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Abstract

The recent success of audio-visual representations learning
can be largely attributed to their pervasive concurrency prop-
erty, which can be used as a self-supervision signal and ex-
tract correlation information. While most recent works fo-
cus on capturing the shared associations between the au-
dio and visual modalities, they rarely consider multiple au-
dio and video pairs at once and pay little attention to ex-
ploiting the valuable information within each modality. To
tackle this problem, we propose a novel audio-visual repre-
sentation learning method dubbed self-supervised curriculum
learning (SSCL) under the teacher-student learning manner.
Specifically, taking advantage of contrastive learning, a two-
stage scheme is exploited, which transfers the cross-modal
information between teacher and student model as a phased
process. The proposed SSCL approach regards the pervasive
property of audiovisual concurrency as latent supervision and
mutually distills the structure knowledge of visual to audio
data. Notably, the SSCL method can learn discriminative au-
dio and visual representations for various downstream ap-
plications. Extensive experiments conducted on both action
video recognition and audio sound recognition tasks show the
remarkably improved performance of the SSCL method com-
pared with the state-of-the-art self-supervised audio-visual
representation learning methods.

Introduction
The co-occurrence of acoustic signal and visual appearance
provides potential cues for humans experiencing the world.
For example, while hearing ball bouncing, we can match it
to the scenario of basketball games from numerous visual
scene candidates. The concurrency is an inherent property
that sound is a kind of vibration generated by surround-
ing objects (Hu, Nie, and Li 2019), and exists through our
daily life, such as the crowd cheering and laughing, an-
nouncer speaking, whistling, and ball bouncing, etc. For
machine models, these inherent and pervasive correspon-
dences raise the possibility to possess similar abilities like
humans by investigating audio-visual representation learn-
ing and discovering their complex correlations with different
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audio-visual messages. Additionally, in contrast to expen-
sive human-annotation, the concurrent audiovisual message
provides free and pervasive supervised signal for exploring
self-supervision learning and co-training a multi-modality
network on large-scale unlabeled data.

The recent studies on audio-visual representations learn-
ing can be generally categorized into two types: Audio-
Visual Correspondence (AVC) (Arandjelovic and Zisser-
man 2017) and Audio-Visual Synchronization (AVS) (Chung,
Chung, and Kang 2019). The two types are mainly about set-
ting up a verification task that predicts whether an input pair
of an audio and an video clip is matched or not. The positive
audio and video pairs are typically sampled from the same
video. The main difference between AVC and AVS is how
to treat the negative audio and video pair, i.e., the negative
pair in AVC is mostly constructed by audio and video from
different videos while in AVS is to detect the misalignments
between negative audio and video pair from the same video.
To escape from the relying on stronger supervision signal,
existing studies attempt to address those problems on the
aspect of cross-modal knowledge transfer (Aytar, Vondrick,
and Torralba 2016; Owens et al. 2018) to directly predict
the correspondence of the audio-visual messages. Typically,
a two-stream audio-visual model is trained in (Arandjelovic
and Zisserman 2017; Korbar, Tran, and Torresani 2018a) to
judge the pair just with the given audio-visual correspon-
dence. Nevertheless, those works mainly consider the infor-
mation shared between two modalities for semantic repre-
sentations learning, but neglect the important cues of multi-
ple audio and video pairs at once. Besides, they also rarely
consider exploiting the useful information underlying the
same modality to model the data distribution.

To address the above issues, we consider to learn the cor-
respondence between audio and visual from the pipeline of
teacher-student learning. Specifically, a teacher network will
teach the student network to obtain semantic audio and vi-
sual representations in unlabeled video with the contrastive
learning manner. Previous works (Aytar, Vondrick, and Tor-
ralba 2016; Arandjelovic and Zisserman 2017) on teacher
and student knowledge transfer mainly focus on mimick-
ing the intermediate representations or logits of teacher
networks in a pairwise manner. However, the concurrency
knowledge of audio and video derived from the same video
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Figure 1: Illustration of the General Framework of Our Proposed SSCL Method for Audio-Visual Representation Learning.

may only reflect a single aspect of the complete knowl-
edge encapsulated in a cumbersome network. It is intuitive
that the intermediate representations of the teacher network
could provide more discriminative knowledge. To this end,
we can naturally exploit the contrastive learning to capture
richer structured knowledge from the self-supervision pre-
diction of the teacher model. This scheme not only helps the
student model to obtain the knowledge of how audio and
visual objects are concurrent but also reveals why the un-
matched noisy audio and video pairs are different by contrast
to the matched pair.

