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Abstract

Interpretability has been regarded as an essential component
for deploying deep neural networks, in which the saliency-
based method is one of the most prevailing interpretable ap-
proaches since it can generate individually intuitive heatmaps
that highlight parts of the input image that are most impor-
tant to the decision of the deep networks on a particular
classification target. However, heatmaps generated by exist-
ing methods either contain little information to represent ob-
jects (perturbation-based methods) or cannot effectively lo-
cate multi-class objects (activation-based approaches). To ad-
dress this issue, a two-stage framework for visualizing the in-
terpretability of deep neural networks, called Activation Op-
timized with Perturbation (AOP), is designed to optimize ac-
tivation maps generated by general activation-based methods
with the help of perturbation-based methods. Finally, in order
to obtain better explanations for different types of images, we
further present an instance of the AOP framework, Smooth
Integrated Gradient-based Class Activation Map (SIGCAM),
which proposes a weighted GradCAM by applying the fea-
ture map as weight coefficients and employs I-GOS to opti-
mize the base-mask generated by weighted GradCAM. Ex-
perimental results on common-used benchmarks, including
deletion and insertion tests on ImageNet-1k, and pointing
game tests on COCO2017, show that the proposed AOP
and SIGCAM outperform the current state-of-the-art meth-
ods significantly by generating higher quality image-based
saliency maps.

Introduction
Understanding and explaining deep learning methods have
been attracting increasing attention in research communi-
ties since it helps to construct the trust of black-box mod-
els when making crucial decisions, particularly in applica-
tions including quantitative transaction, autopilot, and med-
ical image analysis, etc.

One critical issue of understanding deep neural network
is to explicitly generate images that can shed light on parts
which are most related to the deep neural networks’ deci-
sion. A common way is to back-propagate the gradient or
its variants to the input image to decide which pixels or re-
gions are more relevant to the change of the prediction (Qi,
Khorram, and Li 2020; Sundararajan, Taly, and Yan 2017;
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Figure 1: classification score (after softmax) on Densnet201:
“catamaran”: 0.521; “pirate”: 0.068. We gradually remove
“pirate” according to its mask(Left) and test its effect on
“catamaran” (Right). The deletion test shows that the re-
moval of “pirate” significantly affects the classification score
of “catamaran”, although it is irrelevant to “catamaran”.

Smilkov et al. 2017). However, these changes do not neces-
sarily indicate that the pixels or regions really have a signif-
icant impact on the prediction (An example is illustrated in
Figure 1).

Other approaches, such as activation-based methods in-
cluding GradCAM (Selvaraju et al. 2017) and Grad-
CAM++ (Chattopadhyay et al. 2018), use back-propagation
gradients as weights to combine the forward feature maps,
which favor distinguishing objects from the background, and
thus provide explanations with fine-grained details. How-
ever, these methods may capture too much meaningless in-
formation since the feature maps are not necessarily related
to the target category. On the other hand, gradients are class-
discriminative, which means optimizing gradients can bet-
ter identify different object categories. Perturbation-based
methods such as the method in (Fong and Vedaldi 2017)(to
simplify, we call it EMP) and I-GOS (Qi, Khorram, and Li
2020) adopt gradients as masks and use them to edit an im-
age to convert gradient optimization into a meta-predictor
problem. Nevertheless, heatmaps generated by perturbation-
based approaches may contain very little information used
to represent an object. It has been widely demonstrated that
properly cascaded different kinds of deep learning meth-
ods can deliver continuous optimizing results (Yan et al.
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2017; Marcetic, Soldic, and Ribaric 2017). Therefore, to
gain highly network decision-related explanations with ad-
equate information, a general two-stage framework, Activa-
tion Optimized with Perturbation (AOP) is proposed, by uti-
lizing perturbation-based approaches to optimize the base-
bask generated by activation-based methods.

