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Abstract

Point cloud provides a compact and flexible representation for
3D shapes and recently attracts more and more attention due
to the increasing demands in practical applications. The ma-
jor challenge of handling such irregular data is how to achieve
the permutation invariance of points in the input. Most of ex-
isting methods extract local descriptors that encode the geom-
etry of local structure, followed by a symmetric function to
form a global representation. The max pooling usually serves
as the symmetric function and shows slight superiority com-
pared to the average pooling. We argue that some discrim-
ination information is inevitably missing when applying the
max pooling across all local descriptors. In this paper, we pro-
pose the BoW pooling, a plug-and-play unit to substitute the
max pooling. Our BoW pooling analyzes the set of local de-
scriptors statistically and generates a histogram that reflects
how the primitives in the dictionary constitute the overall ge-
ometry. Extensive experiments demonstrate that the proposed
Bow pooling is efficient to improve the performance in point
cloud classification, shape retrieval and segmentation tasks
and outperforms other existing symmetric functions.

Introduction
3D shape analysis is one of the most fundamental topics
in computer vision and computer graphics fields. With the
development of computing resources and the availability of
large-scale 3D model repositories (Wu et al. 2015; Yi et al.
2016), extensive attention have been paid in 3D shape anal-
ysis. There are several popular data formats to represent
3D shapes, including voxels, multi 2D views, point clouds
and meshes. Among them, point cloud analysis has drawn a
significantly increasing amount of interests in the past few
years both in academic research and industry, motivated by
the advancement of autonomous driving, indoor navigation,
robotics, and other wide range of applications.

Owing to the development of 3D sensors and comput-
ing resources, point cloud becomes easy to access. Despite
the fact that point cloud is a light-weight format to repre-
sent flexible 3D shapes, it is unsuitable to be directly pro-
cessed by neural networks because of the irregularity of
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Figure 1: Visualization of the contribution of each point
to the global representation. Results in the first row are
from the original DGCNN, while results in the second row
are from DGCNN with our BoW pooling. Redder denotes
greater contribution.

the arrangement. Different from neural networks that deal
with well-organized data, point-based models directly ac-
cept point clouds as input. The key to these approaches is
to design a way to aggregate features and eliminate the im-
pact of the permutation of points.

According to the different implementations of such goal,
neural networks that deal with point clouds can be roughly
categorized into two classes. One idea is to design a sym-
metric function applied across all points on the point cloud
(Qi et al. 2017a; Wang et al. 2018; Sun, Lian, and Xiao
2019). A typical choice of the symmetric function is the av-
erage pooling or max pooling. The backbone of these net-
works attaches the feature of local structure to each point,
and uses a symmetric function to automatically aggregate
the features of informative points and form a global repre-
sentation. Despite that the max pooling usually outperforms
the average pooling in terms of aggregating point features,
we argue that there are still two main drawbacks when di-
rectly using it. First, applying the max pooling across fea-
tures of points may lead to an average contribution of each
point to the global representation. Since the global represen-
tation is obtained by selecting the biggest value across all
points for each dimension, the contribution of a point is mea-
sured by finding out how many values of the global represen-
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Figure 2: The pipeline of our model that plugs the proposed BoW pooling unit in an existing point-based network. The BoW
pooling replaces the original pooling method for aggregating local descriptors.

tation are from such point. The visualization of the contribu-
tion of each point is demonstrated in Figure 1, which shows
that a large number of points tend to make similar contribu-
tions to form the global descriptor. It has been proved that
points in different positions are of unequal importance for
the geometric perception (Sun, Lian, and Xiao 2019). Aver-
aging the contributions means that the neural network pays
less attention to key local points, which we know are im-
portant for tolerating the pose variations in processing non-
rigid shapes (Lian et al. 2013). Second, applying the max
pooling across all the points lacks reasonable interpretation,
although it often brings fine results in point cloud analyzing
tasks. Another idea of avoiding permutation problem is to
sample some center points from the original data and reduce
the resolution of point cloud gradually. The feature of points
lying in the neighborhood of central point flows to the center.
For instance, ShellConv (Zhang, Hua, and Yeung 2019) par-
titions the local points into multiple shells according to the
distances to the center and the statistic of each shell is sum-
marized by a max pooling over all the points in the shell.
Extracting features layer by layer shows slight superiority in
terms of performance compared to symmetric function, but
usually accompanies with complex network architecture.

