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Abstract

Deep Neural Networks (DNNs) have recently achieved re-
markable performance in image retrieval, yet posing great
threats to data privacy. On the one hand, one may misuse a de-
ployed DNNs based system to look up data without consent.
On the other hand, organizations or individuals would legal-
ly or illegally collect data to train high-performance models
outside the scope of legitimate purposes. Unfortunately, less
effort has been made to safeguard data privacy against mali-
cious uses of DNNs. In this paper, we propose a data-centric
Proactive Privacy-preserving Learning (PPL) algorithm for
hashing based retrieval, which achieves the protection pur-
pose by employing a generator to transfer the original data
into the adversarial data with quasi-imperceptible perturba-
tions before releasing them. When the data source is infil-
trated, the adversarial data can confuse menacing retrieval
models to make erroneous predictions. Given that the pri-
or knowledge of malicious models is not available, a surro-
gate retrieval model is instead introduced acting as a fooling
target. The framework is trained by a two-player game con-
ducted between the generator and the surrogate model. More
specifically, the generator is updated to enlarge the gap be-
tween the adversarial data and the original data, aiming to
lower the search accuracy of the surrogate model. On the con-
trary, the surrogate model is trained with the opposing objec-
tive that is to maintain the search performance. As a result,
an effective and robust adversarial generator is encouraged.
Furthermore, to facilitate an effective optimization, a Gradi-
ent Reversal Layer (GRL) module is inserted to connect two
models, enabling the two-player game in a one-step learning.
Extensive experiments on three widely-used realistic datasets
prove the effectiveness of the proposed method.

Introduction
In recent decades, Deep Neural Networks (DNNs) have
made a giant leap forward and been widely adopted in im-
age retrieval (Babenko et al. 2014; Li et al. 2017; Shen et al.
2018; Wang et al. 2020). With sufficient training data, one
may build deep models with promising performance on tar-
get searching tasks. On the flip side, once misused, this ad-
vanced technology could raise significant data privacy is-
sues. Nowadays, unprecedented amounts of user-generated
images are shared or published on the Internet, which may
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contain sensitive information, such as faces, child pictures,
ID photos, etc. A malicious search engine could use a snap-
shot of someone as a query example to search against the
entire Internet. Based on the returned search results (i.e.,
relevant or similar images), implicit connections between
queries and results could be exposed and revealed, causing
privacy leakage. For instance, a profile photo could be the
hint to find out his/her family photos. A malicious party can
also crawl and scrape images online and accordingly build
high-performance retrieval models used for profit or a nefar-
ious purpose. These worrying issues highlight the necessity
of protecting data privacy.

Recently, a wide range of studies have revealed the frag-
ile nature of deep models to the existence of adversarial ex-
amples (Biggio et al. 2013; Mopuri, Garg, and Babu 2017;
Gu, Dolan-Gavitt, and Garg 2017; Shafahi et al. 2018). By s-
lightly modifying clean data, one can craft visually plausible
adversarial data but mislead target models towards wrong
predictive results with high probability. Such an intriguing
property provides inspiration for privacy protection against
malevolent ends, i.e., using adversarial data. In real world
situations, it is very common that data owners are usually
unaware of when and how an invasion takes place. Based on
this observation, it is natural to proactively take action on the
raw data before releasing them for a precaution, reducing the
chance of being invaded.

Motivated by this, we propose PPL, a data-centric
Proactive Privacy-preserving Learning algorithm against po-
tential menacing models. We discuss our work in the context
of hashing based searching scenarios (Shen et al. 2009; Zhu
et al. 2013; Li, Wang, and Kang 2016; Yang et al. 2016; Liu
et al. 2019), where high dimensional data would be repre-
sented as compact binary codes via hash techniques to satis-
fy the requirements of both query speed and accuracy. The
proposed PPL achieves the privacy protection by transfer-
ring data from the original domain into the adversarial do-
main via an adversarial generator without significantly sacri-
ficing the visual quality. As illustrated in Figure 1, before the
data release, the adversarial processing is performed, where
the raw data is imperceptibly modified. The perturbed da-
ta, i.e., adversarial data, will manipulate the predictive be-
haviours of malicious retrieval models in various scenarios.
More specifically, in Figure 1 (a), when someone leverages
well-established models to retrieve the released adversarial
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Figure 1: Data-centric proactive privacy preserving. The
protection mechanism is implemented before the data re-
lease, when the raw data is transferred into the adversarial
data with imperceptible adjustments. When the data source
is penetrated, the modified can successfully fail the mali-
cious users in both (a) searching with existing models (b)
constructing new models.

