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Abstract

RGB-D object detection has achieved significant advance, be-
cause depth provides complementary geometric information
to RGB images. Considering that depth images are unavail-
able in some scenarios, we focus on depth privileged ob-
ject detection in indoor scenes, where the depth images are
only available in the training stage. Under this setting, one
prevalent research line is modality hallucination, in which
depth image and depth feature are common hallucination tar-
gets. In contrast, we choose to hallucinate depth deformation,
which benefits a lot from rich geometric information in depth
data. Specifically, we employ the deformable convolutional
layer with augmented offsets to perform geometric deforma-
tion, because the offsets enable flexibly sampling over the ob-
ject and transforming to a canonical shape for ease of object
detection. In addition, we design a quality-based weighted
transfer loss to avoid negative transfer of depth deformation.
Experimental results on NYUDv2 and SUN RGB-D demon-
strate the effectiveness of our method against the state-of-the-
art methods for depth privileged object detection.

Introduction
Object detection in indoor scenes is a fundamental yet chal-
lenging step towards scene understanding. Up to now, clut-
tered objects remain difficult to be detected due to the large
variations (e.g., occlusion and illumination) in appearances
and boundaries. Fortunately, depth images provide color-
insensitive information in representing objects and bound-
aries, and the advantage of depth images for object detection
has been demonstrated in (Cadena and Košecka 2015; Gupta
et al. 2014; Li et al. 2018). However, depth data is not always
available because depth sensors are much less prevalent than
RGB capturing devices. To this end, we consider depth priv-
ileged object detection, in which depth (i.e., the privileged
information (Vapnik and Vashist 2009)) is only available in
the training stage yet unavailable in the testing stage.

As far as we know, there are only a few works on depth-
privileged object detection. One research line is multi-task
learning. For example, ROCK (Mordan et al. 2018) simulta-
neously performed object detection and depth prediction, so
that the intermediate features are enriched. Another research
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Figure 1: The overview of our framework. In the train-
ing stage, the geometric deformation is transferred from D-
branch to H-branch. In the testing stage without depth, H-
branch hallucinates the depth deformation to complement R-
branch. D-branch is pre-trained and frozen. The red squares
represent sampling locations.

line is modality hallucination. For instance, Hoffman et al.
(2016) used RGB input to hallucinate intermediate features
learned from depth modality, which can function as the un-
available depth modality during testing. Analogously, Cao
et al. (2016) directly hallucinated depth images to comple-
ment RGB images. Compared with modality hallucination,
multi-task learning implicitly distills knowledge from depth
images and depends on the relevance of multiple tasks, so we
tend to follow the research line of modality hallucination.

Modality hallucination requires an appropriate target to
hallucinate. The depth image chosen in (Cao, Shen, and
Shen 2016) and the depth feature chosen in (Hoffman,
Gupta, and Darrell 2016) have many redundancies and may
be difficult to hallucinate. In contrast, in this paper, we pro-
pose to hallucinate an elegant yet informative target: ge-
ometric deformation. On the one hand, the geometric de-
formation explicitly fits the object shape and transforms to
a canonical shape, which has shown a great advantage in
the object detection task (Dai et al. 2017; Zhu et al. 2019).
On the other hand, the geometric deformation learned from
RGB images is often confused by cluttered colors, which
can be mitigated by exploiting the rich geometric informa-
tion from depth images. We refer to the deformation learned
from RGB (resp., depth) input as RGB (resp., depth) defor-
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mation. Depth deformation is supposed to capture geometric
cues more precisely and thus be complementary to RGB de-
formation. However, we only have RGB images in the test-
ing stage, so our goal is to hallucinate depth deformation
from RGB modality.

To this end, as shown in Figure 1, our network con-
sists of three branches: RGB branch (R-branch), hallucina-
tion branch (H-branch), and depth branch (D-branch), all
equipped with deformation modules. All three branches are
basic detection models, in which R-branch and H-branch
take RGB images as input while D-branch takes depth im-
ages as input. In practice, R-branch and H-branch can share
the backbone resulting in a more compact architecture com-
pared with (Cao, Shen, and Shen 2016; Hoffman, Gupta, and
Darrell 2016), probably because geometric deformation is
easier to hallucinate. In the training stage, besides typical
detection losses, the deformation module in H-branch is fur-
ther forced to hallucinate the mature deformation generated
by the pre-trained D-branch. In the testing stage, we lever-
age both RGB deformation and hallucinated deformation by
fusing the outputs from R-branch and H-branch, without us-
ing D-branch.