As we know, the Bag-of-Words model was initially used
in text classification and information retrieval tasks (Boulis
and Ostendorf 2005; Croft, Metzler, and Strohman 2010)
and has achieved great success in computer vision field
(Lian, Godil, and Sun 2010). The main idea is to first quan-
tize local descriptors into visual words and then represent
each image as a histogram that counts the points lying near
each clustering center. In this paper, we propose a plug-and-
play unit, the BoW pooling, to substitute for the max pooling
operation and serve as the symmetry function. The basic as-
sumption is that objects from different categories are not in-
dependent. Each 3D model can be viewed as a combination
of primitives, differing in the type, number, and arrangement
of the primitives. We construct a dictionary consisting of the
feature of primitives, and then the global representation of
an object can be expressed as a histogram, showing how the
primitives construct the 3D object. In addition, we introduce
the truncated linear unit (TLU) to avoid the average contri-
bution problem. The intuition is that we increase the diffi-

culty of mining local features by applying TLU on the local
descriptors, aiming to restrict the representation capacity of
local features. The network is trained towards suppressing
the expression of local points that are not crucial for percep-
tion. As a result, the difference between the discrimination
of local features is expanded.

Major contributions of this paper are threefold.

• We propose the BoW pooling, a plug-and-play unit that
substitutes for the symmetric functions in existing meth-
ods for the feature aggregation of point clouds. A novel
dictionary update strategy is explored and discussed.

• The truncated linear unit is introduced to suppress the ex-
pression of unimportant local descriptors, so that most
of the contributions to form the global representation are
from a small number of key points.

• Experiments conducted on four publicly-available
datasets demonstrate the superiority of the proposed
pooling method compared to other symmetry functions
in dealing with point clouds.

Related Work

Deep Learning on Voxel-based Methods

Point clouds and meshes are two most commonly used for-
mats in 3D vision applications due to their compactness and
flexibility. They are composed of a list of unordered points
or faces, which are hard to be directly processed by neural
networks. Pioneer methods (Wu et al. 2015; Maturana and
Scherer 2015; Qi et al. 2016) convert meshes or point clouds
into voxels. Voxel-based 3D shapes meet the requirements
of 3D convolutions and can be directly fed into neural net-
works. However, the 3D convolutions occupy large amounts
of memory, limiting the resolution of 3D shapes and increas-
ing the quantization loss enforced by the 3D grid. Efficient
methods (Wang et al. 2017; Tatarchenko, Dosovitskiy, and
Brox 2017) have been proposed based on the idea of space
partition to alleviate the problem of low resolutions, but still
depend on the division of a bounding volume rather than the
semantic local geometric structure.
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Deep Learning on View-based Methods
View-based methods avoid the above-mentioned problems
that the voxel-based methods meet. They project 3D shapes
into 2D grids, so that many effective convolutional archi-
tectures can be employed. (Guo et al. 2016) represents
a 3D shape with a collection of 2D views from multi-
ple perspectives. The convolutional neural network extracts
the feature of each image, followed by a view pooling to
eliminate the impact of the views’ permutation. GVCNN
(Feng et al. 2018) introduces a grouping module to esti-
mate the content discrimination of each view, and views
of different discriminative levels are combined into shape-
level descriptors according to their discriminative weights.
SeqViews2SeqLabels (Han et al. 2018) uses an encoder-
decoder structure based on RNN to map sequential views
to sequential labels step by step. Increasing the number of
views may carry more details, but also bring in redundant
clues.

Deep Learning on Mesh-based Methods
The mesh representation of 3D shapes is dominant for ren-
dering and storing 3D models in computer graphics. The
mesh data consists of vertices, edges and faces, and differ-
ent types of connections among them are complex to define.
Besides, the number of elements in meshes varies dramati-
cally, and the permutation of them are arbitrary, which make
it less exploited in the academic research. (Monti et al. 2017)
propose a unified framework allowing to generalize CNN ar-
chitectures non-Euclidean domains (graphs and manifolds).
MeshNet (Feng et al. 2019) regards the face as the unit
and splits the feature of faces into spatial and structural
ones, followed by a mesh convolution block for aggregating
neighboring features. MeshSNet (Lian et al. 2019) employs
graph-based blocks to extract contextual features of multiple
scales, and then integrates local-to-global geometric features
to comprehensively characterize mesh cells for the segmen-
tation task. It is difficult for neural networks to deal with
meshes due to their property of complexity and irregularity.