A great challenge is that, in a heterogeneous complex-
ity of audio-visual scenes, directly transferring the infor-
mation from one network to another may deteriorate the
contrastive learning process. For example, in a basketball
game or a football game, one cannot distinguish it from
the crowd cheering and announcer speaking without hearing
ball bouncing or kicking. Therefore, in this paper, we pro-
pose a novel Self-Supervised Curriculum Learning (SSCL)
method to distinguish uni-modality instance and transfer
cross-modal correlation information to each others. As the
general framework of SSCL illustrated in Figure 1, the cur-
riculum learning process has two successive stages. The vi-
sual model is exploited as a teacher model in stage-I with
contrastive learning to enhance the feature learning proce-
dure, and then the cross-modal training is deployed to trans-
fer knowledge to the student model. While in the stage-
II, the roles of the teacher and the student models that are
exploited in the stage-I are exchanged for conducting the
cross-model transfer process. More specifically, the visual
encoder (3D ConvNets) and audio encoder (2D ConvNets)
are first used to process the pairwise frames and sound input
(xv

i ,x
a
i ) into a respective feature embedding (fvi , f

a
i ). Note

that the sound is transformed into a spectrogram image. Af-
terward, the feature embedding pair is projected into two
separate 128-D embedding spaces. Finally, the contrastive
learning based audio and visual knowledge transfer process
is guided by our proposed two-stage curriculum learning
scheme. Meanwhile, the memory bank which achieves a

moving average of representation is exploited to store neg-
ative samples for contrastive learning. Notably, the whole
framework takes the concurrency of the acoustic signal and
visual appearance as the supervision for training. To this
end, we evaluate the audio-visual encoder on various audio-
visual downstream tasks, e.g., action recognition and audio
recognition, In experiment section , we conduct extensive
experiments on those tasks and demonstrate the superiority
of our SSCL model compared to a bundle of state-of-the-art
self-supervised learning methods for audio-visual represen-
tation learning.

The main contributions of this paper are summarized as:

• We propose a self-supervised audio-visual modality trans-
fer framework termed SSCL to explore more coherent
knowledge from a teacher network to a student network,
where contrastive learning is leveraged to capture the cor-
respondence between audio and visual information.

• We develop a two-stage curriculum learning process to
reason about multiple single-modality instances and dis-
till cross-modal correction information. This process not
only improves the overall distillation performance but
also regularizes the teacher and student model to gener-
alize on noisy and complex scenarios.

• We further apply the learned audio-visual representations
to a variety of audio and visual downstream tasks. The
extensive experiments verify the powerful audio-visual
representations learned by our SSCL method, leading to
the remarkable improvement of the performance on the
downstream tasks compared with previous approaches.

Related Work
Self-Supervised Representation Learning of Audio-
Visual Data There has been increased interest in learn-
ing the audio-visual representation from a video to improve
the performance of audio and visual models or solve data
shortage problems (Arandjelovic and Zisserman 2017; Kor-
bar, Tran, and Torresani 2018b; Sayed, Brattoli, and Ommer

3352



2018). Self-supervised learning, which does not require hu-
man annotation, has been leveraged to train both audio and
visual networks for multimodal audio-visual representation
learning. Generally, self-supervised learning has the poten-
tiality to leverage a large amount of unlabeled data because
it proposes a pretext task to generate pseudo labels and to ex-
plore data structure. A wide range of pretext tasks have been
proposed, like colorization (Zhang, Isola, and Efros 2016),
rotation prediction (Gidaris, Singh, and Komodakis 2018),
etc, which are usually based on the form of contrastive loss
functions (Tian, Krishnan, and Isola 2019).

For audio-visual representation learning, most recent
works (Korbar, Tran, and Torresani 2018b; Owens and
Efros 2018; Alwassel et al. 2019; Gan et al. 2020) ex-
ploited the co-occurrence of audio wave and visual object
to learn more compact representations, which are benefi-
cial for many downstream applications, e.g., sound classi-
fication (Piczak 2015a; Gao et al. 2020), separation (Gao,
Feris, and Grauman 2018; Zhao et al. 2018) and localization
(Kidron, Schechner, and Elad 2005), visual representation
(Hu, Nie, and Li 2019; Gan et al. 2019; Shukla, Petridis, and
Pantic 2020), and synchronization (Korbar, Tran, and Torre-
sani 2018a). In particular, the audio or visual information
has shown to be useful as supervision for pre-training vi-
sual/audio models. For example, in (Owens and Efros 2018),
an early-fusion multi-sensory network is trained to predict
whether video frames and audio are temporarily aligned, and
in (Khosravan, Ardeshir, and Puri 2019), an attention mech-
anism together with a two-stream network structure is devel-
oped to localize the sound source.
Cross-Modal Learning and Distillation. A large range of
modalities from audio, visual and optical flow, are inherent
in videos, and their correspondence can be used as pseudo
supervisory signal for representation learning. Multimodal
learning aims to leverage correction from the multiple sig-
nals of the same source and has increased widely interest
in supervised and unsupervised learning scenarios (Wang
et al. 2017; Shen et al. 2020; Xu et al. 2020b). The typ-
ical pipelines of the common approaches include: training
the multi-modal in the same procedures (Pham et al. 2019;
Xu et al. 2020), maximizing the mutual information across
those modalities of unlabeled data using a semi-supervised
method (Tian, Krishnan, and Isola 2019), designing differ-
ent modules for different modalities with a separate learn-
ing process, and common latent subspace learning for all
modalities of the data. Furthermore, model-transfer based
methods are also widely studied for knowledge transfer be-
tween different modalities (Aytar, Vondrick, and Torralba
2016; Owens et al. 2018).

