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Abstract

3D Convolution Neural Networks (CNNs) have been widely
applied to 3D scene understanding, such as video analysis
and volumetric image recognition. However, 3D networks
can easily lead to over-parameterization which incurs expen-
sive computation cost. In this paper, we propose Channel-
wise Automatic KErnel Shrinking (CAKES), to enable effi-
cient 3D learning by shrinking standard 3D convolutions into
a set of economic operations (e.g., 1D, 2D convolutions). Un-
like previous methods, CAKES performs channel-wise kernel
shrinkage, which enjoys the following benefits: 1) enabling
operations deployed in every layer to be heterogeneous, so
that they can extract diverse and complementary informa-
tion to benefit the learning process; and 2) allowing for an
efficient and flexible replacement design, which can be gen-
eralized to both spatial-temporal and volumetric data. Fur-
ther, we propose a new search space based on CAKES, so
that the replacement configuration can be determined auto-
matically for simplifying 3D networks. CAKES shows supe-
rior performance to other methods with similar model size,
and it also achieves comparable performance to state-of-the-
art with much fewer parameters and computational costs on
tasks including 3D medical imaging segmentation and video
action recognition. Codes and models are available at https:
//github.com/yucornetto/CAKES.

Introduction
3D learning has attracted more and more research attention
with the recent advance of deep neural networks. However,
3D convolution layers typically result in expensive compu-
tation and suffer from convergence problems due to over-
fitting issues and the lack of pre-trained weights (Carreira
and Zisserman 2017; Tajbakhsh et al. 2016).

To resolve the redundancy in 3D convolutions, many ef-
forts have been investigated to design efficient alternatives.
For instance, Qiu, Yao, and Mei (2017) and Tran et al. (2018)
propose to factorize the 3D kernel and replace the 3D con-
volution with Pseudo-3D (P3D) and (2+1)D convolution,
where 2D and 1D convolution layers are applied in a struc-
tured manner. Xie et al. (2018) suggest that replacing 3D
convolutions with low-cost 2D convolutions at the bottom
of the network significantly improves recognition efficiency.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: CAKES shows better accuracy-cost trade-off to its
counterparts.

Despite their effectiveness for spatial-temporal informa-
tion extraction, there are several limitations of existing al-
ternatives to 3D convolutions. Firstly, these methods (e.g.,
P3D) are specifically tailored to video datasets, where data
can be explicitly separated into time and space. However,
for volumetric data such as CT/MRI where all three di-
mensions should be treated equally, conventional spatial-
temporal operators can lead to biased information extrac-
tion. Moreover, existing operations are still insufficient even
for spatial-temporal data since they may exhibit certain lev-
els of redundancy either along the temporal or the spatial di-
mension, as empirically suggested in Xie et al. (2018). Sec-
ondly, existing replacements are manually designed. Conse-
quently, this process can be time-consuming and may lead
to sub-optimal results.

To address these issues, we introduce Channel-wise Au-
tomatic KErnel Shrinking (CAKES), as a general efficient
alternatives to existing 3D operations. Specifically, the pro-
posed method simplifies conventional 3D operations by
adopting a combination of diverse and economic operations
(e.g., 1D, 2D convolutions), where these different operators
can extract complementary information to be utilized in the
same layer. Our approach is not tailored to any specific type
of input (e.g., videos), but can be generalized to different
types of data and backbone architectures to achieve a fine-
grained and efficient replacement.

As a proof test, our CAKES with a naive manual setting
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already exhibits superior performances compared with ex-
isting 3D replacements (Table 1 & 3). However, the man-
ual selection of the set of replacing operators as well as
their positioning requires trial-and-error. To further improve
the performance and the model efficiency, we introduce
a new search space consisting of computationally-efficient
candidate operators, to facilitate the search for the optimal
replacement configuration given a backbone architecture.
With our search space design, the proposed CAKES is fea-
sible to obtain a good architecture in several GPU days.

The proposed algorithm delivers high-performance and
efficient models. As shown in Fig. 1, evaluated on both 3D
medical image segmentation and video action recognition
tasks, our method achieves a better accuracy-cost trade-off.
Compared with its 3D baseline, CAKES not only shows su-
perior performance but also effectively reduces the model
size (56.80% less on medical and 19.35% less on video)
and computational cost (53.76% less on medical and 19.01%
less on video) significantly. The proposed method surpasses
their 2D/3D/P3D counterparts significantly.

Our contributions can be summarized into three folds:
(1) We propose a more generic, efficient and flexible al-

ternative to 3D convolution by shrinking 3D kernels into
heterogeneous yet complementary efficient counterparts at
a fine-grained level.

(2) We automate the replacement configuration for sim-
plifying 3D networks by customizing a search space based
on CAKES and combining it with neural architecture search.

(3) By applying CAKES to different 3D models, we
achieve comparable results to state-of-the-art while being
much more efficient on both volumetric medical data and
temporal-spatial video data.