Deep Learning on Point-based Methods
Altering the permutation of the points does not change the
geometry, but may result in different representations when
feeding point cloud into neural networks. The pioneer work,
PointNet (Qi et al. 2017a), adopts point-wise convolutions
to map the original 3D coordinates to a high-dimensional
feature space, followed by a max pooling operation across
all the points to eliminate the impact of the permutation of
points. PointNet neglects to mine the local shape structure,
making it hard to distinguish the tiny diversity between sim-
ilar 3D shapes. KCNet (Shen et al. 2018) utilizes the Ker-
nel Correlation layer on the K-NN Graph to explore the
local geometry. SpiderCNN (Xu et al. 2018) and DGCNN
(Wang et al. 2018) take the point-pair relation into account
and employ Edge-related operations to incorporate neigh-
boring knowledge. The above methods all use a so-called
symmetric function applied on the whole points to achieve
the permutation invariance. Specifically, the max pooling or
average pooling serves as the symmetric function and com-
presses the information of the whole points into a single

Dictionary
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Figure 3: The architecture of the proposed BoW pooling.
The dictionary is composed of the K clustering centers, and
the distance from each point to every clustering center is
calculated. The histogram is generated by aggregating the
points that lie close to each center.

point that encodes the global geometry feature, in which
some important information is unavoidable missing. Point-
Net++ (Qi et al. 2017b) subdivides each point cloud into
several subsets and applies a simplified PointNet on each
subset. These local features are grouped together to obtain
a global feature. PointCNN (Li et al. 2018) samples points
from original ones to reduce resolution and learns a trans-
form matrix using X-conv that pre-multiplies a local fea-
ture matrix to alleviate the impact of permutation. A-CNN
(Komarichev, Zhong, and Hua 2019) divides the space into
several rings and arranges the points of a ring in the counter-
clockwise ordering, then annular convolutions are applied.
ShellConv (Zhang, Hua, and Yeung 2019) partitions the
neighboring points into multiple shells and the statistic of
each shell is obtained by implementing the max pooling over
all the points in the shell. Reducing resolution layer by layer
decreases the information loss compared to the symmetric
function at a cost of increasing expenditure of inference
time and more complex architecture. This paper proposes a
symmetric function, the BoW pooling, that integrates local
descriptors into a global representation. Compared to other
symmetric functions, the BoW pooling is capable of obtain-
ing more informative representations to boost the accuracy
in multiple tasks.

Method
In this section, we introduce the proposed BoW pooling.
The goal of our BoW pooling is to integrate the features of
all points and form a global representation for downstream
tasks, and the detailed operations are demonstrated in Fig-
ure 3. We present the design of the proposed BoW pooling
in the following subsections.

BoW Pooling: A Generalized BoW Layer
Given a set ofC-dimensional local descriptors of a 3D shape
{xi} as input, and K clustering centers {ck} as BoW pa-
rameters, the output of our BoW pooling is a K-dimensional
vector V , encoding the global information of point cloud.
The j − th element of V is formulated as follows

Vj =
n∑
i=1

I(dist(xi, cj) < dist(xi, ck 6=j)), (1)

where I denotes the 0−1 indicator function, i.e., it equals to
1 if cj is the closest clustering center to xi, and 0 otherwise.
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Intuitively, each element in V represents the number of
points that lie in the neighborhood of the corresponding cen-
ter. The clustering centers are grouped as a dictionary that
consists of the features of primitives. The cosine distance is
chosen to measure the similarity between local descriptors
and clustering centers. Thus, the similarity matrix can be
easily obtained by the matrix multiplication between local
descriptors and the dictionary matrix.