Although GradCAM (Selvaraju et al. 2017) and Grad-
CAM++ (Chattopadhyay et al. 2018) get well performance
on “single-objective” images, they still have limitations.
For example, GradCAM’s performance drops when local-
izing “multi-objective, single-class” images (Chattopadhyay
et al. 2018), while GradCAM++ may capture unrelated in-
formation on “multi-objective, multi-class” images. Exam-
ples are illustrated in Figure 3. In order to solve these
problems, based on the AOP framework, this paper intro-
duces Smooth Integrated Gradient-based Class Activation
Map (SIGCAM), which firstly proposed a weighted Grad-
CAM (WGradCAM) to generate well performed base-mask
on different types of images, and then employs I-GOS (Qi,
Khorram, and Li 2020) to optimize the generated base-mask.
In addition, to reduce computational overhead and make
the optimizing process converge faster, a startup strategy is
adopted, and the pixels with less importance are filtered.

The key contributions in this paper are summarized as
follows: 1) we introduce a highly flexible two-stage frame-
work AOP to combine the advantages of activation-based
methods to capture adequate information and the ability of
perturbation-based methods to generate network decision-
related masks. 2) we propose Weighted GradCAM, an ex-
tension of GradCAM, by applying the feature map as weight
coefficients, which is similar to GradCAM++ but simpler
and more effective. 3) we present SIGCAM, a special in-
stance of AOP, which employs I-GOS to optimize the pro-
posed Weighted GradCAM. 4) experimental results in inser-
tion and deletion metrics (Petsiuk, Das, and Saenko 2018)
on ImageNet-1k and pointing game (Zhang et al. 2018) on
COCO2017 show that AOP and SIGCAM can greatly sur-
passes the current SOTA explanation approaches.

Related Work
In this section, we present a survey of related works that gen-
erate visual, image-like explanations. To simplify, we clas-
sify them into four categories: 1) Gradient-based Methods;
2) Activation-based Methods; 3) Region-based Methods; 4)
Perturbation-based Methods.

Gradient-based Methods. These approaches calculate
attributions by back-propagating the predicted score in each
layer of the network, and then return them to the input fea-
tures. They usually generate pixel-level attributions and have
been widely studied. SmoothGrad (Smilkov et al. 2017) and
VarGrad (Adebayo et al. 2018) sought to alleviate noise and
visual diffusion for saliency maps by averaging over expla-
nations of noise copies of an input, which visually sharpened
explanations. Integrated gradients (Sundararajan, Taly, and
Yan 2017) attempted to address “gradient saturation” by es-
timating the global importance of each pixel, rather than lo-
cal sensitivity. Guided Backpropagation (Springenberg et al.
2015) set negative gradient zero through a ReLU unit in the
back-propagation. Other gradient-based approaches such as

DeepLift (Shrikumar, Greenside, and Kundaje 2017) or Ex-
citation BackProp (Zhang et al. 2018) utilized top-down
relevancy propagations. Gradient-based are in general faster
but tend to achieve lower quality saliency maps.

Activation-based Methods. These methods combine ac-
tivations from convolutional layers (which are usually called
“target layers”) to form an explanation. CAM (Zhou et al.
2016) and GradCAM (Selvaraju et al. 2017) used a lin-
ear combination of activations to form a heatmap with fine-
grained details of the predicted class. GradCAM++ (Chat-
topadhyay et al. 2018) adopted a weighted combination of
the positive partial derivatives of the target layers’ feature
maps with respect to a specific class score as weights to gen-
erate a visual explanation for the corresponding class label.
To better visualize the effect of activation-based approaches,
the generated heatmaps should be unsampled to the same
resolution of the original input image.

Region-based methods. These approaches estimate the
feature importance of different regions. RISE (Petsiuk, Das,
and Saenko 2018) took a linear combination of random
masks where the weights were computed from the score of
the target class corresponding to the respective masked in-
puts. Dasom Seo et al (Seo, Oh, and Oh 2020) obtained a
more class-discriminative and visually pleasing map than
RISE by fusing saliency maps generated from multi-scale
segmentations. Similar to (Seo, Oh, and Oh 2020), XRAI
(Kapishnikov et al. 2019) firstly over-segmented the image,
then iteratively test the importance of each region, coalesc-
ing smaller regions into larger segments based on attribution
scores. The main difference between XRAI and (Seo, Oh,
and Oh 2020) is that XRAI uses Integrated Gradients to gen-
erate attributions. Region-based approaches usually gener-
ate better human-interpretable visualizations but are less ef-
ficient than gradient-based approaches and activation-based
methods.