Related Work
Efficient 3D Convolutional Neural Networks
Despite the great advances of 3D CNNs (Carreira and Zis-
serman 2017; Çiçek et al. 2016; Tran et al. 2015; Zhou et al.
2019a), existing 3D networks usually require heavy compu-
tational budget. Besides, 3D CNNs also suffer from unstable
training due to lack of pre-trained weights (Carreira and Zis-
serman 2017; Liu et al. 2017; Tajbakhsh et al. 2016). These
facts have motivated researchers to find efficient alternatives
to 3D convolutions. For example, it is suggested in Luo and
Yuille (2019); Tran et al. (2019) to apply group convolu-
tion (Krizhevsky, Sutskever, and Hinton 2012) and depth-
wise convolution (Chollet 2017) to 3D networks to obtain
resource-efficient models. Another type of approach sug-
gests replacing each 3D convolution layer with a structured
combination of 2D and 1D convolution layers to achieve
better performance while being more efficient. For instance,
Qiu, Yao, and Mei (2017) and Tran et al. (2018) propose to
use a 2D spatial convolution layer followed by a 1D tempo-
ral convolution layer to replace a standard 3D convolution
layer. Besides, Xie et al. (2018) demonstrate that 3D con-
volutions are not needed everywhere and some of them can
be replaced by 2D counterparts. Similar attempts also occur
in the medical imaging area (Liu et al. 2018). For example,
Gonda et al. (2018) try to replace consecutive 3D convolu-

tion layers through consecutive 2D convolution layers fol-
lowed by a 1D convolution layer.

Our method differs from these methods by the following
folds: (1) Instead of applying homogeneous operations to all
channels, CAKES allows assigning complementary hetero-
geneous operations at channel-wise, which leads to a more
flexible design and potentially better trade-off between ac-
curacy and efficiency (Tan and Le 2019); and (2) We enable
the automatic optimization of the replacement configuration
instead of manual design through a new search space.

Neural Architecture Search
Neural Architecture Search (NAS) aims at automati-
cally discovering better network architectures than human-
designed ones. It has been proved successful not only for
2D natural image recognition (Zoph and Le 2017; Yu et al.
2020a), but also for other tasks such as segmentation (Liu
et al. 2019) and detection (Ghiasi, Lin, and Le 2019). Be-
sides the success on natural images, there are also some tri-
als on other data formats such as videos (Ryoo et al. 2019)
and 3D medical images (Yu et al. 2020b; Zhu et al. 2019).
Earlier NAS algorithms are based on either reinforcement
learning (Baker et al. 2017; Zoph and Le 2017; Zoph et al.
2018) or evolutionary algorithm (Real et al. 2019; Xie and
Yuille 2017). However, these methods often require training
each network candidate from scratch, therefore the inten-
sive computational costs hamper its usage especially with
limited computational budget. Since Pham et al. (2018) first
proposed parameter sharing scheme, more and more search
methods such as differentiable NAS approaches (Chen et al.
2019; Liu, Simonyan, and Yang 2019; Xu et al. 2020; Dong
and Yang 2019) and one-shot NAS approaches (Brock et al.
2018; Guo et al. 2019; Stamoulis et al. 2019; Li et al. 2020)
began to investigate how to effectively reduce the search cost
to several GPU days or even several GPU hours.

Moreover, Gordon et al. (2018); Mei et al. (2020) success-
fully connect network pruning with NAS and design more
efficient search methods. Some methods (Tan and Le 2019;
Mei et al. 2020; Stamoulis et al. 2019) also incorporate the
kernel size into the search space. Nevertheless, most of them
only consider simple cases with choices among 3× 3, 5× 5,
etc., while we consider much more diverse and general ker-
nel deployment across different channels in 3D settings.

Method
Revisit Variants of 3D Convolution
We first revisit 3D convolutions and existing alternatives.
Without loss of generality, let X of sizeCi ×Di ×Hi ×Wi

denotes the input tensor, where Ci stands for the input chan-
nel number, and Di, Hi, Wi represent the spatial depth (or
temporal length), the spatial height, and the spatial width,
respectively. The weights of the corresponding 3D kernel
are denoted as WCo×Ci×kd×kh×kw , where Co is the output
channel number and kd × kh × kw denote the kernel size.
For simplicity, we consider each output channel individu-
ally in formulation. Therefore, the output tensor Y of shape
Co ×Do ×Ho ×Wo can be derived as following:

YDo×Ho×Wo
c = XCi×Di×Hi×Wi ⊕ WCi×kd×kh×kw

c , (1)
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where ⊕ denotes convolution, c is the output channel index,
i.e., 1 ≤ c ≤ Co.