For the deformation module, we opt for deformable con-
volutional layer (Dai et al. 2017), referred to as Deform-
Conv, which augments the sampling locations of standard
convolutional kernel with offsets and produces a flexible
sampling grid. The reasons for choosing DeformConv are
twofold. On the one hand, we can integrate DeformConv
in any elaborate architecture such as ResNeXt (Xie et al.
2017) without modification. On the other hand, the defor-
mation in DeformConv is light-weighted, which is an ideal
hallucination target. Two examples are provided to show the
effectiveness of DeformConv. In Figure 2(a), the RGB de-
formation concentrates on the region with the similar color.
While in Figure 2(b), the depth deformation can adapt the
sampling locations to the shape of the object by being aware
of depth boundaries. For instance, the RGB deformation of
the door is confused by the background with similar color,
while the depth deformation can fit the door frame. Compar-
ing the offsets between RGB and depth, we find that depth
deformation focuses on geometric cues and thus can com-
plement RGB deformation to some extent.

Considering that the depth deformation is not always reli-
able, the model may be misled by the hallucinated inaccurate
deformation. To avoid such negative transfer, we propose a
weighted transfer loss by using the quality of depth deforma-
tion to control the amount of transfer. We conduct extensive
experiments on NYUDv2 dataset and SUN RGB-D dataset.
The results and analyses demonstrate that deformation hal-
lucination can greatly benefit depth privileged object detec-
tion. In summary, our main contributions are as follows:
• We propose to hallucinate deformation for depth-

privileged object detection, which has never been inves-
tigated before.

• We design a weighted transfer loss to avoid negative trans-
fer of depth deformation.

• Our method outperforms all state-of-the-art methods on
both NYUDv2 dataset and SUN RGB-D dataset.

Figure 2: Illustration of RGB deformation (a) and depth de-
formation (b). The red squares represent the 81 (9× 9) sam-
pling locations for an output location (blue square) by trac-
ing back two DeformConvs with 3×3 convolutional kernels.
We also show the ground-truth bounding box of the object
corresponding to the output location.

Related work
RGB-D Object Detection
Over the years, there have been considerable works on
RGB-D object detection (Ye and Malik 2013; Gupta et al.
2014, 2015), which integrated depth representation into
RGB representation and achieved significant improvement
over RGB-only methods. Many methods (Bo et al. 2011;
Blum et al. 2012) incorporated the information of two dif-
ferent modalities (i.e., RGB and depth) at the input level.
Recently, most works (Cao, Shen, and Shen 2016; Xu et al.
2017; Rahman et al. 2019) focused on the fusion of features
extracted from two modalities. For example, Hoffman et al.
(2016) proposed to fuse RGB and depth mid-level features,
leading to better performance with little additional annota-
tion effort. Gated information fusion network (Kim et al.
2018) weighed the contribution of each modality according
to the input feature maps. Contrary to these approaches, our
work focuses on learning an RGB only model that halluci-
nates complementary deformation from depth images in the
training stage.

Learning Using Privileged Information
Learning Using Privileged Information (LUPI) was first in-
troduced in (Vapnik and Vashist 2009), where the privileged
information is only available in the training stage but not
available in the testing stage. LUPI has been explored in a
wide range of applications such as image classification (Yan
et al. 2016), semantic segmentation (Lee et al. 2019), ob-
ject localization (Feyereisl et al. 2014), image aesthetic as-
sessment (Pan, Wang, and Jiang 2019), text clustering (Mar-
cacini and Rezende 2013), and etc. Recently, many works
(Hoffman, Gupta, and Darrell 2016; Mordan et al. 2018;
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Cao, Shen, and Shen 2016) have investigated using depth
as privileged information for object detection. Specifically,
ROCK (Mordan et al. 2018) conducted multi-task learning
(i.e., depth prediction and object detection) to inject inter-
mediate auxiliary depth representation into the primary RGB
representation. HallucinationNet (Hoffman, Gupta, and Dar-
rell 2016) hallucinated the mid-level depth features using
RGB images to make up for the absence of depth features
in the testing stage, while Cao et al. (2016) chose to hal-
lucinate the depth images estimated by DCNF model (Liu
et al. 2015). In contrast, we hallucinate geometric deforma-
tion learned from depth images, which benefits from rich
geometric information in depth images.