The core idea of knowledge transfer is to transfer dis-
criminative knowledge from a well-trained complex model
to a simple model. Typically, the teacher and student model
were exploited in this literature. Several works (Aytar, Von-
drick, and Torralba 2016; Gupta, Hoffman, and Malik 2016)
trained an encoder on one modality and transferred its dis-
criminative knowledge to the encoder from another modality
in a supervised manner. However, those methods generally
rely on label-dependent features so that the teacher trained
with such supervisory signals can be directly transferred to

the target student model. Therefore, further works attempt to
investigate the specific property from unlabeled data to ob-
tain the benefit from the structure of data. Recently, several
works have proposed to leverage the natural correspondence
(Owens and Efros 2018) and synchronization (Korbar, Tran,
and Torresani 2018b) between the audio and visual modal-
ity for effective multi-modal representations learning. Other
methods (Alwassel et al. 2019) directly modeled the audio-
visual correspondence without teacher supervision by pre-
dicting whether the sounds and frames are from the same
video or not.

Our proposed SSCL is also inspired by the existing stud-
ies on cross-modal learning. However, those scene-level
audio-visual consistencies typically lack specific annota-
tions and suffer from the defects of inefficiency and irrele-
vance in the noisy scene, e.g., yackety-yak, noise source, and
insignificant visual background in any scenarios. Our work
is totally self-supervised, which trains on a larger amount
of unlabeled video and transfers well to a wide range of
downstream tasks. Additionally, even faced with complex
audio-visual scenarios, our method can extract the audio-
visual representation with the help of the synchronization
between genuine vision and sound.

Methodology
Overview of Our SSCL Approach
Suppose we have a video dataset (N sample) V = {Vi}Ni=1,
and a visual encoder Fv and audio encoder Fa, an unla-
belled video clip Vi = {vi

1,v
i
2, . . . ,v

i
T } is processed as a

pair representations fi = (fvi , f
a
i ), where the T is the clip

length, and the fvi is the visual representation extracted by
the visual encoder Fv and the fai is the audio representa-
tion extracted by the audio encoder Fa. Our goal is to ef-
fectively train a visual and audio encoder Fv,Fa and make
it possess the ability to generate uni-modal representation
fvi , f

a
j and obtain effective cross-modal perception (fvi , f

a
i )

by exploiting the correlation of audio and visual within each
video clip. The resulting representations are close for similar
videos while distinguishable for dissimilar videos.

To accomplish this goal, our proposed SSCL approach
aims to transfer information from the audio representation
fa to the visual representation fv , and vice versa. As il-
lustrated in Figure 1, a teacher network FT is trained on
a source modality DT , and then transferred the knowledge
to a student network FS and adapted it to another modality
DS . Note that the features of the teacher network are still
valuable to help with the learning of the student in another
domain. In a typical transfer task (Hinton, Vinyals, and Dean
2015), the loss is defined as:

L = −
∑

Vi∼V

C∑
c=1

Pt
c(Vi; τ) log(Ps

c(Vi; τ)), (1)

where Pt
k and Ps

k denote the output probability of teacher
and student network at class c, C is the total number of
classes and τ is the temperature parameter. Specifically, it
encourages the student network output to be as similar as
possible to the teachers’ by minimizing the Kullback-Leibler
(KL) divergence between their outputs.
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However, such a transfer is conducted on an unlabelled
video dataset V without any ground-truth labels for the orig-
inal training task on the source modality. Fortunately, the
dataset V can be processed as a paired dataset V = {Vi =
(xv

i ,x
a
i )|xv ∈ Dv,xa ∈ Da}Ni=1. Inspired by the works

(Tian, Krishnan, and Isola 2020; Xu et al. 2020a), we exploit
the contrastive loss (Hénaff et al. 2019; Tian, Krishnan, and
Isola 2019; Chen et al. 2020) to match the features of the
source domain DT and targeted domain DS :

Lctr(f
s
i , f

t) = −
∑

f tk∼DT

E

[
log

exp(sim(fsi , f
t
i )/τ)∑K+1

j=1 exp(sim(fsi , f
t
j )/τ)

]
,

(2)
where sim(·, ·) is a function that measures the similarity of
the two input terms (dot product is adopted here), K is the
number of negative samples and τ is a temperature param-
eter. This loss can maximize the similarity between positive
pairs (fsi , f

t
i ) and minimize the similarity between negative

pairs (fsi , f
t
j ), j 6= i. Moreover, minimizing the objective

loss in Eq. 2 encourages high mutual information between
student representation fs and teacher representation f t.