data or take these data as queries to perform searching, their
target data items would not be returned. At the same time,
malicious parties who have successfully harvested the adver-
sarial data can hardly build up capable models in retrieval
tasks, where clean data is involved no matter as queries or
searching targets. As stated before, malicious models are
usually hidden from victims, so that we build a surrogate
retrieval model as an imaginary fooling target of the gener-
ator. It is feasible as indicated by (Papernot, McDaniel, and
Goodfellow 2016; Tramèr et al. 2017; Ilyas et al. 2019) that
data crafted to mislead one model also interferes with other
models trained for the same task.

The proposed framework is trained by a two-player game
conducted between the generator and the surrogate model,
where two models are optimized in the opposite direction.
In detail, the generator is trained to minimize a privacy-
preserving loss to enlarge the domain gap, distort the simi-
larity relationships and corrupt the matching between adver-
sarial data and clean data, aiming to lower the prediction ac-
curacy of the surrogate model in the above complex privacy-
preserving scenarios. In the meanwhile, the surrogate model
strives to mitigate the adverse influence of the generator and
maintain the performance. The adversarial game impels the
generator to produce effective and robust adversarial data.
To facilitate an effective optimization, a GRL module is in-
serted between two models, enabling the two-player game in
a one step learning. Extensive experiments demonstrate the
superiority of the proposed method. The main contributions
are summarized as follows.

• To the best of our knowledge, this is the first work
that considers privacy protection in large-scale image re-
trieval. The proposed PPL is developed to transfer clean
data into adversarial data with imperceptible adjustment
before the data release, targeting to manipulate the predic-
tive behaviours of potential malicious retrieval models.

• A novel framework with an effective objective function

is designed, where an adversarial game is played between
the adversarial generator and the surrogate retrieval model
with various constraints imposed. A GRL module is addi-
tionally applied to facilitate the training.

• Extensive experiments on three widely-used benchmark
datasets verify the feasibility of the proposed method, in-
cluding high privacy-preserving success rate and remark-
able transferability.

Related work
In this section, we briefly review the most related subjects
of the studied problem, including adversarial examples and
deep hashing.

Adversarial Examples
(Szegedy et al. 2013) first make an assumption that there
exist adversarial examples with imperceivable perturbations
from original clean data that can fool deep models to make
wrong predictions, and verify it by an optimization-based
method. To accelerate the generation of adversarial data,
(Goodfellow, Shlens, and Szegedy 2014) focus on the lin-
ear nature of neural networks and hereby design the Fast
Gradient Sign Method (FGSM) to obtain an optimal max-
norm constrained perturbation. (Moosavi-Dezfooli, Fawzi,
and Frossard 2016) study the adversarial instability and ac-
cordingly produce adversarial examples with minimal per-
turbations that sufficiently change the output of the classifi-
er. Considering training data is not always accessible, (Mop-
uri, Garg, and Babu 2017) misfire features at each individ-
ual layer to make target networks produce erroneous pre-
dictions. To boost the transferability of adversarial exam-
ples, (Dong et al. 2018) present a momentum-based iterative
scheme, which significantly strengthens the fooling rate. De-
spite the promising results, these methods serve simple at-
tacking tasks and usually act on a small proportion of data,
incapable of matching the privacy-protecting purpose.

