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Abstract

Recent progress on weakly supervised object detection
(WSOD) is characterized by formulating WSOD as a Mul-
tiple Instance Learning (MIL) problem and taking online re-
finement with the selected region proposals from MIL. How-
ever, MIL inclines to select the most discriminative part rather
than the entire instance as the top-scoring region proposals,
which leads to weak localization capability for weakly super-
vised object detectors. We attribute this problem to the lim-
ited intra-class diversity within a single image. Specifically,
due to the lack of annotated bounding boxes, the network
tends to focus on the most common parts of each class and
neglect the diverse parts of objects. To solve the problem, we
introduce a novel Instance Mining with Class Feature Banks
(IM-CFB) framework, which includes a Class Feature Banks
(CFB) module and a Feature Guided Instance Mining (FGIM)
algorithm. Concretely, Class Feature Banks (CFB) consist of
sub-banks for each class, which are utilized to collect diver-
sity information from a broader view. At the training stage,
the RoI features of reliable region proposals are recorded
and updated in the CFB. Then, FGIM leverages the features
recorded in the CFB to ameliorate the region proposal selec-
tion of the MIL branch. Extensive experiments conducted on
two publicly available datasets, Pascal VOC 2007 and 2012,
demonstrate the effectiveness of our method. More remark-
ably, our method achieves 54.3% on mAP and 70.7% on Cor-
Loc on Pascal VOC 2007. When further re-trained by a Fast-
RCNN detector, we obtain to-date the best reported mAP and
CorLoc of 55.8% and 72.2%, respectively.

Introduction
With the revolution of deep learning, object detection tech-
niques have been greatly improved in recent years (Girshick
2015; Ren et al. 2015; Liu et al. 2016; Redmon et al. 2016;
Lin et al. 2017). However, many object detection methods
with deep learning follow a fully supervised setting and re-
quire a large corpus of box-level annotation data, which is
laborious and expensive to collect. Recently, substantial ef-
forts (Tang et al. 2017, 2018; Wei et al. 2018; Gao et al.
2018; Wan et al. 2019; Shen et al. 2018; Arun, Jawahar, and
Kumar 2019; Li et al. 2019; Diba et al. 2017; Zhang et al.
2018; Kim et al. 2020; Gao et al. 2019; Ren et al. 2020; Chen
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Figure 1: Illustration of our purposed Feature Guided In-
stance Mining (FGIM). The top part represents the MIL
branch and the bottom part represents the FGIM algorithm.
Benefited by the extra box-level information from the fea-
ture bank, FGIM is able to obtain tighter bounding boxes. In
turn, these boxes are utilized as positive samples to update
the feature bank. Best viewed in color.

et al. 2020) have been made on weakly supervised object de-
tection (WSOD) to alleviate the requirement of fine-grained
annotation. However, there is still a large performance gap
between weakly supervised and fully supervised methods.

Many recent WSOD approaches follow a two-stage
paradigm, where Multiple Instance Learning (MIL) is ap-
plied with a CNN model, and the region proposals selected
from MIL are utilized for further refinement. However, MIL
inclines to locate discriminative parts rather than the entire
instance, limiting the accuracy of the selected region pro-
posals. To address this issue, Yan et al. (Yan et al. 2019)
design an extra MIL branch to refine the initial results and
Yang et al. (Yang, Li, and Dou 2019) utilize guided attention
module to enhance features. Nevertheless, these approaches
only focus on a single image, but leave the intra-class diver-
sity uninvestigated. In particular, objects are usually diverse
in appearances, (e.g., shape, posture), even if they belong to
the same class, while the diversity information for each class
is limited in a single image. Hence, the network tends to fo-
cus on the most common parts of each class and neglect the
diverse parts of objects.
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To address the above problem, an intuitive idea is to ab-
sorb information from different images for each class. En-
larging batch size is a straightforward solution, however,
bringing in more images will lead to more proposals main-
tained, hence results in the increase of GPU memory con-
sumption and computational cost. Limited by these factors,
it is difficult to get cross-image information by enlarging
batch size directly. Instead, we design a Class Feature Banks
(CFB) module to get rid of the limitation. Specifically, for
each class, this module records and updates various box-
level features online, allowing for diverse representation of
each class. At the beginning of the training stage, CFB grad-
ually absorbs RoI features of confident region proposals, and
when it comes to the upper limit of its capacity, CFB applies
an algorithm to update existing features using the new ones.
As the training goes on, abundant informative feature sam-
ples from various images are stored by CFB, with negligible
extra GPU memory utilized.