Knowledge Distillation
Hinton et al. (2015) introduced the new idea of knowl-
edge distillation (KD), where the knowledge distilled from
a teacher-net is transferred to a student-net to achieve higher
performance with lower complexity. Generally, KD can be
categorized into single teacher-net distillation (Yang et al.
2019), multi teacher-nets distillation (Shen et al. 2019), on-
line distillation (Zhang et al. 2018), cross-modal distillation
(Do et al. 2019), self distillation (Xu and Liu 2019), and etc.
Among them, cross-modal distillation is most related to our
work, which has been used in pose estimation (Zhao et al.
2018), VQA (Do et al. 2019), tracking (Gan et al. 2019),
segmentation (Dou et al. 2020), scene recognition(Du et al.
2019), and etc. For object detection, Hoffman et al. (2016)
distilled the mid-level features from the RGB branch to the
depth branch and then fused the features extracted by these
two branches. Gupta et al. (2016) transferred the supervi-
sion from the labeled modality (i.e., RGB) to the unlabeled
modality (i.e., depth). Li et al. (2017) used student-net to
mimic the feature map extracted by teacher-net. Unlike the
above methods, what we distill and transfer is the geomet-
ric deformation extracted by the deformable convolutional
layer (Dai et al. 2017), which is much more correlated to the
geometric cues offered by depth.

Background
The deformable convolutional layer (Dai et al. 2017) lays the
foundation of our framework, which is built by augmenting
the standard convolutional layer with offsets, as shown in
Figure 3.

For the standard convolution, we denote the pixel-wise
vector at the location i (2D spatial location (ix, iy)) on the
input and output feature map as x(i) and y(i), respectively.
The standard convolution can be formulated as

y(i) =
K2∑
k=1

vk · x(i+ lk), (1)

where vk denotes the weight vector at the k-th sampling lo-
cation of convolutional kernel, lk is the offset from kernel
center corresponding to the k-th sampling location, and K
is the size of convolutional kernel. For instance, for a 3 × 3
convolutional kernel with dilation 1, we have K = 3 and
lk ∈ {(−1,−1), (−1, 0), . . . , (1, 1)} for k = 1, . . . , 9.

Figure 3: Comparison between the standard convolution
(left) and the deformable convolution (right).

Then, deformable convolutional layer applies extra 2D
offsets to shift the sampling locations to the regions of in-
terest, which can be formulated as

y(i) =
K2∑
k=1

vk · x(i+ lk + ∆li,k), (2)

Compared with (1), deformable convolution (2) introduces
extra offset ∆li,k, which denotes the offset of the k-th sam-
pling location when performing convolution at location i.
Bilinear interpolation is employed to compute the value of
x(i+lk+∆li,k), because i+lk+∆li,k may not be an integer.
As shown in the right of Figure 3, the offsets are learned by a
separate convolutional layer, which is applied over the same
input feature map x and outputs 2 × K2 (i.e., 18) channels
for each location, which correspond to 2-D offsets of 3 × 3
sampling locations.

Methodology
The proposed framework is illustrated in Figure 4, which
consists of three branches: RGB branch (R-branch), hallu-
cination branch (H-branch), and depth branch (D-branch).
The H-branch learns to hallucinate the geometric deforma-
tion generated by D-branch, which is fused with R-branch
to accomplish the detection task. The details of network ar-
chitecture and our method will be introduced as follows.

Network Architecture
In this section, we first introduce the basic detection branch,
which forms the basis of our R-branch, H-branch, and D-
branch. Then, we introduce our whole hallucination frame-
work with three branches.