Perturbation-based Methods. Such approaches directly
estimate the impact of a feature subset on the output. LIME
(Ribeiro, Singh, and Guestrin 2016) explained the predic-
tions of any classifier in an interpretable and reliable man-
ner by learning an interpretable model locally around the
predictions. EMP (Fong and Vedaldi 2017) directly edited
the image to learn the location at which a model focused
on by discovering the parts of an image that most affect its
output score when it is perturbed, making it interpretable
and testable. I-GOS (Qi, Khorram, and Li 2020) extended
EMP (Fong and Vedaldi 2017) by computing descent direc-
tions based on the integrated gradients to avoid local optima,
and achieved a speed-up of convergence. Since perturbation-
based methods require multiple queries to the model, they
are usually slower than other methods except for the region-
based ones.

The Proposed Methods
In this section, we first introduce a two-stage saliency map
generating framework AOP, which achieves continuous op-
timization of prediction results by cascading different kinds
of saliency methods. Then, we propose WGradCAM, which
extends GradCAM by applying the feature map as weight
coefficients. And Finally, we present SIGCAM, a particular
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Figure 2: An overview of GradCAM and WGradCAM with
their respective computation expressions.

instance of AOP, which uses WGradCAM to generate the
basic saliency maps and optimizes them using I-GOS.

Optimizing Activation with Perturbation
The principle behind AOP is straightforward. Perturbation-
based methods allow us to directly estimate the im-
pact of pixels of the output and generate more human-
friendly saliency maps. However, they are less efficient,
and the optimizing process needs hundreds of iterations.
Meanwhile, activation-based methods can quickly generate
saliency maps, which capture more information about the
target object. Therefore, the motivation of AOP is applying
activation-based methods to generate a base-mask and uti-
lizing a perturbation-based method to optimize it. Note that
the base-mask of AOP can be generated by different kinds of
activation-based methods, and the optimizing process can be
conducted by various perturbation-based approaches, mak-
ing the AOP framework highly extensible.

Weighted GradCAM
While Grad CAM++ generates a broader salient region
than GradCAM and is more suitable for the base-mask, it
achieves a worse deletion and insertion score. On the other
hand, GradCAM++ adopts higher-order derivatives to take a
weighted average of the pixel-wise gradients, which is time-
consuming. To address this issue, we modify the structure of
GradCAM and make the generated heatmaps more discrim-
inative. Different from Grad CAM++, the proposed method
WGradCAM adopts a more straightforward but more effec-
tive way, by applying the feature map as weight coefficients.

Structure of WGradCAM. The main difference between
WGradCAM and GradCAM is the calculation of gradient
weights wc

k for a particular class c and activation map Ak

(shown in Figure 2).
Specifically, GradCAM defines the neuron importance

weights wc
k as

wc
k =

1

Z

∑
i

∑
j

∂Fc(x)

∂Ak
ij(x)

(1)

where Z is the number of pixels in the activation map.
However, WGradCAM applies the feature map in Eq. 1 in

a pixel-wise way, that is,

wc
k =

1

Z

∑
i

∑
j

[
∂Fc(x)

∂Ak
ij(x)

·Ak
ij(x)] (2)

Similar to GradCAM, WGradCAM performs a weighted
combination of forward activation maps Ak, and calculate a
mask M by ReLU.

M = ReLu(
∑
k

(wc
kA

k)) (3)

We scale M into [0.0, 1.0] by utilizing Min-Max normal-
ization,

M =
M −min(M)

max(M)−min(M)
(4)

Then, M can be optimized using perturbation-based ap-
proaches.

SIGCAM
Directly optimizing M generated by WGradCAM is time-
consuming since it contains too many non-zero pixels. Be-
sides, too many pixels in the base-mask get high values,
which are not human-friendly. To deal with this problem, we
use filter(M < θ) to filter the pixels less than the thresh-
old θ (setting these pixels 0) and use a modulating factor
parameter λ to control the initial value to a specific range as
follows.