Utilizing extra box-level information from CFB, we pro-
pose Feature Guided Instance Mining (FGIM) as a supple-
ment to the MIL branch, as shown in Figure 1. Specifically,
we first calculate feature similarities between proposals and
feature samples from CFB. Considering the intra-class di-
versity, we select positive proposal candidates based on the
similarities between proposals and their closest feature sam-
ples. Then, we impose restrictions to filter out noisy candi-
dates, with regard to the intra-class similarity. Finally, the
remaining positive candidates are utilized for updating CFB
and training a FGIM network to obtain more reliable detec-
tion results for region proposal selection.

In summary, the main contribution of this work is the pro-
posal of a unified framework IM-CFB, which is able to store
and utilize class-wise information for weakly supervised ob-
ject detection. First, we design a simple yet efficient Class
Feature Banks (CFB) module, which is performed to record
and update RoI features online for each class. To our knowl-
edge, this is the first work to introduce memory module into
the WSOD task. By utilizing the extra information provided
by CFB, we apply Feature Guided Instance Mining (FGIM)
as a supplement to the MIL branch to ameliorate the region
proposal selection. Extensive experiments on widely used
datasets, i.e. PASCAL VOC 2007 and 2012, demonstrate the
effectiveness of our method.

Related Work
In this section, we briefly review the related methods includ-
ing weakly supervised object detection and memory module.

Weakly Supervised Object Detection. Weakly supervised
object detection is of great interest because the demand
for annotated data is growing rapidly while image-level an-
notations are much easier to obtain than box-level anno-
tations. Many recent works are devoted to training end-
to-end weakly supervised detection networks (Bilen and
Vedaldi 2016; Tang et al. 2017). As one of the most popu-
lar frameworks for weakly supervised object detection, WS-
DDN (Bilen and Vedaldi 2016) first applies Selective Search
(Uijlings et al. 2013) to generate large numbers of candidate
proposals and then utilizes RoI pooling followed by a two-

branch structure to get box-level classification scores. Fi-
nally, WSDDN obtains the image-level classification scores
by a summation over all proposals and combines them with
the ground truth labels to train the network. Based on WS-
DDN, OICR (Tang et al. 2017) adds several branches to re-
fine the classification scores online, improving the detection
performance to a great extent. However, the candidate boxes
from Selective Search (Uijlings et al. 2013) are not accu-
rate enough, hence a regression branch is added to refine
the boxes (Gao et al. 2018; Yang, Li, and Dou 2019; Zeng
et al. 2019). To find more credible boxes for online refine-
ment, WSOD2 (Zeng et al. 2019) combines bottom-up and
top-down features while OIM (Lin et al. 2020) builds spatial
and appearance graphs.

Memory Module. Memory module is widely used in vari-
ous computer vision tasks. Wu et al. (Wu et al. 2018) build a
large memory bank to store the feature vectors for unsuper-
vised feature learning. Besides, Wu et al. (Wu et al. 2019)
utilize long-term feature bank to store information about
past and future scenes for video understanding. Wang et al.
(Wang et al. 2020) construct a cross-batch memory embed-
ding network to mine informative examples across multiple
mini-batches for deep metric learning. Different from these
methods, the class feature banks in our model record box-
level features at the training stage to ameliorate MIL with
cross-image information.

Proposed Method
In this section, we introduce our IM-CFB framework for
weakly supervised object detection, which consists of four
major components: MIL branch, Class Feature Banks (CFB)
module, Feature Guided Instance Mining (FGIM) branch,
and Online Instance Refinement (OIR) branch.

Framework Overview
For each image I , we denote its image-level label as Y =
[y1, y2, · · · , yC ] ∈ RC×1, where yc = 1 or 0 indicates the
presence or absence of class c. Let R = {R1, R2, · · · , RN}
denote the proposals extracted from Selective Search (Ui-
jlings et al. 2013). Through ConvNet followed by RoI pool-
ing and two fully connected layers, we obtain features f ∈
RD×N for all proposals. These features are first sent to the
MIL branch to obtain proposal scores. Next, combined with
these scores, FGIM mines credible positive samples utilizing
the extra information from CFB. Then, these selected posi-
tive samples are both utilized to train the FGIM network and
update CFB. Finally, credible region proposals are selected
from the FGIM network, which are sent to OIR branch for
further refinement. An overview of our framework is illus-
trated in Figure 2.