The Detection Branch We choose the fully convolutional
one-stage object detection (FCOS) (Tian et al. 2019) as our
basic detection branch due to its simplicity and popularity,
as shown in each branch of Figure 4. Firstly, the backbone
extracts the feature pyramid containing multiple scales of
feature maps, which accounts for detecting various scales
of objects. Secondly, the detection head detects objects on
each feature map in a fully-convolutional manner. In this
way, there is one predicted object at each spatial position on
each feature map. Specifically, at position (s, i), i.e., the i-th
spatial position on the s-th scale of feature map, the detec-
tion head outputs three types of values for a potential object:
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Figure 4: Detailed architecture of our framework. The DeformConvs in H-branch are forced to hallucinate the deformation
generated in D-branch. The hallucination procedure is weighted by the quality measurement in D-branch to avoid negative
transfer. The D-branch is pre-trained and frozen.

1) the predicted category cs,i; 2) the predicted centerness
ds,i, which is the normalized distance from (s, i) to the cen-
ter of object (Tian et al. 2019); 3) the predicted bounding
box {x1s,i, y1s,i, x2s,i, y2s,i}, which predicts the coordinates of
bounding box.

In the training stage, for the position (s, i), if its neighbor-
hood (determined by the Adaptive Training Sample Selec-
tion approach (Zhang et al. 2020)) contains a ground-truth
object with a category c∗s,i, a centerness d∗s,i and a bounding
box {x1∗s,i, y1∗s,i, x2∗s,i, y2∗s,i}, we refer to this position as a pos-
itive position, which is supervised to predict accurate cate-
gory, centerness, and bounding box. Otherwise, the position
(s, i) is referred to as a negative position, for which only the
category cs,i is supervised by the ”background” category.
The overall loss of detection branch is summarized as

Ld =
S∑

s=1

hs×ws∑
i=1

[Lfocal(cs,i, c
∗
s,i) + αPs,iLBCE(ds,i, d

∗
s,i)

+βPs,iLGIoU

(
{x1s,i, y1s,i, x2s,i, y2s,i}, {x1∗s,i, y1∗s,i, x2∗s,i, y2∗s,i}

)
],

(3)

where S is the total number of scales, hs × ws is the fea-
ture map size of the s-th scale, Ps,i is an indicator function
(Ps,i = 1 if (s, i) is a positive position and 0 otherwise).
Lfocal is the focal loss (Lin et al. 2017), LGIoU is the gener-
alized intersection over union loss (Rezatofighi et al. 2019),
and LBCE is binary cross entropy (BCE) loss. Following
(Zhang et al. 2020), two trade-off parameters α and β are
set as 1.0 and 2.0, respectively.

For more details, please refer to FCOS (Tian et al. 2019)
and ATSS (Zhang et al. 2020).

The Hallucination Framework Inspired by (Hoffman,
Gupta, and Darrell 2016), we employ three detection
branches to hallucinate deformation. All three branches are
built upon the abovementioned basic detection branch with
the same architecture: backbone, FPN, and detection heads.
As illustrated in Figure 4, R-branch and H-branch share the
backbone and FPN but have different detection heads.

Each scale of feature map in FPN is associated with a
detection head which consists of a classification sub-branch
and a regression sub-branch, in which the former predicts
category while the latter predicts bounding box and center-
ness. We enforce two sub-branches to share the first M con-
volutional layers, which are replaced by M DeformConvs.
For the detection heads attached to the same scale of the
feature map, we concatenate the classification (resp., regres-
sion) sub-branch outputs of R-branch and H-branch. The
concatenated output passes through a 1 × 1 convolutional
layer to reduce the channels for classification (resp., regres-
sion).

In the training stage, we first pre-train and freeze the D-
branch for stable and mature deformation guidance for H-
branch. In the testing stage, we only use R-branch and H-
branch. Because each detection head has M DeformConvs,
in the following sections, we introduce another index m to
indicate the m-th DeformConv.
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Deformation Hallucination
To fulfil deformation hallucination, we force the offsets gen-
erated by H-branch to mimic the offsets generated by D-
branch with the transfer loss:

Lo =
S∑

s=1

M∑
m=1

hs×ws∑
i=1

K2∑
k=1

∥∥∆lDs,m,i,k −∆lHs,m,i,k

∥∥2
2
, (4)

where ∆lHs,m,i,k (resp., ∆lDs,m,i,k) indicates the 2D offset for
the k-th sampling location at position (s, i) in the m-th De-
formConv of H-branch (resp., D-branch).