The computation overhead of 3D convolutions can be sig-
nificantly heavier than their 2D counterparts. Consequently,
the expensive computation and over-parameterization in-
duced by 3D deep networks impede the scalability of net-
work capacity. Recently, there are many works seeking to
alleviate the high demand of 3D convolutions. One com-
mon strategy is to decouple the spatial and temporal com-
ponents (Qiu, Yao, and Mei 2017; Tran et al. 2018). The
underlying assumption here is that the spatial and temporal
kernels are orthogonal to each other, and therefore can effec-
tively extract complementary information from different di-
mensions. Another option is to discard 3D convolutions and
simply use 2D operations instead (Xie et al. 2018). Mathe-
matically speaking, these replacements can be written as:

WCi×kd×kh×kw
c ← {WCi×1×kh×kw

c ,WCi×kd×1×1
c } (2)

WCi×kd×kh×kw
c ← {WCi×1×kh×kw

c }, (3)

where← indicates the replacement operation. Similar ideas
also occur in 3D medical image analysis, where the images
are volumetric data. For instance, it is shown in Liu et al.
(2017) that using 2D convolutions in encoder and replacing
3D convolutions with Pseudo-3D (P3D) operations in de-
coder not only largely reduce the computation overhead but
also improve the performance over the traditional 3D net-
works.

Though these methods have furthered the model effi-
ciency compared with standard 3D convolutions, there are
several limitations yet to be tackled. On the one hand, as
shown in Eqn. (2), decomposing the kernels into orthogo-
nal 2D and 1D components is designed for a specific data
type (i.e., spatial-temporal), which may not well generalize
to other types such as volumetric data. On the other hand,
directly replacing 3D kernels with 2D operators (Eqn. (3))
cannot effectively capture information along the third di-
mension.

To address these issues, we propose Channel-wise Auto-
matic KErnel Shrinking (CAKES), as a general alternative to
3D convolutions. The core idea is to shrink standard 3D ker-
nels into a set of cheaper 1D, 2D, and 3D components. To
ensure the flexibility of our design and avoid the tricky man-
ual configuration, we further make the shrinkage channel-
specific, thus heterogeneous kernels can extract complemen-
tary information as a 3D kernel does. We additionally intro-
duce a brand-new search space so that the replacement con-
figuration can be optimized automatically.

Kernel Shrinking as Path-level Selection
Let’s consider the case for single output channel, and ab-
breviate WCi×kd×kh×kw

c to Wkd×kh×kw
c for simplicity. We

aim to find the optimal sub-kernel Wk
′
d×k

′
h×k

′
w

c (1 ≤ k
′

d ≤
kd,1 ≤ k′h ≤ kh,1 ≤ k′w ≤ kw) as the substitute for 3D ker-
nel Wkd×kh×kw

c . Therefore, the original 3D kernels can be
effectively reduced to smaller sub-kernels, leading to a more
efficient model.
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Figure 2: (a) Various sub-kernels of the same 3D kernel. (b)
Representation of 3D kernel as weighted summation of sub-
kernels. (c) Path-level selection.

As shown in Fig. 2(a), even only considering different ker-
nel sizes, there are kd × kh × kw sub-kernel options for a
3D kernel, which makes it impractical to find the optimal
sub-kernel via manual designs. Therefore, we provide a new
perspective—to formulate this problem as path-level selec-
tion (Liu, Simonyan, and Yang 2019), i.e., to encode sub-
kernels into a multi-path super-network and select the opti-
mal path among them (Fig. 2(c)). Then this problem can be
solved in a differentiable manner.

We first represent a general replacement to 3D kernel as
follows (Fig. 2(b)):

Wkd×kh×kw
c ← {αiWki

d×k
i
h×k

i
w

c }i, (4)

where αi is the weight of i-th sub-kernel Wki
d×k

i
h×k

i
w

c , 1 ≤
kid ≤ kd, 1 ≤ kih ≤ kh, 1 ≤ kiw ≤ kw. With this for-
mulation, the problem of finding the optimal sub-kernel of
Wkd×kh×kw

c can be approximated as finding the optimal
setting of {αi} and then keeping the sub-kernel with max-
imum αi. Due to the linearity of convolution, Eqn. (1) can
then be derived as below:

X⊕Wkd×kh×kw
c ←

∑
i

αi(X⊕Wki
d×k

i
h×k

i
w

c ). (5)

To solve for the path weights {αi}, we reformu-
late Eqn. (5) as an over-parameterized multi-path super-
network, where each candidate path consists of a sub-kernel
(Fig. 2(c)). By relaxing the selection space, i.e., relaxing the
conditions on α to be continuous, Eqn. (5) can be then for-
mulated as a differential NAS problem and optimized via
gradient descent (Liu, Simonyan, and Yang 2019).