Soft Point Assignment to the Points
Finding the closest center for every point and assigning it to
the point using the indicator function is non-differentiable.
To embed the BoW pooling into the pipeline of neural net-
works and make it trainable, we propose two alternatives
that replace the hard assignment method.
Softmax-like function. The first one is a softmax-like func-
tion that normalizes the similarity

Vij =
eαx

T
i cj∑K

k=1 e
αxT

i ck
, (2)

where the scalar α is a hyper parameter that controls the
increase of response with the magnitude of similarity. The
softmax operation is conducted along the dimension of dif-
ferent centers for every point, showing how much the point
belongs to different centers. Then, the weight of the descrip-
tor xi is assigned to the center ck exponentially proportional
to their proximity. Note that the softmax-like function de-
grades into the hard assignment if α is set to∞.
Truncated linear unit. TLU is designed based on the idea
that a point may be negligible for the accumulation of a
far-away center. Thus, we calculate the distances between
a point and all centers, and assign the point to the top-L
nearest centers

Vij =

{
xTi cj , if j ∈ Ii
0, otherwise,

(3)

where Ii is a set containing the indexes of the top-L nearest
centers to the point xi. We further discuss the application
of TLU from the perspective of the activation function. Sup-
pose qi is aD-dimensional feature vector of the point pi, and
T is short for the TLU operation, then

T (qi) = (q1i · β1, ..., qDi · βD), (4)

where βn equals to 1 if qni is within the Top-L greatest val-
ues and 0 otherwise. It suppresses the expressions of local
descriptors when aggregating them into the global represen-
tation

fglobal = A(T (qi), ..., T (qn)), (5)

where A is the aggregation operation, which sums up the
values assigned to each center and generates a histogram as
the global representation. Through training, TLU increases
the difficulty of mining local features and expands the gap
between the discrimination capacities of different regions.
As a result, a small number of important local descriptors
provide most of the contributions to the global representa-
tion, which helps the network to tolerate shape variations
within a class, especially for non-rigid shapes.

Mixing Dictionary Update Strategy
The most direct way to update the dictionary is applying the
back-propagation algorithm, the same as other parts of the
network. The dictionary is updated based on the gradient
with respect to the loss function. In this way, the dictionary
acts the same as the conventional fully-connected layer and
evolves towards a better affine transformation function that
maps the input features to more discriminative ones. Though
it may obtain an overview of all training samples after one
epoch of training, it fails to summarize intrinsic primitives
shared by objects from different categories.

From the perspective of statistics, the observed data X ,
i.e., the local descriptors, are connected to the elements in
the dictionary by latent variables Z. The latent variables are
actually indicators that show the proportion of the observed
data endowed with the elements {ci} in the dictionary. Thus,
we formulate the problem of finding the representative prim-
itives {ci} as the parameter estimation of the complete log
likelihood ln p(X,Z|C). As we know, it is efficient to re-
sort to the expectation-maximization algorithm when unob-
served variables exist. The E step on the original EM algo-
rithm is to calculate the expected log likelihood, while in
the case when the latent variables Z are indicator variables
which follow the multinomial distribution, it simply reduces
to calculate the posterior distribution of Z

zki =
K(xi, ck)∑
j=1K(xi, cj)

, (6)

where K is a kernel of many choices, such as the Euclidean
distance, RBF kernel and so on. In the M step, the elements
of dictionary are updated by

ck =

∑
i z
k
i xi∑

j z
k
j

. (7)

Note that the K-means algorithm is a special case of such
EM updates if Z is defined as

zki =

{
1, if k = argminj ||xi − cj ||
0, otherwise.

(8)

For a given batch of samples, the dictionary is adjusted it-
eratively, which is hard to balance the consumed time in
training and the efficiency of convergence. Alternatively, we
provide a heuristic method to solve the problem. The basic
idea is to reduce the frequency of dictionary updating, for
the requirement of a highly-accurate dictionary is not nec-
essary at a certain step during training. The strategy is that
we carry out the EM algorithm for every T -epochs update
of BP. More specifically, the dictionary is re-initialized us-
ing the results obtained by applying the EM algorithm on the
latest observed data, and the initial ci are set to the elements
of the dictionary learned by back propagations. Such mixing
update steps make up one round of training, and the whole
training procedure possesses several rounds. In this way, the
dictionary comes from the local features themselves, and the
elements in the dictionary serve as the basis vectors that con-
struct the feature space.
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Method Mean Class
Accuracy

Overall
Accuracy

PointNet (Qi et al. 2017a) 86.0 89.2
PointNet++ (Qi et al. 2017b) 87.6 90.7
DGCNN (Wang et al. 2018) 90.2 92.9
3D-GCN (Lin, Huang, and Wang 2020) 89.1 92.1
PointNet (+NetVLAD) (Ali C 2019) - 87.1
DGCNN (+NetVLAD)(Ali C 2019) - 91.2
PointNet (+BoW) 86.4 90.0
PointNet++ (+BoW) 88.6 91.1
DGCNN (+BoW) 91.0 93.4
3D-GCN (+BoW) 89.6 92.4

Table 1: Classification accuracies (%) of different methods
evaluated on ModelNet40.