Besides, another intuitive alternative is to conduct defor-
mation hallucination only on positive positions, because bet-
ter deformation information may be learned on positive po-
sitions due to stronger supervision (see (3)). Similar to (3),
we use Ps,m,i to indicate whether the position (s, i) in the
m-th DeformConv is a positive position. For the last De-
formConv (m = M ), the positive positions (Ps,m,i = 1) are
determined in the same way as in (3). Then, we calculate
the positive positions in previous DeformConvs by track-
ing their contributions to the supervision of object detection.
The details are left to the Supplementary.

After defining positive positions in each DeformConv, we
rewrite the loss (4) as

Lp
o =

S∑
s=1

M∑
m=1

hs×ws∑
i=1

K2∑
k=1

Ps,m,i

∥∥∆lDs,m,i,k −∆lHs,m,i,k

∥∥2
2
.

(5)
The experimental results (see Table 1) show that halluci-

nation on positive positions yields better performance than
hallucination on all positions.

Avoid Negative Transfer
Considering that the depth deformation is not always reli-
able, transferring noisy deformation is likely to degrade the
performance. Thus, we design a weighted transfer loss to
avoid such negative transfer, in which the weights are deter-
mined by deformation quality.

We conjecture that the performance can be improved only
by reliable deformation, so we compute the performance
gain brought by deformation to measure the deformation
quality. Then, we assign the deformation transfer losses (4)
at different positive positions with different weights, which
are calculated based on the deformation quality at each posi-
tive position. Specifically, we add another classification sub-
branch in D-branch, which is almost the same as the origi-
nal classification sub-branch except replacing DeformConv
with standard conv, as shown in Figure 4. We denote the loss
weight assigned at position (s, i) in the m-th DeformConv
as w(s,m,i).

Firstly, the loss weights in the last DeformConv (m = M )
can be calculated by

ws,m,i = exp(δ · (f (w)
s,i − f

(w/o)
s,i )), (6)

where f (w)
s,i (resp., f (w/o)

s,i ) is the classification score corre-
sponding to the ground-truth category c∗s,i at position (s, i)

predicted by the classification sub-branch with (resp., with-
out) deformation. δ is a hyper-parameter controlling the in-
tensity of avoiding negative transfer and set as 0.25 via
cross-validation.

Secondly, we back-propagate the loss weights from the
last DeformConv to previous DeformConvs (m < M ). Intu-
itively, we calculate the loss weights at different positions in
previous DeformConvs by tracking their contributions to the
classification score improvement. The details of computing
ws,m,i are left to Supplementary.

After obtaining all weights ws,m,i, we can formulate the
weighted transfer loss Lpw

o as

Lpw
o =

S∑
s=1

M∑
m=1

hs×ws∑
i=1

K2∑
k=1

ws,m,iPs,m,i

∥∥∆lDs,m,i,k−∆lHs,m,i,k

∥∥2
2
.

(7)

The Full Objective Function
By taking both object detection loss and weighted transfer
loss into consideration, the overall objective function can be
formulated as

Lfull = Ld + µLpw
o , (8)

where µ is a trade-off parameter and set as 0.1 via corss-
validation.

Experiment
Datasets
NYU Depth V2 NYU Depth V2 (NYUDv2) (Silberman
et al. 2012) consists of 1449 paired RGB-D images. The
dataset is split into training (795 images) and test (654 im-
ages) sets. Following previous works (Hoffman et al. 2016;
Mordan et al. 2018), we train and evaluate our model based
on the 19 most common categories.

SUN RGB-D SUN RGB-D (Song, Lichtenberg, and Xiao
2015) is composed of an official train/test split with 5285
and 5050 images, respectively. We train and evaluate our
model based on 19 common categories (the same as
NYUDv2) under the standard setting in (Song, Lichtenberg,
and Xiao 2015).