Channel-wise Shrinkage
While previous replacements (Liu et al. 2017; Qiu, Yao, and
Mei 2017; Tran et al. 2018) consist of homogeneous oper-
ations in the same layer, we argue that a more efficient re-
placement requires customized operations at each channel.
As shown in Fig. 3, kernel shrinking in a channel-wise fash-
ion can generate heterogeneous operations which extract di-
verse and complementary information within the same layer,
and thereby yields a fine-grained and more efficient replace-
ment (Fig. 3(d)) than prior methods which use layer-wise
replacements (Fig. 3(a) & (b) & (c)).
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Figure 3: An illustrative example of comparison between
different types of convolution in a residual block (He et al.
2016). (a) 2D Convolution. (b) 3D Convolution. (c) P3D
Convolution. (d) the proposed CAKES. In our case, starting
from a 3D convolution, the 3D operation at each channel is
replaced with an efficient sub-kernel.

Contrary to previous layer-wise replacement, our core
idea is to replace 3D kernel at each channel individually,
thus the target is to find the optimal sub-kernel Wkc

d×k
c
h×k

c
w

c

as the substitute for the c-th output channel 3D kernel
Wkd×kh×kw

c :

Wkd×kh×kw
c ← {Wkc

d×k
c
h×k

c
w

c }, (6)

where the optimal size of the sub-kernel (kcd × kch × kcw) is
subjected to 1 ≤ kcd ≤ kd, 1 ≤ kch ≤ kh, 1 ≤ kcw ≤ kw.
Hence the computation incurred by Eqn. (1) can be largely
reduced by our replacement as above.

With our channel-wise replacement design, the original
3D kernels are substituted by a series of diverse and cheaper
operations at different channels as following (recall that Co

is the output channel number):

W← {Wk1
d×k1

h×k1
w

1 ,W
k2
d×k2

h×k2
w

2 , . . . ,W
k
Co
d

×k
Co
h

×kCo
w

Co
}.
(7)

Benefited from channel-wise shrinkage, our method pro-
vides a more general and flexible design for replacing
3D convolution than previous approaches (Eqn. (2) and
Eqn. (3)), where it can also be easily reduced to arbitrary
alternatives (e.g., 2D, P3D) by integrating these operations
into the set of candidate sub-kernels. An illustration example
can be found in Fig 3.

Search for an Efficient Replacement
As aforementioned, given the tremendous feasible choices,
it is impractical to manually find the optimal replacement
for a 3D kernel through a trial-and-error process. Especially,
it becomes even more intractable as the replacement proce-
dure is conducted in a channel-wise manner. Therefore, we
propose a new search space for efficient 3D networks and
automate the process of learning an efficient replacement
to fully exploit the redundancies in 3D convolution opera-
tions. By formulating kernel shrinkage as a path-level se-
lection problem, we first construct a super-network where
every candidate sub-kernel is encapsulated into a separate
trainable branch (Fig. 2(c)) at each channel. Once the path
weights are learned in a differentiable manner, the optimal
path (sub-kernel) can be determined.

Search Space. A well-designed search space is crucial for
NAS algorithms (Yang, Esperança, and Carlucci 2020). Here
we aim to answer the following questions: Should the 3D
convolution kernel be kept or replaced per channel? If re-
placed, which operation should be deployed instead?

To address these questions, for each channel, we define a
set S , which contains all candidates of sub-kernels (replace-
ment) given a 3D kernel Wkd×kh×kw :

S = {Wkd1
×kh1

×kw1 ,Wkd2
×kh2

×kw2 , . . . ,Wkdn×khn×kwn }

W
kc
d×kc

h×kc
w

c = Choose(S).
(8)

As the original 3D convolution kernel can be considered
sub-kernel of itself, i.e., Wkd×kh×kw ∈ S , it can be kept
in the final configuration. The final optimal operation Wc is
chosen among S .

Another critical problem for NAS is how to reduce the
search cost. To make the search cost affordable, we adopt a
differentiable NAS paradigm where the model structure is
discovered in a single-pass super-network training. Drawing
inspirations from previous NAS methods, we directly use
the scaling parameters in the normalization layers as the path
weights α of the multi-path super-network (Eqn. (5)) (Gor-
don et al. 2018; Mei et al. 2020). And our goal is then equiv-
alent to finding the optimal sub-network architecture based
on the learned path weights. To achieve this goal, we in-
troduce two different search manners which aim at either
maximizing the performance or optimizing the computa-
tion cost of the sub-network as a search priority, named as
performance-priority and cost-priority search, respectively.

Performance-Priority Search. The search aims to maxi-
mize the performance by finding the optimal sub-kernels
given the backbone architecture. During the search proce-
dure, following Bender et al. (2018); Brock et al. (2018),
we randomly pick an operation for each channel at each
iteration. This not only allows for memory saving by acti-
vating and updating one path per iteration but also propels
the weights of the paths in the super-network training to be
decoupled. After the super-network is trained, the operation
with the largest path weight will be picked as the final choice
for the given output channel:

Wkd×kh×kw
c ← {Wkdi∗×khi∗×kwi∗ },
where i∗ = argmaxi∈{1···n}(αi).