Multiple Instance Learning
We first introduce the MIL branch. Since we only have
image-level annotations, it’s hard to directly differentiate
positive and negative proposals. To this end, we apply Mul-
tiple Instance Learning (MIL) in the CNN structure to detect
objects following (Bilen and Vedaldi 2016).
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Figure 2: The overall framework of our method. MIL represents multiple instance learning and FGIM means feature guided in-
stance mining. In Online Instance Refinement, CLS and REG represent classification refinement branch and regression branch,
respectively. Through ConvNet followed by RoI pooling and two fully connected layers, features for all proposals can be ob-
tained. These features are first sent to the MIL branch to obtain proposal scores. Next, combined with these scores, FGIM mines
credible positive samples utilizing the extra information from CFB. Then, these selected positive samples are both utilized to
train the FGIM network and update CFB. Finally, credible region proposals are selected from the FGIM network, which are
sent to OIR branch for further refinement.

In MIL branch, the proposal features f are first fed into
two sub-branches to produce two matrices Xcls and Xdet ∈
RC×N , which represent classification and detection scores,
respectively. Then, the proposal scores are generated using
element-wise product Xbox = Xcls �Xdet. Finally, we get
image-level classification scores by summing the scores for
all proposals of each class Ximg

c =
∑N

i=1X
box
c,i . Combined

with the image-level label, we utilize cross entropy loss to
train the MIL branch as follows:

Lmil = −
C∑

c=1

{yclogXimg
c + (1− yc)log(1−Ximg

c )}.

(1)

Class Feature Banks
In different scenes, objects may vary greatly in appearances
(e.g., postures, shapes), even if they belong to the same class.
However, in a weakly-supervised setting, deep neuronal net-
works may fail to learn the variations due to the lack of box-
level annotations. To solve the problem, we propose a Class
Feature Banks (CFB) module, which collects box-level in-
formation from different images, providing a comprehensive
view for detecting objects of various appearances.

In general, CFB consists of C sub-banks, where C rep-
resents the number of categories. We choose a queue-
like structure to represent our sub-bank, with a fixed
length K. Formally, we denote our CFB module as
CFB = {Φ1,Φ2, · · · ,ΦC}, where Φc is the sub-bank
for the c-th category, which is further described as Φc ={
f̂ c1 , f̂

c
2 , · · · , f̂ cK

}
. We describe f̂ ck as a key to class c, since

it represents a certain type of appearance for this class.

Moreover, for each key, we introduce two kinds of auxil-
iary information for assistance, i.e., its updating iteration T c

k
and score Sc

k, representing its availability and credibility, re-
spectively. We design CFB this way for two reasons. Firstly,
each category has its particular kind of variations, hence we
need to divide it into several class-wise parts. Secondly, with
the network parameters updated in the training process, in-
formation stored in banks will be easily out of date. Mean-
while, we also need to control the capacity of each sub-bank
since redundant information will cause much noise. Hence,
a queue-like structure is an ideal choice. In addition, we
choose features f as the source of box-level information. For
a ground-truth class c, if a confident proposal Ric has been
selected, its feature vector fic will be absorbed into Φc.

With the help of the queue-like structure, the oldest fea-
tures will be abandoned as new ones come in, following a
First-In-First-Out (FIFO) rule. The fly in the ointment, how-
ever, is that while it can store cross-image information ef-
fectively, the information of intra-class diversity cannot be
guaranteed well. To solve the problem, we design an updat-
ing algorithm to guarantee the diversity of each sub-bank.
Suppose we can obtain this information from FGIM: a se-
lected confident proposal Ric , which either has a similar ap-
pearance with a key f̂ ck in Φc, or represents a new type of
appearance. In the latter case, we continue to adopt FIFO
strategy to update CFB. On the other hand, for the former
case, we utilize a weighting strategy instead. Specifically, we
first calculate a new feature vector by a combination of f̂ ck
and fic weighted by their scores. Then, we replace f̂ ck with
the new feature vector and update its auxiliary information.
The detailed algorithm is described in Algorithm 1.
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Algorithm 1: CFB updating strategy

