for comparisons previous closely-related GM

methods: GMN (Zanfir and Sminchisescu 2018), intra-graph
affinity based GM (PIA-GM) and cross-graph affinity based
GM (PCA-GM) (Wang, Yan, and Yang 2019a), and PIA-
GM(SR-GGNN). The PIA-GM(SR-GGNN) is implemented

by replacing the deep graph embedding module GCN with
our SR-GGNN module, while keeping other components of
PIA-GM unchanged. It is included as a baseline to evaluate
the effectiveness of our SR-GGNN component.

The supervised version of our method is implemented
by Eq.(15) Here, we provide the details for several key
parts. Pretrained VGG16 is used to extract features for affin-
ity learning. In practice, we find that the layer number L
of the modified GRU computation by Eq.(4) is best set at
L = 1, because stacked multi-layer network may cause
over-smoothing problem for the propagation of node em-
bedding. The more stacked layers, the more neighbors of the
node will be involved, and then the final representations of
all nodes tend to be consistent. The parameters Λ1 and Λ2 in
Eq.(7) are initialized as I + ε, where I an identity matrix, ε
is a random perturbation matrix with entries generated from
a uniform distribution U [−1/

√
d, 1/
√
d], and d is the fea-

ture dimension. For Eq.(10), we initialize W as 1n×n + ε
with 1n×n being an n× n all-one matrix, and set α = 40 to
increase the difference between probability values.

We set α1 = 0.75 and α2 = 1.25 in Eq.(9) to trust B
′

term more because of this complex datasets of high variation
and noise. In practice, we found that values satisfying α1 ∈
[0.5, 1.5], α1 + α2 = 2, actually lead to a small variation in
accuracy. We set the number of IA-iterations to 4 for VOC
datasets. In Eq.(13), technically the temperature parameter
τ → 0 should be close to zero as much as possible, but
in practice, the too-low temperature usually leads to high
variations in gradients. Thus, we use τ = 0.05 as default
hyperparameter. Delaunay triangulation is adopted to build
graphs.

The results of supervised learning are shown in Table 1.
It can be observed that our method is the best for most se-
mantic classes and also achieves the highest average accu-
racy, under either cross-class or in-class scenarios. As ex-
pected, the in-class scenario is easier than the cross-class
one. Also, we notice that PIA-GM is improved to be close
to PCA-GM when using our SR-GGNN module instead of
using GCN for intra-graph affinity learning in (Wang, Yan,
and Yang 2019a). It implies that our SR-GGNN is more ef-
fective in graph structure embedding. The slight advantage
of PCA-GM over PIA-GM(SR-GGNN) indicates that it is
still useful to use cross-graph information. Comparing with
PCA-GM, our proposed method achieved a 2.7% improve-
ment for cross-class, and 3.6% improvement for in-class.

3479

Next, we extend our experiments on directed graphs.
We use the Cars and Motorbikes pairs (Leordeanu, Suk-
thankar, and Hebert 2012) to compare with other directed
GM methods. This dataset consists of 30 pairs of car im-
ages and 20 pairs of motorbike images (60 percent for train-
ing and 40 percent for testing), the number of inliers for
each pair ranges from 15 to 52. This dataset is simpler
than the PASCAL VOC Keypoints so that the original fea-
tures space has rich information to learn the correspondence.
Therefore, we set α1 = 1.25 and α2 = 0.75 in Eq.(9)
to trust B term more. As shown in Tab.2, compared with
PM (Zass and Shashua 2008), SMAC (Cour, Srinivasan,
and Shi 2007), IPFP-S (Leordeanu, Hebert, and Sukthankar
2009), RRWM (Cho, Lee, and Lee 2010) and FGM-D (Zhou
and De la Torre 2015), our method achieved the highest av-
erage accuracy. It should be noted that our method does not
additionally compute the directional edge affinity, but only
use the basic information, i.e., the direction of the edges.

Dataset

Accuracy(%) Method
PM SMAC IPFP-S RRWM FGM-D Ours

Cars 28.2 74.4 81.0 89.6 89.7 94.8
Motorbikes 36.2 82.6 81.2 92.1 95.5 92.6

mean 32.2 78.5 81.1 90.9 92.6 93.7

Table 2: Directed GM on Cars/Motorbikes datasets.

Unsupervised Learning
For unsupervised learning, our network is implemented via
Eq.(16). We perform our method on the CMU House/Hotel
datasets (House: 111 images and Hotel: 101 images) for
comparisons with existing unsupervised learning methods.
We conduct experiments under the cross-class scenario.
Since the CMU House/Hotel datasets are simpler than the
VOC datasets, the contribution of feature enrichment B

′
by

Eq.(9) is reliable. Then, we increase the ratio of α2/α1, and
set α1 = 0.5 and α2 = 1.5 to balance the best perfor-
mance. The remaining hyperparameter settings are consis-
tent with supervised learning. Table 3 summarizes the ex-
periment results, where the results of other methods come
directly from (Leordeanu, Sukthankar, and Hebert 2012). It
can be observed that our method outperforms the existing
unsupervised methods for GM. Matching examples can be
seen in Fig.2. Therefore, our unsupervised method is also
very effective to solve real world GM problems.