Curriculum Learning
Generally, it is hard to directly optimize Eq. 2 by train-
ing from scratch, because the audio and visual information
might be noisy and irrelevant. We found that if we train both
models simultaneously, the noisy information will destroy
the updating process at the beginning. The latter experiment
proves that the test results are consequently poor while op-
timizing the objective from scratch. Therefore, we need to
design an effective training strategy to transfer the semantic
correction information and suppress the noisy information
between the two networks. To this end, we present a curricu-
lum learning strategy (Korbar, Tran, and Torresani 2018b;
Hu et al. 2020) by pre-training the teacher model.

Our curriculum learning strategy consists of two stages.
Specifically, in the stage-I, we fix the student model and
only update the parameters of the teacher model with a self-
instance discriminator, and then jointly train the teacher-
student models according to Eq. 2. While in the stage-II, we
exchange the role of teacher and student model and fix the
original teacher model and update the parameters of origi-
nal student model in the same way, and after that, we jointly
train the teacher-student model again. Notably, we can per-
form the two stages recursively.

The stage-I is to pre-train the teacher network directly at
the beginning. Similar to the cross-modal contrastive loss
defined in Eq. 2, we present the pre-training of teacher
model loss as follows:

Lctr(f
t
i , f

t) = −
∑

f tk∼DT

E

[
log

exp(sim(f ti , f
t′

i )/τ)∑K+1
j=1 exp(sim(f ti , f

t
j )/τ)

]
,

(3)
Where we only take uni-modal pair, f t

′

i is the feature of
transformed sample xt

i. This pre-training process is also
seen as a self-instance discriminator (Wu et al. 2018) by di-
rectly optimizing in the teacher’s feature space. Fine-tuning

the student model after the teacher model is well initialized
will further boost the jointly updating process.

In our self-instance discriminator, each positive pair
(f ti , f

t′

i ) has K negative pairs (f ti , f
t
j ). The positive sample

is obtained with the model by applying a set of transform-
ers to sample f ti . While the negative samples f tj are uni-
formly drawn from the dataset DT excluding sample f ti . For
visual transformation, except the traditional image spatial
transformations like center cropping, randomly horizontal
flipping, randomly color jitter, and randomly gray-scale, we
also adopt temporal jitter that treats nearby clips from the
same video as counterparts. The whole transformation pro-
cess can be expressed as follows:

f t
′
= FT (Tmp(

∑
j

Spa(
T+j∑

i=1+j

xt
i)), (4)

where the Spa(·) represents the set of image spatial transfor-
mations that are applied on each frame, and the Tmp(·) rep-
resents the temporal jitter, j is the temporal sliding step and
randomly generated. For audio, we exploit the augmentation
method proposed in this work (Park et al. 2019), which con-
sists of wrapping the features, masking blocks of frequency
channels, and masking blocks of time steps.

Using Memory Bank
From the previous section, the contrastive loss is the main
objective function to transfer semantic related audio-visual
information and capture audio or visual instance-level dis-
crimination information. Prior works (van den Oord, Li, and
Vinyals 2018; Hénaff et al. 2019) have proven that a larger
number of negative samples can increase the contrastive
learning performance. However, it is with high consumption
to obtain a large number of negatives when increasing the
batch to a large size. To reduce for computation capacity
with larger batch size while using the standard optimizer of
stochastic gradient descent (SGD), the memory-bank tech-
nique is widely used in this literature for caching features
(Wu et al. 2018; He et al. 2020).

Memory Bank. In the pre-training process of each stage
of curriculum learning, we use the dictionary queue Q pro-
posed in (He et al. 2020) as the bank to cover negative fea-
tures {f tj}

K+1
j=1,j 6=i for each input feature f ti . The queue is dy-

namically evolving during training with a momentum con-
trast they proposed and in some sense represents a sampled
subset of all data DT .

In the joint-training process of each stage of curriculum
learning, to transfer the knowledge from the teacher network
to the student, we use a memory bankM to store all the fea-
ture representations {f tj}Nj=1 to match feature fsi . The rep-
resentations are momentum updated with prior epoch repre-
sentations. Note that both ways allow us to replace negative
samples with the bank representations without increasing the
training batch size.

Final Loss. The Noise-Contrastive Estimation (Wu et al.
2018; Tian, Krishnan, and Isola 2019) and simple softmax-
based classifiers (He et al. 2020) are widely used to approx-
imate the full softmax distribution. We directly apply the
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K + 1-way softmax-based classifier to estimate Eq. 3 ac-
cording to the dictionary queue Q. Although we cache all
the features in the memory bankM, directly computing Eq.
2 is prohibitive as the dataset size N is very large. To tackle
the computation issue of the similarity measure among all
the instances in the set, we can efficiently retrieve K nega-
tive samples from the memory bankM to match with each
positive pair (fsi , f

t
i ). We also adopt a simple K + 1-way

softmax-based classification loss as follows:

Lsof(f
s
i , f

t) = −fs
T

i · f ti /τ+log(
K+1∑
j=1

exp(fs
T

i · f tj/τ)), (5)

where we only show the transfer type. The objective in self-
discriminator just replaces the fs term. This loss can pre-
serve information of matched pairs by optimizing the con-
trastive learning objectives.