Method Avg Max Avg+Max BoW
PointNet 86.9 89.2 89.2 90.0
PointNet++ 89.6 90.7 90.5 91.1
DGCNN 93.0 92.7 92.9 93.4

Table 2: Classification accuracies (%) of three methods with
different symmetric functions evaluated on ModelNet40.

Experiments
In this section, we evaluate the proposed BoW pooling unit
in different tasks: point cloud classification, shape retrieval
and segmentation. In order to keep similar number of pa-
rameters to the counterpart, we first remove the last fully-
connected layer before the global pooling layer from the
original architecture, which usually expands the feature di-
mension to 1024. Then, we plug our BoW pooling unit
in several mainstream networks and substitute for original
pooling functions. Without loss of generality, three repre-
sentative mainstream networks are chosen as the backbone,
i.e., PointNet (Qi et al. 2017a), PointNet++ (Qi et al. 2017b)
and DGCNN (Wang et al. 2018).

Point Cloud Classification
The classification experiment is conducted on ModelNet40
(Wu et al. 2015), which is composed of 12311 CAD models
in 40 classes. We use the same train-test split as PointNet.
The network architecture used for the classification task is
shown in Figure 2. The input feature of a point cloud is
composed of 3-dimensional coordinates. The experimental
settings keep the same as the original approach in terms of
hyper parameters and the optimizer. The adapted networks
with our BoW unit are trained for 400 epochs in total us-
ing the mixing dictionary update strategy. Table 1 shows the
classification results of four methods on ModelNet40. The
performance of methods with the BoW pooling unit gets im-
proved compared to those without the BoW unit and those
with NetVLAD. Note that the major difference between
them is to replace the original symmetric function with the
BoW pooling, which indicates that our BoW pooling dis-
cards less information when aggregating local descriptors
into the global one. The comparison of different symmetric

Query Top-4 retrieved shapes Query Top-4 retrieved shapes

Figure 4: Shape retrieval results on SHREC15 Non-rigid.
For each query shape on the left column, we present two
rows of Top-4 retrieval results: the top row shows results ob-
tained by the original DGCNN and the bottom row shows
results obtained by DGCNN with the BoW pooling. The ob-
viously wrong retrieval results are marked with red arrows.

functions are listed in Table 2.

Shape Retrieval
To evaluate whether the BoW pooling helps us learn a bet-
ter global descriptor, we evaluate the effectiveness of the
BoW pooling in the shape retrieval task on the SHREC15
Non-rigid dataset (Lian and et al 2015). It includes 1200
non-rigid 3D shapes in 50 classes. Each class contains 24
shapes with various poses which derive from the same ob-
ject. We randomly split 19 shapes into the training set and 5
shapes into the test set for each category. We uniformly sam-
ple 1024 points and normalize them into a unit sphere. The
features used for retrieval are extracted from the models that
are trained for the classification task. Specifically, we use the
global representations in the layer right behind the symmet-
ric function. We follow (Lian et al. 2013) to evaluate the per-
formance of retrieval approaches using the precision-recall
(PR) curve and five quantitative metrics, including nearest
neighbor (NN), first tier (FT), second tier (FT), E-measure
(E) and discounted cumulative gain (DCG). The quantita-
tive results are shown in Table 3, respectively, and the PR
curves are shown in Figure 5. With the help of the BoW
pooling, the approaches obtain steady gains. Since the rep-
resentations from different shapes are compared using the
L1 distance, the first conclusion can be drawn that the fea-
ture space, composed of the representations after the BoW
pooling unit, owns better linear property. The distance be-
tween different classes becomes larger, while the variance
within a class goes smaller. In addition, the approaches with
our BoW pooling get more improvements when dealing with
non-rigid shapes, which indicates that the representation af-
ter the BoW pooling is capable of tolerating the pose vari-
ations of an object. We visualize how the global represen-
tation attends to each point in Figure 1. The representation
with the max pooling layer pays equal attention to the whole
geometry, thus most local points provide similar contribu-
tion. The proposed BoW pooling suppresses the expression
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Method BoW NN(%) FT(%) ST(%) E(%) DCG(%)
PointNet - 44.76 26.92 36.66 12.44 49.29
PointNet++ - 82.42 63.75 74.90 20.13 80.35
DGCNN - 62.40 41.40 48.70 14.87 61.16
PointNet