Implementation Details
We use ResNeXt-101 (Xie et al. 2017) pretrained on Ima-
geNet (Deng et al. 2009) as backbone. We set the number
of DeformConvs M to 2 by default. Following (Gupta et al.
2014), we adopt the HHA encoding (Horizontal disparity,
Height above ground, Angle with gravity) for depth input.
We train our model using the SGD optimizer for 50k itera-
tions for D-branch pre-training and the whole model train-
ing. The basic learning rate is initialized to 1× 10−3 and re-
duced to 1×10−4 when the iterations reach 40k. The weight
decay and momentum are set to 5 × 10−4 and 0.9, respec-
tively. The random seed is set to 222. Besides, we conduct a
significant test using 10 different random seeds and analyse
hyper-parameters (i.e., δ in (6) and µ in (8)), which are re-
ported in the Supplementary. All experiments are conducted
on Ubuntu 18.04 with two 8GB GeForce RTX 2080 SUPER,
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Ld Lo Lp
o Lpw

o
mAP(%)

NYUDv2 SUN RGB-D
X 44.01 53.93
X X 46.26 56.15
X X 46.50 56.47
X X 46.88 56.84

Table 1: Ablation studies on loss terms on NYUDv2 and
SUN RGB-D. mAP represents the mean Average Precision
of 19 categories.

16GB Intel 9700K, and PyTorch 1.2.0 on Python 3.7. In this
paper, we use Average Precision (AP) with IoU threshold
0.5 as our evaluation metric.

Ablation Studies
We conduct ablation studies on NYUDv2 and SUN RGB-D
datasets to investigate the impact of different loss terms. The
results are summarized in Table 1.

The Effect of Deformation Hallucination In row 2, we
apply the transfer loss to all positions without using weights
(see (4)). By using the transfer loss, the deformation gen-
erated by H-branch is forced to mimic the depth defor-
mation. By comparing row 2 with row 1, we can see that
hallucinating depth deformation with RGB input dramati-
cally increases the performance, i.e., 46.26% v.s. 44.01% on
NYUDv2 dataset and 56.15% v.s. 53.93% on SUN RGB-D
dataset.

The Effect of Positive Position Only In row 3, we only
apply the transfer loss to positive positions without using
weights (see (5)). By comparing row 3 with row 2, the re-
sults (46.50% v.s. 46.26%, and 56.47% v.s. 56.15%) indicate
that the deformation hallucination merely targeted at posi-
tive positions could make the transferred deformation more
useful.

The Effect of Avoiding Negative Transfer The results in
row 4 are from our full method (see (8)), which employs
weighted transfer loss to avoid negative transfer. By com-
paring row 4 with row 3, the results are further improved
(46.88% v.s. 46.50% and 56.84% v.s. 56.47%), which veri-
fies that unreliable partial deformation is prevented from be-
ing transferred.

Comparison with State-Of-The-Art
In this section, we compare our method with the state-of-the-
art approaches on both datasets, including HallucinationNet
(Hoffman, Gupta, and Darrell 2016), ROCK (Mordan et al.
2018), and Cao et al. (2016). Note that all the methods above
adopt different detection architectures as well as different
backbones. For a fair comparison, we reproduce them us-
ing the same detection network with the same backbone (i.e.
FCOS+ATSS with ResNeXt-101 backbone) as ours. Be-
sides, we report the result of the basic detection network (i.e.
FCOS+ATSS) in Table 2 as a benchmark.

For HallucinationNet, we hallucinate the depth feature ex-
tracted by the FPN. For ROCK, based on a detection net-

Method mAP(%)
NYUDv2 SUN RGB-D

FCOS+ATSS 42.73 52.94
HallucinationNet 45.22 55.35

ROCK 44.89 55.14
Cao et al. (2016) 44.96 55.27

Ours 46.88 56.84

Table 2: Comparison with state-of-the-art approaches on
NYUDv2 and SUN RGB-D. The best results are denoted
in boldface.

Configuration mAP(%)
Ld Ld + µLo

B1 43.66 45.34
B2 44.17 45.93
B3 44.43 46.19
H1 43.35 45.36
H2 44.01 46.26
H3 44.21 46.30

B3 +H2 44.25 46.32

Table 3: Results using different DeformConv configurations.
In terms of the location to use DeformConvs, we denote
backbone as ’B’ and detection head as ’H’. The subscript
(1, 2, 3) means the number of DeformConvs.

work in RGB modality, we insert the residual auxiliary block
between FPN and each detection head, in which the aux-
iliary task-specific (depth prediction) features are fused by
element-wise addition in residual style. For (Cao, Shen, and
Shen 2016), we first adopt DCNF (Liu et al. 2015) with RGB
images to estimate depth images, and then we learn deep
depth features from estimated depth images, which are com-
bined with RGB features and fed into the detection head.