Method

Accuracy(%) Dateset
house hotel mean

(Caetano et al. 2009), sup <84 <87 <85.5
(Leordeanu and Hebert 2008), sup 99.8 94.8 97.3
(Leordeanu, Sukthankar, and Hebert 2012), unsup 99.8 94.8 97.3
Ours, unsup 99.5 97.8 98.7

Table 3: Unsupervised learning on CMU House/Hotel
datasets. (sup: supervised; unsup: unsupervised)

Figure 2: Examples of matching on the different datasets.

Ablation Studies
We evaluate the roles of the key parts of our model by adding
them one-by-one to a simple baseline. Here, the baseline
is a feedforward pipeline that replaces the GCN module in
PIA-GM (Wang, Yan, and Yang 2019a) with a simple fully-
connected (FC) layer. Then, we replace the FC layer with
SR-GGNN module for graph embedding by Eq.(4)-(6), ac-
tivate the direct feedback in feature enrichment and fusion
by setting α2 > 0 in Eq.(9), activate the parameter learn-
ing in Eq.(7) for similarity, activate the parameter learning
in Eq.(10) for the probability matrix. According to the re-
sults shown in Table 4, activating the direct feedback in the
part of feature enrichment and fusion contributes a high gain
(3.06%) to the accuracy. Actually, if comparing to the accu-
racy in Table 1, the gain from GCN to SR-GGNN is 0.63%,
much smaller than 3.06%, indicating that the direct feedback
to assist the affinity learning is indeed the main factor for
performance improvement over the feedforward pipelines.

SR-GGNN
IA-alternation

Accuracy(%) Gain(%)Feature Similarity Probability
Enrichment Learning matrix learning

N N N N 58.95 –
Y N N N 63.04 ↑ 4.09
Y Y N N 66.10 ↑ 3.06
Y Y Y N 66.32 ↑ 0.22
Y Y Y Y 66.58 ↑ 0.26

Table 4: Results of ablation studies. ”Y” means the learning
for the column is activated, while ”N” means not.

Conclusion
We have proposed a deep bidirectional learning method
named IA-GM for graph matching problem. Our method is
featured by an IA-alternation between an optimization com-
ponent for matching procedure and a learning component
for graph affinity. Existing methods for learning GM usually
use the learning component to assist optimization in a feed-
forward pipeline. In contrast, our method imposes a direct
feedback of the output of the matching procedure into the
graph embedding of the learning component, so that affin-
ity learning is also enhanced. This is fulfilled by a feature
enrichment and fusion technique, which exploits the devia-
tion of the similarity permuted by the current matching es-
timate. Ablation studies verify that such direct feedback in-
deed contributes the most to the performance improvement.
Moreover, our model are able to be trained without super-
vision, and to be extended on directed graphs. Experiments
on benchmark datasets verify the advantages of our method
over the existing related methods.

3480

Acknowledgements
This work was supported by National Science and Tech-
nology Innovation 2030 Major Project (2018AAA0100700)
of the Ministry of Science and Technology of China, and
Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102). Shikui Tu and Lei Xu are correspond-
ing authors.

References
Adams, R. P.; and Zemel, R. S. 2011. Ranking via sinkhorn
propagation. arXiv preprint arXiv:1106.1925 .

Belongie, S.; Malik, J.; and Puzicha, J. 2002. Shape match-
ing and object recognition using shape contexts. IEEE trans-
actions on pattern analysis and machine intelligence 24(4):
509–522.

Bourdev, L.; and Malik, J. 2009. Poselets: Body part detec-
tors trained using 3d human pose annotations. In 2009 IEEE
12th International Conference on Computer Vision, 1365–
1372. IEEE.

Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; and Shah,
R. 1994. Signature verification using a” siamese” time delay
neural network. In Advances in neural information process-
ing systems, 737–744.

Caetano, T. S.; McAuley, J. J.; Cheng, L.; Le, Q. V.; and
Smola, A. J. 2009. Learning graph matching. IEEE trans-
actions on pattern analysis and machine intelligence 31(6):
1048–1058.

Cho, M.; Alahari, K.; and Ponce, J. 2013. Learning Graphs
to Match. In IEEE International Conference on Computer
Vision.

Cho, M.; Lee, J.; and Lee, K. M. 2010. Reweighted ran-
dom walks for graph matching. In European conference on
Computer vision, 492–505. Springer.

Chu, W.-T.; and Chang, F.-C. 2015. A privacy-preserving
bipartite graph matching framework for multimedia analy-
sis and retrieval. In Proceedings of the 5th ACM on Interna-
tional Conference on Multimedia Retrieval, 243–250.

Conte, D.; Foggia, P.; Sansone, C.; and Vento, M. 2004.
Thirty years of graph matching in pattern recognition. In-
ternational journal of pattern recognition and artificial in-
telligence 18(03): 265–298.