Experiments
Experimental Setup
We follow the common practice in self-supervised learning
(Xu et al. 2019; Alwassel et al. 2019) and evaluate the per-
formance of SSCL in the downstream transfer-learning ex-
periments. We conduct experiments on a variety of tasks, fo-
cusing on action recognition for visual representation evalu-
ation and sound recognition for audio representation evalu-
ation. The empirical experiments cover: 1) a fine-tuned set-
ting during transfer in which the parameters of the encoder
obtained with self-supervised training are employed for ac-
tion recognition, thus evaluating the encoder “initialization”
and 2) a linear probe setting during transfer in which the pa-
rameters of the encoder except the extra linear classification
layer are fixed, thus using the encoder as a feature extractor
for sound classification.

Pre-training Dataset For audio-visual pre-training, the
standard dataset, Kinetics-400 (Kay et al. 2017), is exploited
as an unlabeled benchmark to pre-train our model. The
Kinetics-400 dataset is also a widely used dataset for self-
supervised audio-visual representation learning. It consists
of 306,000 video clips available on YouTube website and
covers 400 human action classes, including human-object
interactions as well as human-object interactions. The aver-
age duration of a video clip is around 10 seconds and there
are at least 600 video clips per action class.

Video and Audio Encoder We apply the S3D (Xie et al.
2018) network as the video encoder and a 10-layers ResNet
(He et al. 2016) as the Audio encoder to extract visual and
audio features respectively. Note that visual and audio fea-
tures of each encoder are projected into two fully connected
layers with an intermediate size of 512-D to produce 128-D
embeddings as in which are normalized by a L2 Normaliza-
tion. The 128-D embeddings are used for contrastive loss.
This is fair with the related work (Sun et al. 2019).

Training Details To extract visual features, we sample 16
frames of a video clip at a sliding step 4 (around 3 seconds)
and resize the frame to 112 × 112 resolutions. While for
audio features extraction, we randomly sample 2 seconds of

audio and compute a log spectrogram of size 128×128 (128
times steps with 128 frequency bands). The model is train-
ing with SGD using a linear warm-up scheme at an initial
learning rate of 0.03. The SGD weight decay is 10−5 and
the momentum is 0.9. The total epochs we used are 200 and
the batch size is set as 128 with experiments on 8 GPU cards.
We set the negative pairs K as 16,384, the temperature pa-
rameter τ as 0.07.

Downstream Tasks In this section, to investigate the cor-
relation between self-supervised audio-visual learning and
downstream tasks, we evaluate the quality of the pre-training
audio-visual representations by transferring it to action and
sound recognition. We evaluate the visual representation fv

with action recognition on the UCF-101 (Soomro, Zamir,
and Shah 2012) and the HMDB-51 (Kuehne et al. 2011)
datasets. Moreover, we also evaluate the audio represen-
tation fa with sound classification on the ESC-50 (Piczak
2015b) and the DCASE (Stowell et al. 2015) datasets.

Evaluation of Audio-Visual Representation
Action Recognition Following prior works (Korbar, Tran,
and Torresani 2018a; Han, Xie, and Zisserman 2019), to
provide a fair comparison, we fine-tune the visual model
on UCF-101 (Soomro, Zamir, and Shah 2012) and HMDB-
51 (Kuehne et al. 2011) datasets, which consist of around
13K videos from 101 action classes and 7K videos from 51
action classes, respectively. Specifically, once we complete
the audio-visual pre-training process, we use the learned pa-
rameters to initialize the visual model (S3D) but randomly
initialize the last classification layer for action recognition.
Additionally, to figure out the effect of temporal resolution
and spatial resolution, we fine-tune our model with different
input configurations.

Due to the large variability of experimental setups used in
this task, like the backbone, pre-training dataset, and input
spatial-temporal resolution, it is hard to conduct experiments
with all the same settings. However, to present a set of mean-
ingful comparisons, except classification accuracy, we also
report other 5 factors (e.g., “pre-train dataset”, “Backbone”,
“Size”, “Parameters” and “Flops”) in Table 1. Notably, the
overall results are grouped into four groups on UCF-101 and
HMDB-51 datasets.