(9)

Cost-Priority Search. Performance-priority may neglect
the possible negative effects on the computation cost. In
order to obtain more compact models, we also introduce a
“cost-priority” search method. Inspired by Mei et al. (2020),
we search the model in a pruning manner with penalty on ex-
pensive operations. The outputs of each sub-kernels are con-
catenated and aggregated by the following 1× 1× 1 convo-
lution. To make the searched architecture more compact, we
introduce a “cost-aware” penalty term—A lasso term on α
which is used as the penalty loss to push many path weights
to near-zero values. Therefore, the total training loss L can
be written as:

L = E + λ
∑
i

βi|αi|, (10)
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Methods Params
(M)

FLOPs
(G)

Pancreas
DSC (%)

Tumor
DSC (%)

Average
DSC (%)

2D 11.29 97.77 79.16 43.02 61.09
3D 22.50 188.48 80.34 47.57 63.96
P3D 13.16 112.88 80.36 45.27 62.82

CAKESM
1D 7.56 67.53 79.77 42.73 61.25

CAKESM
2D 11.29 97.77 80.09 46.17 63.13

CAKESM
1,2,3D 11.41 99.17 79.82 45.27 62.55

CAKESP
1D 7.56 67.53 80.32 45.57 62.95

CAKESP
2D 11.29 97.77 80.05 48.51 64.28

CAKESP
1,2,3D 11.26 99.68 80.12 48.72 64.42

CAKESC
1,2,3D 9.72 87.16 80.34 47.95 64.15

Table 1: Comparison among different operations and con-
figurations. The subscripts of 1D, 2D, and 3D indicate the
dimensions of the operations being used. The superscripts
“M”, “P”, “C” represent “Manual”, “Performance-Priority”,
and “Cost-Priority” respectively.

where βi is a “cost-aware” term to balance the penalty term,
which is proportional to the parameters or FLOPs cost of
the sub-kernel. In Table 1, we also empirically show that
this term can lead to a more efficient architecture. The in-
troduction of βi aims at giving more penalty to “expensive”
operations and leading to a more efficient replacement. λ is
the coefficient of the penalty term, and E is the conventional
training loss (e.g., cross-entropy loss combined with the reg-
ularization term such as weight decay).

Experiments
3D Medical Image Segmentation
Dataset. We evaluate the proposed method on two pub-
lic datasets: 1) Pancreas Tumours dataset from the Medical
Segmentation Decathlon Challenge (MSD) (Simpson et al.
2019), which contains 282 cases with both pancreatic tu-
mours and normal pancreas annotations; and 2) NIH Pan-
creas Segmentation dataset (Roth et al. 2015), consisting of
82 abdominal CT volumes. For the MSD dataset, we use
226 cases for training and evaluate the segmentation perfor-
mance on the rest 56 cases. The resolution along the axial
axis of this dataset is extremely low and the number of slices
can be as small as 37. For data preprocessing, all images are
resampled to an isotropic 1.0 mm3 resolution. For the NIH
dataset, the resolution of each scan is 512×512×L, where
L ∈ [181, 466] is the number of slices along the axial axis
and the voxel spacing ranges from 0.5 mm to 1.0 mm. We
test the model in a 4-fold cross-validation manner following
previous methods (Zhou et al. 2017, 2019b).

Implementation Details. For all experiments, C2FNAS (Yu
et al. 2020b) is used as the backbone architecture. When re-
placing the operations, we keep the stem (the first two and
the last two convolution layers) as the same. For 3D medical
image, for simplicity, we choose a set of most representa-
tive sub-kernels as S . The operations set contains conv1D
(1 × 1 × 3, 1 × 3 × 1, 3 × 1 × 1), conv2D (1 × 3 × 3,
3× 1× 3, 3× 3× 1) from different directions, and conv3D

Method Params
(M)

Average
DSC

Max
DSC

Min
DSC

C2F (Zhou et al. 2017) 268.56 82.37% 90.85% 62.43%
RSTN (Yu et al. 2018) 268.56 84.50% 91.02% 62.81%
C2F ResDSN (Zhu et al.
2018) 20.06 84.59% 91.45% 69.62%

V-NAS (Zhu et al. 2019) 29.74 85.15% 91.18% 70.37%

CAKESC
1,2,3D 9.27 84.85% 91.61% 59.32%

CAKESP
1,2,3D 11.26 85.28% 91.98% 72.78%

Table 2: Comparison with prior arts on the NIH dataset.

(3×3×3). For every 3D kernel at each output channel, a sub-
kernel from S will be chosen as the replacement. For man-
ual settings, we assign all candidates operations uniformly
across the output channels. For NAS settings, we include
both “performance-priority” and “cost-priority” search for
performance comparison.