Cour, T.; Srinivasan, P.; and Shi, J. 2007. Balanced graph
matching. In Advances in Neural Information Processing
Systems, 313–320.

Dang, C.; and Xu, L. 2000. A barrier function method for the
nonconvex quadratic programming problem with box con-
straints. Journal of Global Optimization 18(2): 165–188.

Duchenne, O.; Joulin, A.; and Ponce, J. 2011. A graph-
matching kernel for object categorization. In 2011 Interna-
tional Conference on Computer Vision, 1792–1799. IEEE.

Emami, P.; and Ranka, S. 2018. Learning permutations with
sinkhorn policy gradient. arXiv preprint arXiv:1805.07010
.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Lawler, E. L. 1963. The quadratic assignment problem.
Management science 9(4): 586–599.
Lee, J.; Cho, M.; and Lee, K. M. 2011. Hyper-graph match-
ing via reweighted random walks. In CVPR 2011, 1633–
1640. IEEE.
Leordeanu, M.; and Hebert, M. 2008. Smoothing-based op-
timization. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, 1–8. IEEE.
Leordeanu, M.; Hebert, M.; and Sukthankar, R. 2009. An
integer projected fixed point method for graph matching and
map inference. In Advances in neural information process-
ing systems, 1114–1122.
Leordeanu, M.; Sukthankar, R.; and Hebert, M. 2012. Unsu-
pervised learning for graph matching. International journal
of computer vision 96(1): 28–45.
Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; and Kohli, P. 2019.
Graph matching networks for learning the similarity of
graph structured objects. arXiv preprint arXiv:1904.12787 .
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2015.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493 .
Liu, Z.-Y.; Qiao, H.; and Xu, L. 2012. An extended path fol-
lowing algorithm for graph-matching problem. IEEE trans-
actions on pattern analysis and machine intelligence 34(7):
1451–1456.
Livi, L.; and Rizzi, A. 2013. The graph matching problem.
Pattern Analysis and Applications 16(3): 253–283.
Nowak, A.; Villar, S.; Bandeira, A. S.; and Bruna, J. 2017.
A note on learning algorithms for quadratic assignment with
graph neural networks. stat 1050: 22.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture 529(7587): 484.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354–359.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 .
Torresani, L.; Kolmogorov, V.; and Rother, C. 2008. Feature
Correspondence Via Graph Matching: Models and Global
Optimization. In European Conference on Computer Vision-
eccv.
Wang, R.; Yan, J.; and Yang, X. 2019a. Learning combi-
natorial embedding networks for deep graph matching. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 3056–3065.

3481

Wang, R.; Yan, J.; and Yang, X. 2019b. Neural Graph
Matching Network: Learning Lawler’s Quadratic Assign-
ment Problem with Extension to Hypergraph and Multiple-
graph Matching.
Wang, T.; Liu, H.; Li, Y.; Jin, Y.; Hou, X.; and Ling, H. 2020.
Learning Combinatorial Solver for Graph Matching. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).
Xu, L. 1994. Combinatorial optimization neural nets based
on a hybrid of Lagrange and transformation approaches. In
Proceedings of World Congress on Neutral Networks, 399–
404.
Xu, L. 1995. On the hybrid LT combinatorial optimization:
new U-shape barrier, sigmoid activation, least leaking en-
ergy and maximum entropy. In Proc. ICONIP, volume 95,
309–312.
Xu, L. 2018. Deep bidirectional intelligence: AlphaZero,
deep IA-search, deep IA-infer, and TPC causal learning. In
Applied Informatics, volume 5, 1–38. Springer.
Xu, L. 2019a. Deep IA-BI and Five Actions in Circling. In
LNCS: Proc. 2019 Intelligent Science and Big Data Engi-
neering (Oct.17-20), 1–21. Springer.
Xu, L. 2019b. An Overview and Perspectives On Bidi-
rectional Intelligence: Lmser Duality, Double IA Harmony,
and Causal Computation. IEEE/CAA Journal of Automatica
Sinica 6(4): 865–893.
Xu, L.; and King, I. 2001. A PCA approach for fast retrieval
of structural patterns in attributed graphs. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics) 31(5): 812–817.
Xu, L.; and Oja, E. 1990. Improved simulated annealing,
Boltzmann machine, and attributed graph matching. In Lec-
ture Notes in Computer Sciences 412 : Neural Networks,
volume 412, 151–160. Springer Berlin Heidelberg.
Yu, T.; Wang, R.; Yan, J.; and Li, B. 2020. Learning deep
graph matching with channel-independent embedding and
Hungarian attention. In ICLR2020.
Zanfir, A.; and Sminchisescu, C. 2018. Deep learning of
graph matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2684–2693.
Zass, R.; and Shashua, A. 2008. Probabilistic graph and hy-
pergraph matching. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, 1–8. IEEE.
Zhou, F.; and De la Torre, F. 2015. Factorized graph match-
ing. IEEE transactions on pattern analysis and machine in-
telligence 38(9): 1774–1789.

3482