Deep Hashing
Deep hashing techniques have been widely applied in large-
scale retrieval tasks in virtue of their promising perfor-
mance and low computational cost. Some representative
methods include Deep Supervised Hashing (DSH) (Liu
et al. 2016), Deep Supervised Discrete Hashing (DSDH) (Li
et al. 2017), Graph Convolutional Network Hashing (GC-
NH) (Zhou et al. 2020), ADSH (Jiang and Li 2018) and
Semantic-Aware DIscrete Hashing (SADIH) (Zhang et al.
2019). More concretely, DSH first pairs image inputs with
semantic labels as the relationship indicator, and output-
s hashing codes near the discrete values in a Hamming s-
pace. To pursue reliable binary codes, DSDH proposes a
discrete learning framework, where both similarity informa-
tion and label information are utilized to provide sufficient
supervised information. In virtue of powerful Graph Con-
volutional Networks (GCNs), GCNH further exploits the
intrinsic semantic structure of data in order to learn more
discriminative binary codes. To avoid the time-consuming
training, ADSH designs an asymmetric deep hashing learn-
ing strategy, which directly learns binary codes for the en-
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tire database and produces hash functions for query points.
SADIH is a discrete asymmetric similarity-preserving learn-
ing framework, where a latent semantic space is constructed
in order to learn discriminative embeddings.

Method
Preliminaries
Let X = {xi}ni=1 denote a dataset with n clean samples.
S ∈ {−1, 1}n×n is the semantic similarity matrix, where
Sij = 1 if the i-th and the j-th data points are semantical-
ly similar and Sij = −1 otherwise. The goal of hashing
is to learn a hash projection function F(·;ϑf ) : X → H ∈
[−1, 1]c×n, where c is the code length andF(·;ϑf ) is a deep
network with the parameter ϑf in deep hash learning. The fi-
nal binary codes can be obtained by applying a sign function
to H:

B = sign (H) ∈ {−1, 1}c×n. (1)

The ultimate goal of our study is to learn an adversarial
generator to transfer the clean data xi ∈ X into the adver-
sarial data zi ∈ Z with the normal use guarantee, which can
mislead the test-time behaviours of retrieval models.

Overview
The architecture of the proposed method is illustrated in
Figure 2, which consists of an adversarial generator G, a
Gradient Reversal Layer (GRL) module Re and a surrogate
retrieval model F . The generator is tasked to craft corre-
sponding adversarial examples for clean images, while the
retrieval model is employed to learn binary representation-
s for input images. The GRL module is inserted between
both to enable the training to proceed in a one step way by
minimizing the affinity-preserving loss Jo and the privacy-
preserving loss Jp.

Adversarial Examples
Here, we adopt a data-dependent adversarial data genera-
tion strategy using an auto-encoder-like generator. Detailed-
ly, given a normal image xi, the generator G takes it as input
and accordingly outputs a noise pattern, which is then inject-
ed into the original image to craft the adversarial counter-
part zi. Principally, the generated adversarial image should
be perceptually indistinguishable from its original version.
To this end, we impose a lp, p ∈ {1, 2,∞} constraint. The
generation process is formulated as follows:

zi = xi + G(xi;ϑg),
s.t. ‖G(xi;ϑg)‖p ≤ ε, p ∈ {1, 2,∞},

(2)

where ϑg is the parameter of the generator G and ε is the
magnitude of the perturbation.

Binary Representation Learning
Through the hierarchical processing of the surrogate re-
trieval model F , the binary representations for xi and zi can
be obtained as follows:

h(xi) = sign (F(xi;ϑf )) ∈ {−1, 1}c×1,
h(zi) = sign (F(zi;ϑf )) ∈ {−1, 1}c×1,

(3)

where ϑf is the parameter of F and c is the code length.

Share weights

Figure 2: Illustration of the proposed method.