Training stage. For the MSD dataset, we use random crop
with patch size of 96 × 96 × 96, random rotation (0◦, 90◦,
180◦, and 270◦) and flip in all three axes as data augmen-
tation. The batch size is 8 with 4 GPUs. We use SGD opti-
mizer with learning rate starting from 0.01 with polynomial
decay of power of 0.9, momentum of 0.9, and weight decay
of 0.00004. The training lasts for 40k iters. The loss function
is the summation of dice loss (Milletari, Navab, and Ahmadi
2016) and cross-entropy loss. For NIH dataset, the patch size
is set as 96 × 96 × 64, following the settings in Zhu et al.
(2019). The found architecture will be trained from scratch
to ensure fair comparison. Both the super-network and the
found architecture are trained under the same settings as
aforementioned. For search stage with “cost-priority” set-
ting, a lasso term with coefficient λ = 1.0× 10−4 is applied
to the path weights. And it is further re-weighted by β =
{ 9
13 ,

3
13 ,

1
13} for 3D, 2D, 1D operations respectively, which

is their ratio of the parameters. After the training process,
the operation with the largest α is chosen as the final re-
placement for 3D operation for each channel.

Testing stage. We test the network in a sliding-window
manner, where the patch size is 96 × 96 × 96 and stride
is 32 × 32 × 32 for the MSD dataset and patch size is
96×96×64 and stride is 20×20×20 for NIH dataset. The re-
sult is measured with Dice-Sørensen coefficient (DSC) met-
ric, which is formulated as DSC (Y,Z) = 2×|Y∩Z|

|Y|+|Z| , where
Y and Z denote the prediction and ground-truth voxels set
for a foreground class. The DSC has a range of [0, 1] with 1
implying a perfect prediction.

Manual Settings vs. Auto Settings. As observed from Ta-
ble 1, even under manual settings, CAKES is already much
more efficient with slightly inferior performance (e.g., from
3D to manual CAKESM2D, parameters drop from 22.50M to
11.29M, and FLOPs drop from 188.48G to 97.77G, with
performance gap of < 1.0%). Besides, CAKESM2D outper-
forms its counterpart with standard convolution 2D layers
by more than 2.0% with the same model size, which indi-
cates the benefits of our design. In addition, with the pro-
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posed search space and method, CAKES can further re-
duce the performance gap and even surpasses the original
3D model with much fewer parameters and computations,
e.g., model size is reduced from 22.50M (3D) to 11.26M
(CAKESP1,2,3D), and FLOPs drop from 188.48G (3D) to
99.68G (CAKESP1,2,3D), with a performance improvement
of 0.46%. Compared with P3D, CAKESP1,2,3D also yields
superior performance (+1.60%) with a more compact model
(11.26M vs. 13.16M), which further indicates the effective-
ness of the proposed method.

Influence of the Search Space. From Table 1, we can see
that using different search space, CAKES consistently out-
performs its counterparts with standard 1D/2D/3D convolu-
tions. Out of different search spaces, we find that CAKESP1D
(7.56M params and 67.53G FLOPs) offers the most efficient
model with a comparable performance, while CAKESP2D
(11.29M params and 97.77G FLOPs) can already surpass
the 3D baseline (22.50M params and 188.48G FLOPs) with
half parameters and computation cost. After we enlarge the
search space, CAKES

P/C
1,2,3D obtains a configuration with

even higher performance/efficiency (last 2 rows of Table 1).

Generalization to different backbone architectures. We
also test our method on different backbone architectures.
Applying CAKESC1,2,3D to another strong model 3D Res-
DSN (Zhu et al. 2018; Li et al. 2019), our method con-
sistently leads to a more efficient model with much fewer
parameters (10.03M to 4.63M) and FLOPs (192.07G to
98.12G) with comparable performance (61.96% to 61.65%).

NIH Results. We compare CAKES with state-of-the-art
methods in Table 2, where it can be observed that the pro-
posed method leads to a much more compact model size
compared to other models. For instance, our model size is
more than 25× smaller than that of Zhou et al. (2017) and Yu
et al. (2018). It is well worth noting that our model per-
formed in a single-stage fashion already outperforms many
state-of-the-art methods conducted in a two-stage coarse-to-
fine manner (Zhou et al. 2017; Yu et al. 2018; Zhu et al.
2018) on the NIH pancreas dataset with much fewer model
parameters and FLOPS. It is also noteworthy to mention
that the applied architecture is searched from another dataset
(MSD), where images are collected under different protocols
and have different resolutions. This result indicates the gen-
eralization of our searched model. By directly applying the
architecture searched on the MSD dataset, our method also
outperforms Zhu et al. (2019) which was directly searched
on the NIH dataset with less than half model size.