M = λ(filter(M < θ)) (5)

Then, M can be upsampled to a matrix whose size is
smaller than the shape of the input image (e.g., the shape
of M is 7 × 7 when using ResNet50 as the classifica-
tion model, it can be upsampled to 28 × 28 and then
used as the base-mask). Since this paper considers the pro-
cess of fine-tuning M as a “deletion game”, which aims
at finding the smallest mask M∗ that causes the score
Fc(Φ(I0, up(M, (H,W )))) ≤ Fc(I0) to drop significantly,
the base-mask should be M = 1 − up(M, (h1, w1)), where
up(M, (h1, w1)) means upsampling M to size (h1, w1).
Φ(I0, up(M, (H,W ))) = I0� up(M, (H,W )) + Ĩ0� (1−
up(M, (H,W ))) and Ĩ0 is a baseline image with the same
shape as I0, which should have a low score on the class c.

Finally M∗ can be formulated to minimize the following
objective function:

M∗ =argmin Fc(Φ(I0, up(M, (H,W ))))

+ λ1‖1−M‖+ λ2TV(M)
(6)

where ‖1 − M‖ is the `1 regularization which encour-
ages most of the mask to be turned off and TV(M) is a sec-
ond term total-variation norm to make M more piece-wise
smooth. λ1 and λ2 are hyperparameter.

Similar to I-GOS, the proposed SIGCAM employs a line-
search based gradient-project method to make each compu-
tation of the integrated gradients maximally.
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In order to make the optimizing process smoother, a
startup strategy similar to warmup (Goyal et al. 2017) is de-
signed. Specifically, in the first few iterations, smaller Gaus-
sian blur parameters are used to obtain Ĩ0, then larger ones
are applied to optimize M . Since we only need to fine-tune
M , Eq. 6 will converge much faster than I-GOS.

Experiments
Experimental Setup
Datasets. We use the validation split of ImageNet-1k
(which contains 50, 000 images) and the val2017 split of
COCO2017 (containing 5, 000 images) to test the perfor-
mance of AOP and SIGCAM. COCO2017 contains 80 ob-
ject categories, where many images are “multi-objective,
multi-class”, making it challenging for pointing games. In
order to make the test results more meaningful, we use the
provided segmentation masks instead of commonly used
bounding boxes for COCO2017 as the ground truth. It is
observed that bounding boxes are not suitable for pointing
game since a pixel located in the bounding boxes does not
necessarily mean that it has some relationship with the ob-
ject. For ImageNet-1k, we use a set of pre-trained torchvi-
sion models1: Densenet201, Inception v3, and Vgg19. For
COCO2017, we follow the necessary training procedure
for image classification to fine-tuning the output layer of
a pre-trained ResNet50 on train2017 split and validate it
on val2017 split. Specifically, only the output layer is fine-
tuned using BCEWithLogitsLoss. The training converges af-
ter dozens of iterations, and the final validation performance
(in %) for classification is Loss:9.07 and Precision:86.53.
For both datasets, all images are resized to 224× 224.

Baselines. We compare SIGCAM with the current
SOTA methods, including activation-based methods: Grad-
CAM (Selvaraju et al. 2017), GradCAM++ (Chattopad-
hyay et al. 2018), region-based method: XRAI (Kapishnikov
et al. 2019) and perturbation-based method: I-GOS (Qi,
Khorram, and Li 2020). For GradCAM, GradCAM++ and
WGradCAM, the target layer selected in this paper is
the layer closest to the linear or classifier module(i.e.,
Resnet50: ‘layer4.2’, Densenet201: ‘features.norm5’, Incep-
tion v3: ‘Mixed 7c’, and Vgg19: ‘features.36’). For XRAI,
the segmentation method used in this paper is SLIC in the
skimage python package2 instead of Felzenszwalb, because
we reported better results using SLIC on XRAI. The scale
segment parameter is set in range [50, 100, 150, 250, 500].
We follow the original setup of I-GOS. Threshold θ and
modulating factor λ in Eq. 5 on ImageNet-1k is [0.7, 0.15]
and on COCO2017 is [0.6, 0.25]. The “warmup” iterations
to optimize the base-mask is 5, and the size of base-mask is
28×28. Other parameters are the same as that of I-GOS. For
a fair comparison, heatmaps of GradCAM and GradCAM++
will be upsampled to 224× 224.