Affinity-preserving Loss
We wish the adversarial shift would not influence the nor-
mal uses of data. To achieve this, in Eq. (2), we have made a
constraint that the perturbations would not significantly af-
fect the image quality. Besides, an affinity-preserving loss is
introduced to restrict that the generated adversarial data pre-
serves well the original similarity structure in the represen-
tation space, such that they can be used for proper purposes.
For example, data owners may share data with researchers
who then utilize these data to build models to test new ideas.
Formally, the loss is defined as follows:

Jo =
n∑

i,j=1

‖h(zi)Th(zi)− c · Sij‖2F . (4)

Privacy-preserving Loss
The application of adversarial data would induce four types
of searching scenarios: (1) query points and database points
are all clean data, (2) queries are clean while database data
is adversarial, (3) queries are adversarial and database points
are clean, (4) query points and database points are all ad-
versarial. To protect privacy, we wish any model trained on
one type of data can not work when facing the other type of
data. For example, a model trained on clean data can only
make correct predictions within clean domain, i.e., the case
(1), while failing in performing searching between clean da-
ta and adversarial data or within adversarial domain, i.e., the
cases (2), (3) and (4). To enable this, we introduce a privacy-
preserving loss that consists of a domain loss, a similarity
loss and a matching loss, to manage the difference between
clean data and adversarial data.

Domain Loss The domain loss is tasked to control the do-
main discrepancy between clean data and adversarial data,
thereby deciding if a model trained on one domain (e.g.,
adversarial domain) can work on the other domain (e.g.,
clean domain). Inspired by the Contrastive Domain Discrep-
ancy (CDD) measure in (Kang et al. 2019), we propose
the Similarity-aware Maximum Mean Discrepancies (SM-
MD) to measure the domain disparity between clean data
and adversarial data with similarity relationship considered,
i.e., the intra-similarity discrepancy and the inter-similarity
discrepancy. More specifically, denote the conditional dis-
tributions for clean domain X and adversarial domain Z
as P (h(X)|S) and Q(h(Z)|S), respectively. SMMD con-
ducts a two-sample statistical test and accordingly decides
whether or not to accept the null hypothesis P = Q. When
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the difference of statistics between two domains is larger,
the two distributions are considered to differ from each oth-
er with higher probability, or vice versa. SMMD calculates
the difference between the mean embeddings of two distri-
butions P and Q in the reproducing kernel Hilbert space
(RKHS) with the squared formulation defined as follows:

Ds , sup
f∼H
‖EP [f(h(X)|S)]− EQ [f(h(Z)|S)] ‖2H, (5)

where H is a class of functions, E is the expectation with
respect to the given distribution defined as follows:

Ex∼p [f (x)] = 〈f (x) , µ〉H ,
s.t. ∀f ∼ H, (6)

where µ is the mean embedding of the distribution p. Ac-
cording to the two-sample statistical test theory (Gretton
et al. 2012), given richH, the Ds satisfies that if and only if
Ds = 0, P = Q.

Denoting S+
ij =

{
1 Sij > 0

0 Sij ≤ 0
, S−ij =

{
1 Sij ≤ 0

0 Sij > 0
,

the unbiased estimation for Ds is defined as follows:

D̂s = D̂+
s − D̂−s , (7)

where D̂+
s measures the gap between similar data across do-

mains while D̂−s calculates the discrepancy between dissim-
ilar data, both of which are defined as follows:

D̂∗s =
n∑
i=1

n∑
j=1

S∗ij · k(h(xi), h(xj))∑n
i=1

∑n
j=1 S

∗
ij

+
n∑
i=1

n∑
j=1

S∗ij · k(h(zi), h(zj))∑n
i=1

∑n
j=1 S

∗
ij

− 2 ·
n∑
i=1

n∑
j=1

S∗ij · k(h(xi), h(zj))∑n
i=1

∑n
j=1 S

∗
ij

,

s.t. ∗ ∈ {+,−},

(8)

where k is the kernel selected for the mapping function h.
Different from the original Maximum Mean Discrepan-

cies (MMD) that treats each sample equally, SMMD fur-
ther takes into consideration the intrinsic similarity structure
when measuring the discrepancy between two domains. In
light of this, SMMD can reliably discriminate whether sam-
ples from different domains should be aligned or not. For
instance, minimizing SMMD means narrowing the gap be-
tween similar samples from two domains, while enlarging
the discrepancy between data that is dissimilar. In compari-
son, MMD can be minimized even when dissimilar samples
from different domains are misaligned.