From the results in the table, we can make the follow-
ing observations: 1) All the models pre-trained on larger
unlabelled dataset have a remarkable boost in classification
accuracy on small size dataset compared with the baseline
model which fully train the model from scratch. This partly
demonstrates that a meaningful pretext task can generate ef-
fective initialization for ConvNets to produce performance
boost over randomly initialization. 2) Existing methods use
a complex visual encoder, which is inefficient and computa-
tionally intractable. This is especially serious when deploy-
ing the model in a true scenario. 3) Compared with those
self-supervision methods, our method yields better results.
More specifically, compared with the pure video-based self-
supervised methods, like (Xu et al. 2019), our method has at
least 11.4% improvement on UCF-101 and 9.8% on HMDB-
51 dataset. While compared with audio-visual-based self-
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Method Pre-train dataset Backbone Size Parameters Flops UCF101 HMDB51
From scratch - S3D 16x224x224 8.3M 18.1G 52.7 39.2
Shuffle & Learn (Misra, Zitnick, and Hebert 2016) UCF101/HMDB51 CaffeNet 1x227x227 58.3M 7.6G 50.2 18.1
Geometry (Gan et al. 2018) UCF101/HMDB51 FlowNet 1x227x227 - - 54.1 22.6
OPN (Lee et al. 2017) UCF101/HMDB51 CaffeNet 1x227x227 58.3M 7.6G 56.3 23.8
ST order (Büchler, Brattoli, and Ommer 2018) UCF101/HMDB51 CaffeNet 1x227x227 58.3M 7.6G 58.6 25.0
Cross & Learn (Sayed, Brattoli, and Ommer 2018) UCF101/HMDB51 CaffeNet 1x227x227 58.3M 7.6G 58.7 27.2
CMC (Tian, Krishnan, and Isola 2019) UCF101/HMDB51 CaffeNet 11x227x227 58.3M 83.6G 59.1 26.7
RotNet3D? (Jing et al. 2018) Kinetics-400 3D-ResNet18 16x112x112 33.6M 8.5G 62.9 33.7
3D-ST-Puzzle (Kim, Cho, and Kweon 2019) Kinetics-400 3D-ResNet18 16x112x112 33.6M 8.5G 63.9 33.7
Clip-order (Xu et al. 2019) Kinetics-400 R(2+1)D-18 16x112x112 33.3M 8.3G 72.4 30.9
DPC (Han, Xie, and Zisserman 2019) Kinetics-400 Custom 3D-ResNet 25x224x224 32.6M 85.9G 75.7 35.7
Multisensory (Owens and Efros 2018) Kinetics-400 3D-ResNet18 64x224x224 33.6M 134.8G 82.1 -
CBT? (Sun et al. 2019) Kinetics-400 S3D 16x112x112 8.3M 4.5G 79.5 44.6
L3-Net (Arandjelovic and Zisserman 2017) Kinetics-400 VGG-16 16x224x224 138.4M 113.6G 74.4 47.8
AVTS (Korbar, Tran, and Torresani 2018b) Kinetics-400 MC3-18 25x224x224 11.7M - 85.8 56.9
XDC? (Alwassel et al. 2019) Kinetics-400 R(2+1)D-18 32x224x224 33.3M 67.4 86.8 47.1
SSCL-stage-I Kinetics-400 S3D 16x112x112 8.3M 4.5G 81.4 47.7
SSCL-stage-II Kinetics-400 S3D 16x112x112 8.3M 4.5G 82.6 49.9
SSCL-stage-II Kinetics-400 S3D 16x224x224 8.3M 18.1G 84.3 54.1
SSCL-stage-II Kinetics-400 S3D 32x224x224 8.3M 36.3G 87.1 57.6

Table 1: Overall comparison of our proposed SSCL method and the compared approaches on the action recognition benchmarks
of UCF-101, and HMDB-51. Here ? indicates the method is informally published on “arxiv.org” recently.
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Figure 2: Effect of curriculum learning and pre-training
strategy. Experiments are conducted on UCF-101 and ESC-
50 datasets, where action and sound classification results are
reported for curriculum learning analysis while action classi-
fication results are reported for pre-train strategies analysis.

supervised learning method, we obtain at least 0.3% gain
on UCF-101 and 0.7% gain on HMDB-51 dataset. Addi-
tionally, from the model complexity group of the table, we
only utilize a small video backbone but achieve a best perfor-
mance. It indicates the effectiveness of our proposed SSCL
method. 4) The accuracy gained from stage-I to stage-II
proves the effectiveness of the training scheme of our cur-
riculum learning and that cross-modal training provides a
strong self-supervision signal due to the concurrency nature
of acoustic and visual message. To this end, we speculate
that the single modality chaotic that does not consider be-
fore might confuse the pair matching training process.

Sound Recognition To evaluate the audio-feature our
method learned, for a fair comparison, linear probing pro-
tocol is applied for the task of audio recognition, which is
also a routine in this literature. For this purpose, following
previous works (Korbar, Tran, and Torresani 2018a; Alwas-
sel et al. 2019), we fix the audio encoder (2D-ResNet10) ex-
cept the last classification layer and test the audio representa-
tion quality on two established sound classification datasets:

EDC-50 (Piczak 2015b) and DCASE (Stowell et al. 2015),
which contains 2000 audio clips from 50 balanced environ-
ment sound classes and 100 audio clips from 10 balanced
scene sound classes, respectively. Specifically, the input au-
dios are processed with a randomly sampled wave within 1
second at a 24kHZ sampling rate, and then extracted as a
spectrogram with this sampled wave of size 128x128 (time
and frequency bands).