Evaluation metrics. We follow (Petsiuk, Das, and
Saenko 2018) to conduct deletion and insertion tests to eval-
uate saliency maps generated by different approaches. The

1https://github.com/pytorch/vision/tree/master/torchvision/models
2https://github.com/scikit-image/scikit-image

intuition behind the deletion metric is that the removal of
pixels/regions most relevant to a class will cause the clas-
sification score to drop significantly. Insertion metric, on
the other hand, starts with a blurred image and gradually
re-introduces content, which produces more realistic images
and has the additional advantage of mitigating the impact of
adversarial attack examples. In detail, for the deletion met-
ric, we gradually replaceN pixels in the original image with
a highly blurred version of the original image each time ac-
cording to the values of the saliency map until no pixels left.
Contrary to the deletion metric, the insertion metric replaces
N pixels of the blurred image with the original one until the
image is well recovered. We calculate the area under curve
(AUC) of the classification score after Softmax as a quanti-
tative indicator. Blur method used in this paper is Gaussian
Blur with kernel size = 51 and sigma = 50. Besides,
we provide the over − all score to comprehensively evalu-
ate the deletion and insertion results, which can calculate by
AUC(insertion)−AUC(deletion) .

Pointing game measures the localization accuracy Acc =
#Hits

#Hits+ #Misses
for each object category (if the most

salient pixel lies inside the annotated segmentation mask of
an object, it is counted as a hit). The overall performance is
measured by the mean accuracy across different categories.
Specifically, we only test classes with classification score
Fc(I0) > 0.5 in each image since many of the images of
COCO2017 contain multiple object categories, making it
time-consuming to test all classes. Besides, Fc(I0) < 0.5
provided lower confidence to judge an object, which may
make the results less reliable.

Results and Discussion
Ablation Studies. We conduct ablation studies to esti-
mate the performance of AOP. To make the experimen-
tal results more reliable, we apply 3 combinations, that is,
GradCAM (as a base-mask) with I-GOS, GradCAM with
EMP (Fong and Vedaldi 2017) and SIGCAM (WGradCAM
with I-GOS). We randomly sample 5,000 images from the
ImageNet-1k validation dataset and use Inception v3 as the
base classification network. The evaluation metrics used
here are deletion and insertion. Results are shown in Table 1.

From Table 1, we can see, compared with GradCAM,
WGradCAM achieves 0.68% gains in terms of deletion
AUC and 0.79% advantages over insertion AUC. The over-
all improvement is 1.48%.

Furthermore, overall scores suggest that AOP can consid-
erably beat each separate method. Specifically, GradCAM
and EMP (Fong and Vedaldi 2017) combination gains 2.46%
improvement over GradCAM and 14.17% over EMP in
terms of over-all AUC. When considering GradCAM and
I-GOS combination, the overall improvement will be 8.38%
over GradCAM and 8.01% over I-GOS. Furthermore, SIG-
CAM achieves the best results over other AOP combina-
tions. Compared with the separate implementations, SIG-
CAM obtains 8.06% improvement over WGradCAM and
9.17% gains over I-GOS in terms of over-all AUC. In con-
clusion, AOP can achieve continuous better performance by
cascading different saliency methods.
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AUC deletion(%) insertion(%) over-all(%)

One-Stage Methods

GradCAM 17.92 66.04 48.12

WGradCAM (Ours) 17.23 66.83 49.60
EMP 12.70 49.21 36.51

I-GOS 8.76 57.25 48.49

AOP Methods (Ours)

GradCAM + EMP 11.90 62.58 50.68

GradCAM + I-GOS 8.97 65.47 56.50

SIGCAM 9.91 67.57 57.66

Table 1: Ablation studies on Inception v3. Evaluation indi-
cators contain deletion score (smaller AUC is better), in-
sertion score (higher AUC is better), and the comprehen-
sive evaluation results(over-all score, higher is better) on the
ImageNet-1k dataset. The best records are marked in bold.