Similarity Loss Another case that needs to be consid-
ered in privacy-preserving learning is when query points and
database points are from heterogeneous sources, i.e., one is
adversarial data and the other is clean data. To cope with it,
the pair-wise similarity loss between clean data and adver-
sarial data is introduced to decide if searching between two
domains are available:

Js =
n∑

i,j=1

‖(h(xi))Th(zi)− c · Sij‖2F . (9)

The above similarity loss measures whether the adver-
sarial perturbations change the original similarity structure.
When the loss is minimized, the similarity between two
kinds of data is maintained, which means the search between
data from two domains is enabled, or vice versa.

Matching Loss To further control the difference between
clean data and its adversarial counterpart, we impose the
matching loss between each clean-adversarial pair in the fi-
nal representation space:

Je =
n∑
i=1

‖h(xi)− h(zi)‖2F . (10)

Incorporating Eq. (7), (9) and (10) together, we can get the
final privacy-preserving loss that measures the gap between
two sets of data:

Jp = αD̂s + βJs + γJe, (11)

where α, β, γ are balance parameters.

Objective Function
To achieve the privacy protection, we seek the optimal pa-
rameter of the generator that maximizes the domain gap,
distort the similarity relationships and corrupt the match-
ing between adversarial data and clean data by maximizing
the loss Jp. Furthermore, we train the retrieval model by
minimizing the loss to neglect the adverse influence of the
adversarial perturbations, thereby encouraging the generator
to produce effective and robust adversarial data. In addition,
the affinity-preserving loss Jo needs to be minimized. To
this end, the optimization problem is to find the parameters
ϑ̂g and ϑ̂f that jointly satisfy:

ϑ̂g = argmin
ϑg

Jo(ϑg, ϑf )− Jp(ϑg, ϑf ),

ϑ̂f = argmin
ϑf

Jo(ϑg, ϑf ) + Jp(ϑg, ϑf ).
(12)

Optimization
Training the whole network requires the backpropagation
with the objective (12). Nevertheless, there are two major
difficulties to solve the optimization problem. One problem
is the discrete constraint imposed on the binary code learn-
ing as shown in Eq. (3), where the sign(·) would lead to an
intractable back-propagate gradient problem. To deal with
it, we use the tanh(·) function to approximate the sign(·)
function. The other obstacle lies in the two-player game,
where the opposing objectives in privacy preserving make it
hard to update the whole model in a one-step training man-
ner. To approach the challenging issue, we insert the Gradi-
ent Reversal Layer (GRL) (Ganin and Lempitsky 2015) be-
tween two modules. In particular, GRL performs an identity
transform during the forward propagation, while the gradi-
ent from the retrieval model would be multiplied by a neg-
ative gradient reversal factor −λ during the backpropaga-
tion. Specifically, let Re(·) denote the GRL. The forward
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Algorithm 1 Proactive Privacy-preserving Learning

Input: Training data: X , mini-batch size: m, learning
rate: σg, σf , hash code length: c, iteration times: t, epoch
times: e = [t/m]
Output: Adversarial generator: G(·;ϑg)
Procedure:
Randomly initialize ϑg, ϑf
for i = 1 : t do

for j = 1 : e do
1. xi ∼ X // Construct a mini-batch
2. ϑg ← ϑg−σg∇θg (Jo−Jp) // Update ϑg by SGD
3. ϑf ← ϑf − σf∇θfJp // Update ϑf by SGD

end for
end for
Return: ϑg

and backpropagation behaviours can be formalized as fol-
lows:

Re(x) = x,

dRe

dx
= −λ · I,

(13)

where I is an identity matrix, x is any input. In our
framework, the gradient reversal is applied in the back-
propagation with the loss Jp while the other is maintained
unchanged. As a result, the objective becomes:

(ϑ̂g, ϑ̂f ) = arg min
ϑg,ϑf

J (ϑg, ϑf ),

s.t. J (ϑg, ϑf ) = Jo(ϑg, ϑf ) + Jp(ϑg, ϑf ).
(14)

By the discrete relaxation and the gradient reversal oper-
ation, we can achieve a one-step training behaviour through
the stochastic gradient descent (SGD). The optimization
scheme is summarized in Algorithm 1, where the genera-
tor and the surrogate model are updated iteratively.