Action Recognition in Videos
Dataset. Something-Something V1 (Goyal et al. 2017) is a
large scale action recognition dataset which requires com-
prehensive temporal modeling. There are totally about 110k
videos for 174 classes with diverse objects, backgrounds,
and viewpoints.
Implementation Details. We adopt ResNet50 (He et al.
2016) with pre-trained weight on ImageNet (Krizhevsky,
Sutskever, and Hinton 2012) as our backbone. The 3D con-

Model Params
(M)

FLOPs
(G)

top1 top5

C2D 23.9 33.0 17.2 43.1
P3D 27.6 37.9 44.8 74.6
C3D 46.5 62.6 46.8 75.3

CAKESM
1,2D 20.1 28.0 46.2 75.2

CAKESM
2,3D 35.2 47.7 46.8 76.0

CAKESP
1,2D 20.9 29.1 47.1 75.9

CAKESP
2,3D 37.5 50.7 47.4 76.1

CAKESP
1,2,3D 33.5 43.9 47.2 75.7

CAKESC
1,2D 20.5 29.3 46.8 76.0

CAKESC
2,3D 35.7 41.4 46.9 75.6

CAKESC
1,2,3D 35.0 38.7 46.9 75.5

Table 3: Comparison among operations and configurations
for ResNet50 backbone in terms of parameter number, com-
putation amount (FLOPs), and performance on Something-
Something V1 dataset.

volution weights are initialized by repeating 2D kernel by 3
times along the temporal dimension following (Carreira and
Zisserman 2017), while 1D convolution weights are initial-
ized by averaging the 2D kernel on spatial dimensions and
then repeat by 3 times along temporal axis. For the temporal
dimension, we use the sparse sampling method as in (Wang
et al. 2016). For spatial dimension, the short side of the input
frames are resized to 256 and then cropped to 224× 224.
Training Stage. We use random cropping and flipping as
data augmentation. We train the network with a batch size of
96 on 8 GPUs with SGD optimizer. The learning rate starts
from 0.04 for the first 50 epochs and decays by a factor of
10 for every 10 epochs afterwards. The total training epochs
are 70. We also set dropout ratio to 0.3 following (Wang and
Gupta 2018). The training settings remain the same for both
final network and search stage, except that when searching
with “performance-priority” we double the training epochs
to ensure convergence, and with “cost-priority”, we use a
lasso term with λ = 1.0 × 10−4 and β = { 9

13 ,
3
13 ,

1
13} for

3D, 2D, 1D operations respectively.
Testing Stage. we sample the middle frame in each segment
and perform center crop for each frame. We report the results
of single crop, unless otherwise specified.
Ablation Study. We study the impacts of both different op-
erations set and manual/auto configurations. The results are
summarized in Table 3. Considering the spatial-temporal
property of video data, we study the following different op-
erations set: (1) Spatial 2D convolution and temporal 1D
convolution; (2) Spatial 2D convolution and 3D convolution;
(3) Spatial 2D, temporal 1D, and 3D convolutions.
Operation Set with 1D & 2D Sub-kernels. As shown in
Table 3, CAKESC1,2D surpass the 2D baseline by a large
margin (+29.6%) , while the model size reduces by 14.23%.
This suggests that TSN (Wang et al. 2016) may lack the
ability to capture temporal information, therefore replacing
some of the 2D operations to temporal 1D operations can
significantly increase the performance and reduce the model
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Method Backbone Architecture #Frame FLOPs #Param. top1 top5

TSN (Wang et al. 2016) ResNet-50 8 33G 24.3M 19.7 46.6
TRN-2stream (Zhou et al. 2018) BNInception 8+8 - 36.6M 42.0 -

ECO (Zolfaghari, Singh, and Brox 2018) BNIncep+3D Res18 8 32G 47.5M 39.6 -
ECO (Zolfaghari, Singh, and Brox 2018) BNIncep+3D Res18 16 64G 47.5M 41.4 -

ECOEnLite (Zolfaghari, Singh, and Brox 2018) BNIncep+3D Res18 92 267G 150M 46.4 -

I3D (Carreira and Zisserman 2017) 3D ResNet-50 32×2clip 153G×2 28.0M 41.6 72.2
NL I3D (Wang et al. 2018) 3D ResNet-50 32×2clip 168G×2 35.3M 44.4 76.0

NL I3D+GCN (Wang and Gupta 2018) 3D ResNet-50+GCN 32×2clip 303G×2 62.2M 46.1 76.8

TSM (Lin, Gan, and Han 2019) ResNet-50 8 33G 24.3M 45.6 74.2
TSM (Lin, Gan, and Han 2019) ResNet-50 16 65G 24.3M 47.2 77.1

S3D (Xie et al. 2018) BNInception 64 66.38G - 47.3 78.1
S3D-G (Xie et al. 2018) BNInception 64 71.38G - 48.2 78.7