Validate the Effectiveness of WGradCAM. In this
part, we first visualize the saliency maps of samples from
ImageNet-1k to validate the reliability of WGradCAM, then
we analyze the intuition behind the multiplying gradients
with activations.

As illustrated in Figure 3, WGradCAM generates class-
discriminative heatmaps, and can perform well on differ-
ent types of images, while GradCAM’s performance drops
when localizing objects on “multi-objective, single-class”
images (2nd and 6th images, line 3), and GradCAM++ may
capture unrelated information on “multi-objective, multi-
class” images (4th image, line 2).

Analysis: In an activation-based method, gradient weights
are expected to be high for feature map pixels that contribute
to the presence of the object and lower for irrelevant pixels.
However, gradients for a CNN can be noisy and tend to van-
ish due to the saturation problem for Sigmoid function or
the zero-gradient region of ReLU function. This can lead
to gradients w.r.t input or the internal layer activation looks
noisy visually. Therefore, WGradCAM multiplies gradients
with feature maps as weights, which can make the output
saliency map more dependent on the original feature maps.

Compared with Different Saliency Methods. Table 2
shows the performance of all baselines using deletion and
insertion tests (on all the 50,000 images).

From Table 2 we can see, I-GOS and SIGCAM unsurpris-
ingly get a better deletion score on all three models, since
the optimizing process of I-GOS and SIGCAM is using a
deletion game to find the smallest deletion mask that causes
the score Fc(Φ(I0, up(M, (H,W )))) ≤ Fc(I0) to drop sig-
nificantly. GradCAM and GradCAM++ get better insertion
scores on Densenet201 and Vgg19, and SIGCAM comes
close. It can be explained that the heatmaps of GradCAM
and GradCAM++ are larger than other methods. Note that
the heatmaps of XRAI are also large enough, but contain

Figure 3: Sample visual explanations on ImageNet-1k
generated by GradCAM, WGradCAM(Eq. 3), and Grad-
CAM++ (classification model used is densenet201).

more irrelevant image information, making the scores lower;
this can be demonstrated from the deletion game. Besides,
SIGCAM gets the highest insertion score on Inception v3.
In conclusion, SIGCAM can not only capture the most crit-
ical subfeatures but also express adequate information in a
smaller region. By the way, all baselines’ performance over
Vgg19 has a large gap than that over Densenet201 and In-
ception v3, this may be due to the classification result of
Vgg19 (top-1 error: 27.62) is the worst, while Densent201
and Inception v3 get better classification results (top-1 er-
ror: Densenet201: 22.80, Inception v3:22.55).

To further explore the details of the insertion and deletion
tests, we draw the pixels remove/insert process over the first
5,000 samples of the ImageNet-1k validation dataset. The
results are shown in Figure 4.

As shown in Figure 4, SIGCAM outperforms existing re-
lated saliency methods, comprehensively considers the re-
sults of insertion and deletion. Specifically, I-GOS and SIG-
CAM perform far better in the deletion test (results are
shown in the first line’s three images, a smaller AUC means
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Methods densenet201 inception v3 vgg19 over-all
AUC deletion(%) insertion(%) deletion(%) insertion(%) deletion(%) insertion(%) over-all(%)

GradCAM 16.72 58.65 16.95 56.14 13.33 53.50 40.43

GradCAM++ 17.35 57.55 16.24 53.83 14.81 50.04 37.68

I-GOS 10.63 44.67 9.32 49.28 7.38 38.47 35.03

XRAI 24.97 45.22 16.66 54.98 15.78 43.08 28.62

SIGCAM(Ours) 10.97 54.61 10.22 57.94 7.80 42.54 42.04

Table 2: Comparative evaluation in terms of deletion (smaller AUC is better) and insertion (higher AUC is better) score on the
ImageNet-1k dataset. The over-all score (higher is better) shows that SIGCAM outperform other related methods significantly.