Experiments
Datasets To validate the effectiveness of the proposed P-
PL, we conduct extensive experiments on three widely-
used benchmark datasets, i.e., CIFAR-10 (Krizhevsky et al.
2009), ImageNet (Deng et al. 2009), and FashionMNIST (X-
iao, Rasul, and Vollgraf 2017). In detail, CIFAR-10 contain-
s 60,000 images, each of which is annotated with one of
10 semantic class labels. Thereinto, 59,000 images are sam-
pled from the dataset to constitute the retrieval set and the
remaining 1000 samples are used for testing. ImageNet is
an important benchmark dataset for computer vision related
tasks, which consists of more than 1.2M images. Each image
is labeled with one of the 1,000 categories. We select a sub-
set of 13 categories amounts to 16,900 samples to constitute
the retrieval database, and 1,300 images for testing. Fash-
ionMNIST is an article image dataset-consisting of a test
set of 10,000 grayscale examples and a database of 60,000
grayscale examples. Each sample belongs to a label from 10
classes. In our experiment, for there datasets, 10,000 data
points are randomly selected from the retrieval database as
the training set.

Baselines and Evaluation Metric
To test the validity of the propose PPL, two representative
deep hash learning methods, i.e., ADSH (Jiang and Li 2018)
and DSDH (Li et al. 2017), are selected as the targeted fool-
ing retrieval systems. The widely-used Mean Average Preci-
sion (mAP) which can well reflect both ranking information
and precision is selected as the evaluation criterion.

Implementation Details
For experiments on CIFAR-10 and ImageNet, ResNet50 (He
et al. 2016) network is adopted as the backbone of the sur-
rogate retrieval model. In details, we remove the last layer
of ResNet50 and add a fully connect (fc) layer which con-
tains c hidden units on top of remaining layers. As images
in FashionMNIST are grayscale, we construct a simple deep
network composed of 2 convolution layers with respective
20 and 50 channels, on the top of which is a fc layer with c
hidden units. Except for the last layer where the tanh(·) acti-
vation function is adopted, the ReLU(·) activation function
is applied in the rest of layers. For fairness, two test model-
s are based on the same backbone. With respect to the ad-
versarial generator, we adopt an auto-encoder like structure,
where the encoder/decoder consists of 4 convolution layers
with channel numbers set as 64,128,256,512 for CIFAR-10
and ImageNet, and 16,32,64,128 for FashionMNIST.

The parameters are set as follows. we set α = γ =
λ = 1, β = 10. The perturbation constraints are selected
as the l∞ norm with ε as 0.1,0.032,0.3 for CIFAR-10, Ima-
geNet and FashionMNIST, respectively. The generated im-
ages would be projected into [0, 1] space. The learning rates
are 10−4 and 10−3 for the generator and the retrieval mod-
el. The iterations are respectively fixed as 500,500 and 1000.
We fix the batch sizes as 32,32,512. The experiments are im-
plemented with Pytorch on a workstation (with Intel XEON
E5-2650 v3 @ 2.60GHz CPU, NVIDIA 1080Ti GPU).

Results and Discussions
Following the Algorithm 1, we train the model and then
leverage the well-trained generator to produce adversarial
data to test the privacy-preserving performance. Due to s-
pace limitations, we only report test results when using the
generator learned from PPL with 8-bit code length. There
are four searching scenarios included: “C→C” (using clean
data to query clean data), “C→A” (using clean data to query
adversarial data), “A→C” (using adversarial data to query
clean data), “A→A” (using adversarial data to query adver-
sarial data).

mAP Results The mAP results on different datasets are
summarized in Table 1. Thereinto, “C” and “A” in the col-
umn “Train” represent that target models are trained on clean
data and adversarial data, respectively. From the results, we
can have the following observations.