√
46.37 30.75 36.90 12.36 51.47

PointNet++
√

93.36 80.31 89.84 22.27 91.57
DGCNN

√
90.00 68.10 80.20 20.76 84.70

Table 3: Retrieval performance of different methods evaluated on SHREC15.
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0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ec

isi
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pointnet++ (+BoW)
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dgcnn (+BoW)

Figure 5: Precision-recall curves of representative methods
evaluated on SHREC15 Non-rigid.

Dataset ShapeNet part S3DIS
Acc(%) mIoU(%) Acc(%) mIoU(%)

PointNet 93.47 83.72 78.62 47.71
PointNet++ 93.92 85.11 82.98 56.36
DGCNN 94.26 85.20 84.11 56.12
PointNet(+BOW) 93.69 84.06 79.78 48.17
PointNet++(+BOW) 94.17 85.33 83.75 56.90
DGCNN(+BOW) 94.48 85.39 84.28 56.65

Table 4: Segmentation results on two datasets.

of most local points and leads the global representation to
focus on a small number of key points. As a result, such
discriminative local descriptors are not sensitive to the de-
formation of geometry. The retrieved shapes for a query are
visualized in Figure 4.

3D Semantic Segmentation
We also evaluate the effectiveness of the BoW pooling
through point cloud segmentation experiments on ShapeNet
part (Yi et al. 2016) and S3DIS (Armeni et al. 2016) datasets.
The former contains 16881 shapes from 16 categories, while
the latter is composed of 3D scanned point clouds of 6 in-
door scenes. The quantitative results are listed in Table 4.
The methods with our BoW pooling achieves stable im-
provements compared to those without it. Some visualiza-
tion results of segmentation are shown in Figure 6. The BoW
pooling is better at handling details in the joint area of two

Update
Strategy

Mean
Class Accuracy

Overall
Accuracy

BP 90.22 93.07
mixing(T = 30) 90.52 93.27
mixing(T = 50) 91.01 93.44
mixing(T = 70) 90.08 93.23

Table 5: Results of our methods using different dictionary
updating strategies.

different parts and gets more precise segmentation results.

Ablation Studies
In this section, ablation studies are conducted to assess the
effectiveness of each part. Without loss of generality, we
conduct experiments on ModelNet40 to evaluate the settings
of the BoW pooling based on DGCNN.

The effect of dictionary update strategies. In Table 5, we
show the results of different update strategies for dictionary.
Though the dictionary learned by BP acquires a holistic per-
ception of the whole training samples after one epoch of BP,
it is not good at discovering intrinsic primitives that make up
the dataset. We also find that setting T to 50 is better than
30 or 70. Figure 7 shows the loss curves of DGCNN and
DGCNN (+BoW pooling) trained with the mixing update
strategy. The training loss increases sharply when the dictio-
nary is re-initialized and then goes down slowly. Though we
get a higher training loss compared to DGCNN, the test loss
is lower at the end of training. A proper explanation is that
the re-initialization of dictionary based on the updated whole
picture of training data considerably alleviates the overfitting
problem.

The effect of different assignments. We compare the ef-
fects of different methods to assign the feature points to clus-
tering centers. The results are shown in Table 6. The softmax
assignment shows disadvantages compared to the truncated
linear unit. One possible reason is that the softmax function
keeps all small values that act like noise, and the accumu-
lation of thousands of small values may affect the resulting
histogram markedly. For TLU, the percentage of points that
are kept is set to 0.25, 0.5 or 0.75. The parameter of per-
centage markedly influences the result, and a too large or
too small value may result in poor performance.

The effect of dictionary size. We conduct experiments
to investigate the effect of dictionary size, and the results
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Ground
Truth PointNet PointNet

(+BoW) PointNet++ PointNet++
(+BoW) DGCNN DGCNN

(+BoW)

Figure 6: Qualitative results of point cloud segmentation methods run on the ShapeNet part dataset.

(a) Training loss (b) Test loss

Figure 7: Loss curves in the training process.