Figure 4: Details of the Insertion & Deletion process. Results of our proposed method SIGCAM is annotated in red rectangles.

that the deleted pixels are more closely related to the net-
work’s prediction, i.e., removing these pixels making the
prediction score drop significantly). However, I-GOS per-
forms worst over other methods on the insertion test (larger
AUC means the prediction probability is higher when in-
serting these pixels). One possible reason is that saliency
maps of I-GOS contain too few pixels. Although removing
these pixels can significantly drop the classification score,
they do not contain enough information for a classifier to
judge a class. Correspondingly, SIGCAM can combine the
advantage of I-GOS, which can distinguish the most critical
pixels/regions without which the classifier may misjudge a
class, and the ability of activation-based methods, which can
capture enough information to recover an image.

Pointing Game on COCO2017. The results of pointing

game on all baselines are shown in Table 3.

From Table 3 we can see, SIGCAM obtains the highest
score of all baselines, while I-GOS comes close. Specif-
ically, SIGCAM outperforms other methods with an im-
provement of > 2.92% in terms of the mean accuracy.

Visualization and Interpretation. Finally, To better in-
terpret the effectiveness of SIGCAM, various approaches
including gradient-based methods (Guided-BP (Springen-
berg et al. 2015), vanilla Back-propagation, Input � Gra-
dients (Shrikumar et al. 2016), Integrated Gradients (Sun-
dararajan, Taly, and Yan 2017) and SmoothGrad (Smilkov
et al. 2017)), activation-based methods (GradCAM (Sel-
varaju et al. 2017) and GradCAM++ (Chattopadhyay et al.
2018)), region-based methods (XRAI (Kapishnikov et al.
2019)), and Perturbation-based methods (I-GOS (Qi, Khor-
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Figure 5: Visualizations comparing SIGCAM vs. various saliency methods on Densenet201. The first columns are Input images
with all annotations, others are their heatmaps.

Methods Mean Accuracy(%)

GradCAM 25.78

GradCAM++ 29.91

I-GOS 35.72

XRAI 28.12

SIGCAM (Ours) 38.64

Table 3: Pointing Game on COCO val2017 split with
Fc(I0) > 0.5. Results show that SIGCAM performs con-
sistently better than others with significant improvement.

ram, and Li 2020) and our proposed SigCAM) are ap-
plied to visualize the heatmaps of different types of images,
i.e., “single-objective”, “multi-objective, single-class”, and
“multi-objective, multi-class”. The results are shown in Fig-
ure 5.

In order to quantify the evaluation by individual inspec-
tion, we define perfect heatmaps should have the follow-
ing characters: 1) Heatmaps with less noise are better; 2)
Heatmaps should best match the target object; 3) Heatmaps
should contain adequate information to identify objects.

As is illustrated in Figure 5, heatmaps generated by
Guided-BP make more sense to human vision than that
generated by other gradient-based methods, such as vanilla
Back-propagation, Integrated Gradients, and SmoothGrad,
etc. However, too much noise makes Guided-BP less visu-
ally friendly than other types of methods. I-GOS’s heatmaps
contain less noise. However, pixels of these heatmaps have a
higher probability of falling outside the segmentation mask,

although they tend to be located in the bounding boxes.
Heatmaps generated by XRAI are excessively affected by
the segmentation result. GradCAM and GradCAM++ gener-
ate larger regions, these regions are not that human-friendly,
but can capture enough information. SIGCAM generates
most human appealing heatmaps above all methods accord-
ing to 10 humans’ evaluation. The heatmaps contain less
noise than the one generated by IGOS and capture adequate
information to identify the object target like GradCAM and
GradCAM++. More importantly, pixels of the SIGCAM’s
heatmaps are concentrated in the segmentation task, making
the heatmaps more human friendly.

In conclusion, SIGCAM can outperform related saliency
methods and have great potential in the field of computer
visual interpretability.

Conclusion

In this paper, we propose a two-stage framework AOP,
which combines the power of activation-based methods and
perturbation-based methods, i.e., optimizing the base-mask
generated by activation-based methods to drop unrelated
pixels/regions by perturbation-based methods. Then a spe-
cial instance of AOP, calling SIGCAM is presented to bet-
ter interpret different types of images. Results of deletion &
insertion test and pointing games demonstrate the effective-
ness of AOP and SIGCAM.
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