On the one hand, when trained on clean data, both ADSH
and DSDH achieve promising results in the normal search
task, i.e., both query points and database data are clean.
However, when facing adversarial data in the query set or
the retrieval database, the performance of both methods
drops dramatically, clearly evidencing the efficacy of the
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Train Method Task CIFAR-10 ImageNet FashionMNIST
8 bits 12 bits 16 bits 24 bits 8 bits 12 bits 16 bits 24 bits 8 bits 12 bits 16 bits 24 bits

C

ADSH

C → C 0.9221 0.9555 0.9522 0.9521 0.9682 0.9894 0.9939 0.9865 0.8496 0.8843 0.9007 0.9184
C → A 0.3021 0.4613 0.5631 0.5503 0.6086 0.7704 0.8026 0.7193 0.3998 0.4205 0.3853 0.4151
A→ C 0.4023 0.5350 0.6213 0.5443 0.6992 0.7805 0.7727 0.7639 0.4850 0.4715 0.4118 0.4318
A→ A 0.1903 0.2829 0.3675 0.3255 0.4961 0.6410 0.6845 0.5632 0.3035 0.3300 0.3212 0.3468

DSDH

C → C 0.8172 0.8921 0.8947 0.8966 0.9565 0.9727 0.9821 0.9843 0.7007 0.6979 0.6978 0.7095
C → A 0.2879 0.3480 0.3423 0.3732 0.7712 0.8200 0.8493 0.8675 0.2258 0.3402 0.2803 0.2974
A→ C 0.3723 0.4198 0.3973 0.4146 0.7873 0.8234 0.8148 0.8550 0.2578 0.3623 0.3032 0.3146
A→ A 0.1939 0.2120 0.2065 0.2239 0.6425 0.6986 0.7001 0.7309 0.2265 0.3198 0.2858 0.3262

A

ADSH

A→ A 0.8124 0.8847 0.8791 0.8866 0.9550 0.9745 0.9718 0.9556 0.8531 0.8739 0.8852 0.8890
A→ C 0.1243 0.1617 0.2339 0.3542 0.1006 0.1167 0.1563 0.1556 0.2527 0.3036 0.2631 0.2241
C → A 0.2322 0.2751 0.3100 0.3715 0.1920 0.1975 0.1802 0.2052 0.3438 0.4376 0.4116 0.3849
C → C 0.1181 0.1225 0.1395 0.1959 0.0956 0.0935 0.1123 0.1081 0.3173 0.3420 0.3134 0.3206

DSDH

A→ A 0.6585 0.6940 0.7117 0.7081 0.9369 0.9787 0.9786 0.9779 0.6903 0.7061 0.6955 0.7037
A→ C 0.1531 0.1373 0.1534 0.1502 0.1120 0.0912 0.1489 0.1202 0.2713 0.2389 0.2813 0.3549
C → A 0.2009 0.1764 0.1938 0.2038 0.1815 0.1731 0.1775 0.1798 0.3355 0.3034 0.3481 0.3884
C → C 0.1358 0.1186 0.1168 0.1194 0.1095 0.0935 0.1105 0.0989 0.3079 0.2967 0.3229 0.3565

Table 1: Test mAP results on three datasets.
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Figure 3: Transferability across different CNNs on CIFAR-
10.

proposed PPL. For a quantitative analysis, on CIFAR-10,
ADSH experiences average 50.8%, 44.0% and 70.7% per-
formance degradations in adversarial data involved tasks,
i.e., “C→A”, “A→C” and “A→A”, respectively. While on
DSDH, PPL achieves average fooling rates of 62.3%, 55.8%
and 76.5%. Two methods undergo similar recession in per-
formance when facing adversarial data on FashionMNIST
dataset, with 54.0%, 47.3% and 62.9% average decreases
on three tasks for ADSH, while 43.4%, 49.2% and 55.3%
for DSDH. Although the protecting effects are not so sig-
nificant on ImageNet, the proposed PPL still degrades the
performance of two methods.