The overall results are summarized in Table 2. Like the
table presented in action recognition, we also list the terms
“Pre-train dataset” and “Backbone” in this table. Notably,
the following observations can be seen: 1) Even with linear
probing, the audio representations from the fixed filter can
outperform fully training ConvNets with random initializa-
tion. 2) Similarly to visual case, audio representations ex-
tracted by our method outperform prior work. Specifically,
the result of our SSCL is at least 5.7% higher than previous
works on ESC-50. It indicates that SSCL helps the model to
gain distinguish ability between the instances in each modal-
ity. Intuitively, the elaborative cross-modal knowledge trans-
fer efficiently works and the audio-visual correspondence
helps in generating better uni-modal representations.

Further Analysis
Analyses on Curriculum Learning In our SSCL method,
the stage-I of the curriculum learning to the teacher net-
work is based on the assumption that the noisy and irrel-
evant information between the audio and visual modalities
may affect the transfer process. To prove this hypothesis, we
explore whether the pre-training in stage-I helps in infor-
mation transfer between audio and visual correspondence.
We first study variants of the curriculum learning to under-
stand the influence of within-modality self instance discrim-
ination and cross-modal discrimination. Different strategies
are designed to solve the objective defined in Eq. 3. We con-
duct experiments with directly optimizing Eq. 3 and differ-
ent states of curriculum learning. To this end, we evaluate
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Method Pre-train dataset Backbone ESC-50 (%) DCASE (%)
From scratch - 2D-ResNet10 51.3 75.0

CovNet (Piczak 2015a) ESC-50/DCASE Custom-2 CNN 64.5 -
ConvRBM (Sailor, Agrawal, and Patil 2017) ESC-50/DCASE Custom-2 CNN 86.5 -

SoundNet (Aytar, Vondrick, and Torralba 2016) Flickr-SoundNet VGG 74.2 88.0
DMC (Hu, Nie, and Li 2019) Flickr-SoundNet VGG 82.6 -

L3-Net (Arandjelovic and Zisserman 2017) Kinetics-400 VGG 79.3 93.0
AVTS (Korbar, Tran, and Torresani 2018b) Kinetics-400 VGG 76.7 91.0

XDC? (Alwassel et al. 2019) Kinetics-400 2D-ResNet18 78.0 -
SSCL-stage-I Kinetics-400 2D-ResNet10 85.8 91.0
SSCL-stage-II Kinetics-400 2D-ResNet10 88.3 93.0

Table 2: Overall comparison of our proposed SSCL method and the compared approaches on the standard sound recognition
benchmarks of ESC-50, and DCASE. Notably, ? indicates the method is informally published on “arxiv.org” recently.

the learned representations of the above setting on UCF-101
and ESC-50 datasets and report the results in Figure 2 (a).

From the figure, we can obtain the following observa-
tions: (1) Directly optimizing audio and visual knowledge
transfer is a bad choice due to the noise. (2) The two stages
of knowledge transfer between audio and visual typically
have better results. (3) The transfer process is completed af-
ter stage-II results in better representations than stage-I due
to the knowledge transfer between audio and visual.

From the results, we can conclude that the lack of within-
modality calibration to obtain a self-instance discriminative
property is bad for transfer, because the good visual rep-
resentations can not only reflect visual feature similarities
but also weaken the influence of noisy pair features. Addi-
tionally, the stage-II that exchanges the role of student and
teacher is effective in producing a better model.

Analyses on Video Pre-training Strategy To figure out
the influence of different pretext tasks in stage-I of curricu-
lum learning, we compare the other two widely used self-
supervised methods, 3DRotNet and Clip-order, in video rep-
resentation. Subsequently, we continue the stage-II in cur-
riculum learning. Note that all the methods use the same
setting (audio and visual encoder, training details, etc) only
differ in the process they use pretext task, which means we
re-implement the compared methods and combine it to our
transfer scheme. We report the classification accuracy of
those methods obtained on the UCF-101 dataset with the
S3D encoder. In particular, the encoder is first self-trained
according to each pretext task. We then fine-tune the model
on UCF-101 dataset with the checkpoint weights saved at
epoch {40, 80, 100, 140, 180, 200}.

The overall results are reported in Figure 2 (b). It can
be observed that, as the pre-training process continues,
higher accuracy can be obtained in downstream classifi-
cation task. Notably, the contrastive learning used in our
method achieves the best results partly due to its large scale
negative samples and effective training scheme.