CAKESC
1,2D ResNet-50 8 29.3G 20.5M 46.8 76.0

CAKESP
2,3D ResNet-50 8 50.7G 37.5M 47.4 76.1

CAKESP
1,2,3D ResNet-50 8 43.9G 33.5M 47.2 75.7

CAKESC
1,2D ResNet-50 16 58.6G 20.5M 48.0 78.0

CAKESP
2,3D ResNet-50 16 101.4G 37.5M 48.6 78.6

CAKESP
1,2,3D ResNet-50 16 87.8G 33.5M 49.4 78.4

Table 4: Comparing CAKES against other methods on Something-Something V1 dataset. We mainly consider the methods that
adopt convolutions in fully-connected manner and only take RGB as input for fair comparison.

size. Besides, it also surpasses P3D, where each 2D convo-
lution is followed by a temporal 1D convolution, with a sig-
nificant advantage on both performance (+2.0%) and model
cost (25.72% fewer params and 53.19% fewer FLOPs), in-
dicating CAKES makes better use of redundancies in the
networks than P3D. Therefore, CAKES using operation set
containing 1D and 2D sub-kernels can be an ideal design
when looking for efficient video understanding networks.
Operation Set with 2D & 3D Sub-kernels. We aim to
see how CAKES balances the trade-off between per-
formance and model cost. From Table 3, CAKESC2,3D
yields a much more compact model (-23.23%/33.87%
params/FLOPs) with a comparable performance to C3D.
Under “performance-priority” setting, CAKESP2,3D
searches a slightly larger model , yet its performance boosts
significantly to 47.4%.
Operation Set with 1D & 2D & 3D Sub-kernels.
Compared to CAKESC2,3D, CAKESC1,2,3D shows a sim-
ilar performance with much fewer FLOPs (38.7G vs.
41.4G). Besides, under the “performance-priority” set-
ting, CAKESP1,2,3D produces a comparable performance
to CAKESP2,3D with less computation cost (43.9G vs.
50.7G). This result indicates that with a more general search
space (e.g., 1D, 2D, and 3D), the proposed CAKES can
find more flexible designs, which lead to better perfor-
mance/efficiency.
Results. A comparison with other state-of-the-art methods
is shown in Table 4. We report the model performance under
both 8-frame and 16-frame settings. Compared with other
state-of-the-art methods, CAKESP2D,3D sampling only 8
frames can already outperform most current methods. With
smaller parameters and FLOPs, CAKESP2D,3D surpasses

those complex models such as non-local networks (Wang
et al. 2018) with graph convolution (Wang and Gupta 2018).
Comparing CAKESC1,2D to other efficient video understand-
ing framework such as ECO (Zolfaghari, Singh, and Brox
2018) and TSM (Lin, Gan, and Han 2019), our model is
not only more light-weight (58.6G vs. 64G/65G), but also
delivers a better performance (48.0% vs. 41.4%/47.2%).
And our best model CAKESP1,2,3D achieves a new state-of-
the-art performance of 49.4% top-1 accuracy with a mod-
erate model size. An interesting finding is that although
CAKESP1,2,3D shows similar performances to CAKESP2,3D
with 8-frame inputs, it achieves a much higher accuracy
when it comes to the 16-frame scenario, which demonstrates
that with a more general search space, CAKESP1,2,3D shows
stronger transferability than other counterparts.

Conclusions
As an important solution to various 3D vision applica-
tions, 3D networks still suffer from over-parameterization
and heavy computations. How to design efficient alterna-
tives to 3D operations remains an open problem. In this
paper, we propose Channel-wise Automatic KErnel Shrink-
ing (CAKES), where standard 3D convolution kernels are
shrunk into efficient sub-kernels at channel-level, to obtain
efficient 3D models. Besides, by formulating kernel shrink-
age as a path-level selection problem, our method can auto-
matically explore the redundancies in 3D convolutions and
optimize the replacement configuration. By applying on dif-
ferent backbone models, the proposed CAKES significantly
outperforms previous 2D/3D/P3D and other state-of-the-art
methods on both 3D medical image segmentation and action
recognition from videos.
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Ethics Statement
In this paper, we present a new operation as an efficient alter-
native to 3D convolution and a search space to automate the
process of simplifying 3D networks. The findings described
in this paper can potentially help reduce the computation
burden especially when dealing with 3D data such as CT
scan or video. For the research community, our finding sheds
light on a new direction to design efficient 3D networks. We
expect the methodology to be investigated further in the fu-
ture to better understand and make full use of the redun-
dancy in 3D networks. To the society, some applications can
be greatly benefited from CAKES. For example, in medical
applications where artificial intelligence is expected to help
doctor to make diagnosis and treatment planning, model ef-
ficiency can be crucial for model deployment in real-world
clinical flows. And it can also assist deploy the algorithm
(e.g. on-device video recognition) to mobile devices which
do not have strong computation ability.

However, we also note that there is a long-lasting debate
on the impacts of AI on human world. As a method improv-
ing the fundamental ability of deep learning, our work also
advances the development of AI, which means there could
be both beneficial and harmful influences depending on the
users.
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