On the other hand, we utilize the adversarial data pro-
duced from the well-trained generator to train ADSH and
DSDH, and then test their performance on various tasks.
First, it can be observed that two models trained on adver-
sarial data achieve excellent performance in the adversarial
domain (i.e., “A→A”), manifesting the adversarial pertur-
bations do not adversely influence the normal uses of data.
This verifies the practicability of the proposed PPL. Second,
when facing clean data, two models lose their strong predic-
tive power. More specifically, when using adversarial data
to query clean data (i.e., “A→C”), ADSH has only 29.2%,
13.7% and 42.4% normalized mean average precision com-
pared to that in the adversarial domain (i.e., “A→A”) on
CIFAR-10, ImageNet and FashionMNIST, respectively. The
values for DSDH are 20.4%, 12.0% and 44.21%. In the
“C→A” task, our PPL reduces over 47% and 68% average
performance of ADSH and DSDH on three datasets. Within
clean domain (i.e., “C→C”), ADSH merely achieves aver-
age 23.8% normalized mAP compared to that in the “A→A”
task. Similar results can also be seen on DSDH with the cor-
responding average value of 24.3%.

Transferability In realistic scenarios, retrieval models are
usually built on different DNN architectures and data that
we want to protect are from various sources, which implies
the transferability is an important feature of the proposed
method. To verify the generalization ability of the proposed
PPL, we utilize the well-trained generator to test ADSH and
DSDH built on different CNN backbones, i.e., ResNet18
(He et al. 2016), WideResNet (Zagoruyko and Komodakis
2016), Mobilenets (Howard et al. 2017) and GoogLeNet
(Szegedy et al. 2015). The mAP results of 16 bits are report-
ed in Figure 3, where “@C” and “@A” represents models
are trained on clean data and adversarial data, respectively.
At the same time, we use the generator trained on one dataset
to fool models on another dataset. Considering space limita-
tion and images on FashionMNIST are grey, only results be-
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tween CIFAR-10 and ImageNet on two methods with code
length as 16 are reported in Figure 4. From the figures, we
can have the observation that the proposed PPL generalizes
well across different networks and datasets, demonstrating
its superiority and practicability.

Ratio of Adversaries We consider the case when both
clean data and adversarial data exist in the training set. The
results of 16 bits with varying percentages of adversarial da-
ta are plotted in Figure 5, where we can see that with both
data available for training, test models perform well on al-
l tasks. This provides a possibility for authorized users to
build models to perform search over adversarial data and
clean data.

Effect of Distortion Here, we test the influence of the
magnitude of the perturbations and plot the results with 16-
bit code length in Figure 6. It can be observed that with ε
increasing, the performance of two methods trained on one
domain (e.g., clean domain) drops suddenly when facing da-
ta from the other domain (e.g., adversarial domain). It is
quite normal as large distortions would inevitably enlarge
the difference between adversarial data and its original coun-
terparts. Besides, despite slight fluctuations, models trained
on adversarial data still maintain performance when search-
ing within adversaries (“A→A”) with increased distortions.
This is in line with the (Ilyas et al. 2019) that adversarial per-
turbations arise as features instead of statistical anomalies.

Visualization Some generated adversarial examples are
visualized in Figure 7, where the adversarial images are
shown perceptually indistinguishable from the original clean
images despite moderate distortions on FashionMNIST.

(a) ImageNet to CIFAR-10 (b) CIFAR-10 to ImageNet

Figure 4: Transferability across different datasets.
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Figure 5: Ratio of adversaries on CIFAR-10.
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Figure 6: Effect of varying distoration on FashionMNIST.

(a) CIFAR - 10 (b) FashionMNIST

(c) ImageNet

Figure 7: Examples of clean data and its adversarial coun-
terparts. First rows: original examples. Second rows: adver-
sarial examples.

Conclusion

In this paper, we propose a data-centric Proactive Privacy-
preserving Learning (PPL) algorithm to protect data priva-
cy against unexpected or illegitimate uses of DNNs. The
proposed method implements the protection mechanism be-
fore the data release, when the original data is transferred
into the adversarial data via a generator without impairing
the normal uses. The whole framework is trained by a two-
player game between the generator and an imaginary victim
retrieval model under various constraints, where both play
against each other. A GRL module is inserted to enable a
one step learning procedure. Extensive experiments demon-
strate the superiority of the proposed method, including high
protecting success rate and impressive transferability.
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