All results are summarized in Table 2. It is noticeable that
all methods can achieve better performance than the basic
detection network. Furthermore, we can find that our method
outperforms all the baselines on NYUDv2 and SUN RGB-
D datasets. Specifically, our method beats the best baseline
on two datasets (i.e., 46.88% v.s. 45.22% and 56.84% v.s.
55.35%), which demonstrates the superiority of deformation
hallucination.

Configuration of DeformConvs
In this section, we explore various configurations of De-
formable Convolutional Layers (DeformConvs) from two
main aspects: location and number. By default, we choose
the detection head to replace standard convs with Deform-
Convs. However, it is also feasible to choose the last few lay-
ers of backbone as in (Dai et al. 2017). For both locations,
we consider replacing an appropriate number (i.e., up to 3)
of standard convolutional layers. Here we only use the loss
Ld + µLo because it is hard to define positive positions or
measure the deformation quality for the backbone location.
By taking the NYUDv2 dataset as an example, all results are
summarized in Table 3.
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Figure 5: Illustration of deformation visualization with two DeformConvs. (a) shows the RGB images with the bounded area to
be visualized in the follow-up images. (b), (c), and (d) show the shifted sampling locations learned from R-branch, H-branch,
and D-branch, respectively. (e) shows the corresponding HHA-encoded depth images.

As shown in Table 3, on the one hand, increasing the
number of DeformConvs (1 → 3) in either location can
boost performance. By comparing Ld + µLo and Ld, de-
formation hallucination can consistently bring performance
gain when using different numbers of DeformConvs in ei-
ther location. On the other hand, replacing standard convs in
detection head outperforms that in the backbone, probably
because the deformation in detection head is more mature
to represent the geometric information of individual object.
For Ld + µLo, replacing standard convs in both locations
only achieves slight improvement (B3 +H2 v.s. H2), so we
adopt the option H2 unless otherwise specified, considering
the trade-off between performance and model complexity.

Deformation Visualization
To better explore how DeformConvs capture geometric in-
formation and how the deformation hallucination can benefit
object detection, we visualize RGB, hallucinated, and depth
deformation by using two DeformConvs in detection head
(H2 in Table 3) in Figure 5.

RGB deformation has a strong representation ability for
color information, which mainly focuses on the recognizable
area with the similar color around the kernel center. In con-
trast, the depth deformation is more sensitive to geometric
information and thus can capture the complementary con-
tour, edge, and shape information. Hallucinated deformation
is forced to mimic depth deformation to capture more geo-
metric information. By taking the second row of Figure 5 as
an example, RGB deformation cannot focus on the detected
chair because its color is similar to the background. How-
ever, depth deformation can easily focus on the chair due

to the depth gap between the chair and background. Hal-
lucinated deformation is similar to depth deformation and
fits the shape of the object. In conclusion, depth deforma-
tion offers additional complementary geometric information
to RGB images, so that our method can improve the perfor-
mance by hallucinating depth information with RGB input.

Fusion Strategy Analyses
There are mainly two aspects for feature fusion: fusion loca-
tion and fusion operator. In our case, we explore the fusion
of features from R-branch and H-branch for various fusion
locations and various fusion operators. Due to space limita-
tion, the results and analyses are presented in Supplemen-
tary.

Evaluation on RGB-Only Dataset
Following (Hoffman, Gupta, and Darrell 2016), we investi-
gate the potential of the proposed method on standard object
detection dataset PASCAL VOC (Everingham et al. 2010),
which is not associated with depth images. The details are
left to the Supplementary.

Conclusion
In this work, we have proposed a novel deformation hallu-
cination framework. The presented framework could hallu-
cinate the depth deformation using RGB input, which com-
plements the RGB deformation for ease of object detection.
Experiments on NYUDv2 and SUN RGB-D datasets have
demonstrated that our method outperforms state-of-the-art
for depth privileged object detection.
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