Method Mean
Class Accuracy

Overall
Accuracy

None 90.12 92.83
Softmax 86.68 91.05
TLU(0.25) 90.77 93.44
TLU(0.5) 91.01 93.44
TLU(0.75) 89.88 93.11

Table 6: Results of different assignment methods. The per-
centage of points kept in TLU is shown in the bracket.

are shown in Table 7. The feature dimension of elements
in the dictionary is set to 512, while the number of the el-
ements differs. The overall accuracy does not show a great
difference by setting the dictionary size from 256 to 3072,
and reaches the highest value at the size of 1024. Note that
the dictionary is a collection of typical patterns in the train-
ing samples, the dictionary of size 1024 is enough to cover
the information that the dataset contains. A larger dictionary
contains too many redundant patterns, which are useless and
even cause the problem of overfitting. When setting the dic-
tionary size to 1024, the parameter number of the network
with the BoW pooling is the same as that of the original

Dictionary Size Mean
Class Accuracy

Overall
Accuracy Parameters

256 90.35 93.07 0.50M
512 90.86 93.15 0.76M
1024 91.01 93.44 1.28M
2048 90.98 93.43 2.33M
3072 90.89 93.31 3.38M

Table 7: Results of methods with different dictionary sizes.

one, indicating that the improvement comes from the design
of the proposed BoW pooling layer.

Conclusion

In this paper, we proposed a novel BoW pooling unit to ag-
gregate the local descriptors. The BoW pooling unit can be
plugged in existing networks and replace the original pool-
ing methods. We designed the truncated linear unit to sup-
press the expression of unimportant local points and lead the
network to focus on a small number of key points. A novel
update method of the dictionary was also explored and ana-
lyzed. We formulated the dictionary learning problem as the
parameter estimation task of complete log likelihood, and
introduced the mixing update strategy that incorporates the
idea of the EM algorithm. Experiments on point cloud clas-
sification, shape retrieval and semantic segmentation tasks
verified the superiority of the proposed BoW pooling against
other symmetric functions in terms of the feature aggrega-
tion of point clouds. The applications on both rigid and non-
rigid shapes show the effectiveness and universality of our
proposed BoW pooling. In the future work, how to general-
ize the BoW pooling unit into other tasks in computer vision
is worth to explore.
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03 0.23 0.43

Figure 8: Illustration of removing part of points from 3D
shapes in different volumes.
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Figure 9: The performance of the BoW pooling in the pres-
ence of partiality artifacts.
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Appendix
Here, we evaluate the robustness of the proposed BoW pool-
ing method and provide additional results of classification
and retrieval experiments.

Robustness Test
The robustness of the proposed BoW pooling is tested based
on DGCNN and DGCNN (+BoW pooling). The main idea is
that we train the model on the complete 3D shapes, but test
it on the incomplete ones. To generate the test data, we first
normalize each point cloud into a unit sphere, and then drop

Method PointNet PointNet++ DGCNN
NN 83.85 86.18 87.48
FT 51.56 56.16 57.52
ST 64.25 68.19 69.61
E 35.22 37.91 38.05
DCG 81.91 84.52 84.86
Method+BoW PointNet PointNet++ DGCNN
NN 84.64 87.06 89.42
FT 53.41 61.52 65.13
ST 65.94 74.31 76.63
E 36.39 39.95 41.46
DCG 83.01 86.96 88.08

Table 8: Retrieval performance of different methods evalu-
ated on ModelNet40.
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Figure 10: Precision-recall curves of some representative
methods evaluated on ModelNet40.

Method Acc mAP
MeshNet 91.9 81.9
MeshNet (+BoW) 92.6 85.3

Table 9: The effect of our BoW pooling on a mesh-based
method.

part of 3D shape whose volume ranges from 0.23 to 0.43,
as is shown in Figure 8. The percentage of missing points
ranges from 1.0% to 11.2%. Figure 9 show the effect of the
volume of the missing part on the performance.

Shape Retrieval Results on ModelNet40
We also conduct shape retrieval experiments on the Mod-
elNet40 dataset. The quantitative results and PR curves are
shown in Table 8 and Figure 10.

Generalizing to a Mesh-based Method
MeshNet (Feng et al. 2019) is a mesh-based method which
takes mesh data as input. To evaluate the generalization ca-
pacity of the BoW pooling unit, we replace the original final
pooling unit with ours. The ratio of TLU is set to 0.5 and the
dictionary size is 1024. The classification results (Acc) and
retrieval results (mAP) are listed in Table 9.
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