Qualitative Analysis on Audio-Visual Correspondence
To explore whether the features of audio-visual can be
grouped together, we show cross-modal retrieval results with
a ranked similar value. Similar to work (Arandjelovic and
Zisserman 2017), we use the sampled videos from the Ki-

Figure 3: Audio and visual correspondence. For each query
sound, we show five retrieval results in each row. The second
one in each row is an optimal aligned audio and video pair
from the same video.

netics dataset to conduct experiments here. We report re-
sults of the top-5 positive visual samples according to the
query of sound as shown in Figure 3. It can be observed
that the proposed method can correlate well the semanti-
cally similar acoustical and visual information and group to-
gether semantically related visual concepts. We own it to the
self-discriminator which distinguishes itself from others in
the same modality and cross-modal transfer process which
groups similar visual and audio information.

Conclusion
In this paper, we aim to explore the close correlation be-
tween the acoustic signal and visual appearance in a self-
supervised manner. We presented a cross-modal knowledge
transfer framework with contrastive learning in the context
of a teacher-student network paradigm to achieve that. In
particular, a two-stage self-supervised curriculum learning
scheme is proposed by solving the task of audio-visual cor-
respondence learning. The rationale behind our method is
that the knowledge shared between audio and visual modal-
ity serves as a supervisory signal. By using our frame-
work, we can deploy the well-trained audio-visual model in
practice to extract meaningful representations for a variety
of downstream tasks, such as action recognition and audio
recognition. To this end, our method extends the expressive-
ness of contrastive learning for audio-visual representation
learning and provides a useful method for further research
in this literature.
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Hénaff, O. J.; Srinivas, A.; De Fauw, J.; Razavi, A.; Doer-
sch, C.; Eslami, S.; and Oord, A. v. d. 2019. Data-efficient
image recognition with contrastive predictive coding. arXiv
preprint arXiv:1905.09272 .

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .

Hu, D.; Nie, F.; and Li, X. 2019. Deep Multimodal Cluster-
ing for Unsupervised Audiovisual Learning. In Conference
on Computer Vision and Pattern Recognition, 9248–9257.

Hu, D.; Wang, Z.; Xiong, H.; Wang, D.; Nie, F.; and Dou,
D. 2020. Curriculum Audiovisual Learning. arXiv preprint
arXiv:2001.09414 .

Jing, L.; Yang, X.; Liu, J.; and Tian, Y. 2018. Self-supervised
spatiotemporal feature learning via video rotation predic-
tion. arXiv preprint arXiv:1811.11387 .

Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.;
Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev,
P.; et al. 2017. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950 .

Khosravan, N.; Ardeshir, S.; and Puri, R. 2019. On Atten-
tion Modules for Audio-Visual Synchronization. In Con-
ference on Computer Vision and Pattern Recognition Work-
shops, (CVPR Workshops), 25–28.

Kidron, E.; Schechner, Y. Y.; and Elad, M. 2005. Pixels
that Sound. In Conference on Computer Vision and Pattern
Recognition, 88–95.

Kim, D.; Cho, D.; and Kweon, I. S. 2019. Self-Supervised
Video Representation Learning with Space-Time Cubic Puz-
zles. In Conference on Artificial Intelligence, 8545–8552.

Korbar, B.; Tran, D.; and Torresani, L. 2018a. Co-training of
audio and video representations from self-supervised tempo-
ral synchronization. arXiv preprint arXiv:1807.00230 .

Korbar, B.; Tran, D.; and Torresani, L. 2018b. Cooperative
Learning of Audio and Video Models from Self-Supervised

3358



Synchronization. In Advances in Neural Information Pro-
cessing Systems, 7774–7785.

Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T. A.; and
Serre, T. 2011. HMDB: A large video database for human
motion recognition. In International Conference on Com-
puter Vision, 2556–2563.

Lee, H.; Huang, J.; Singh, M.; and Yang, M. 2017. Unsu-
pervised Representation Learning by Sorting Sequences. In
International Conference on Computer Vision, 667–676.

Misra, I.; Zitnick, C. L.; and Hebert, M. 2016. Shuffle and
Learn: Unsupervised Learning Using Temporal Order Veri-
fication. In European Conference on Computer Vision, vol-
ume 9905, 527–544.

Owens, A.; and Efros, A. A. 2018. Audio-Visual Scene
Analysis with Self-Supervised Multisensory Features. In
European Conference on Computer Vision, volume 11210,
639–658.

Owens, A.; Wu, J.; McDermott, J. H.; Freeman, W. T.; and
Torralba, A. 2018. Learning Sight from Sound: Ambient
Sound Provides Supervision for Visual Learning. Int. J.
Comput. Vis. 126(10): 1120–1137.

Park, D. S.; Chan, W.; Zhang, Y.; Chiu, C.; Zoph, B.; Cubuk,
E. D.; and Le, Q. V. 2019. SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition.
In Conference of the International Speech Communication
Association, 2613–2617.

Pham, H.; Liang, P. P.; Manzini, T.; Morency, L.; and
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