Input: Sub-bank Φc =
{
f̂c
1 , f̂

c
2 , · · · , f̂c

K̂

}
and its

auxiliary information T c, Sc; index of chosen
proposal ic and its corresponding key keyic ; feature
vectors f ; MIL scores Xbox; current iteration Tcur

Output: Updated sub-bank Φc

/* keyic = −1 represents bringing in a
new type, utilizing FIFO strategy */

1 if keyic == −1 then
2 if |Φc| < K then
3 k = |Φc|+ 1;
4 else
5 k = arg mink T

c
k ;

6 Update keys in Φc and their auxiliary information:
f̂c
k ← fic , T

c
k ← Tcur, S

c
k ← Xbox

c,ic ;
/* Else, utilizing weighting strategy

to update CFB */
7 else
8 k = keyic ;
9 ratio = Sc

k/(S
c
k +Xbox

c,ic);
10 Update keys in Φc:

f̂c
k ← ratio · f̂c

k + (1− ratio) · fic ;
11 Update auxiliary information in Φc:

Sc
k ← ratio · Sc

k + (1− ratio) ·Xbox
c,ic ,

T c
k ← Tcur;

Feature Guided Instance Mining
In WSOD with MIL, the detection results from the MIL
branch Xbox are utilized to choose confident region pro-
posals for refinement. However, those results are usually
noisy. To this end, we apply Feature Guided Instance Min-
ing (FGIM) as a supplement to MIL to obtain more reliable
detection results.

Given an image I and a set of region proposals R =
{R1, R2, · · · , RN}, we obtain their feature vectors F =
{f1, f2, · · · , fN} from the fully connected layer after RoI
pooling. Meanwhile, for a ground-truth category c, we fetch
the sub-bank Φc =

{
f̂ c1 , f̂

c
2 , · · · , f̂ cK

}
from CFB. First, for

each proposalRi and its corresponding feature vector fi, we
calculate its similarities with all keys stored in Φc using the
cosine distance as follows,

Sc
i,k =

fi · f̂ ck
||fi|| · ||f̂ ck ||

. (2)

Sc measures the similarities between proposal features
and keys from Φc, where the latter is a credible priori for
c-th class, hence it can be regarded as a score that measures
how likely the proposal belongs to this category. Meanwhile,
considering the intra-class diversity, we denote the score of
Ri as its similarity with its closest key,

Sc
i = max

k
Sc
i,k, K̂c

i = arg max
k

Sc
i,k. (3)

Furthermore, the cosine distance is normalized, which al-
lows us to compare similarity scores among the proposals.
Hence, we select the top-similarity proposal as the positive

Algorithm 2: Feature Guided Instance Mining
Input: Region proposals R = {R1, R2, · · · , RN}; image

labels Y = [y1, y2, · · · , yC ]; feature vectors
F = {f1, f2, · · · , fN}; MIL scores Xbox; CFB

Output: Indexes of chosen proposals P and their
corresponding keys KEY ; Positive Samples PS

1 for c in [1, 2, · · · , C] do
2 if yc == 1 then
3 Fetch Φc from CFB;
4 Calculate similarities between F and Φc based on

Eq.2;
5 Choose the top-similarity proposal îc and its

corresponding key keyîc using Eq.3 and Eq.4;
6 Choose the top-scoring proposal ĩc using Eq.5;
7 Calculate the distance dîc,ĩc using Eq.6;
8 Calculate the average distance dĩc using Eq.7;
9 P ← ∅,KEY ← ∅, PS ← ∅;

10 PS ← ĩc;
11 if dîc,ĩc < αdĩc then
12 P ← îc,KEY ← keyîc , PS ← îc;
13 else
14 P ← ĩc,KEY ← −1;

sample, and find its corresponding key in Φc,

îc = arg max
i
Sc
i , keyîc = K̂c

îc
. (4)

Given the selected sample îc, the most direct way is to use
its feature vector fîc to update keyîc in CFB, as described in
the previous section. However, in this way, noisy samples
will be selected inevitably, especially when CFB is in the
initial stages of construction. Improper selections will not
only exert a negative influence on the subsequent FGIM net-
work training, but also provide CFB with background infor-
mation incorrectly, which will in turn harm the effectiveness
of FGIM. Therefore, we add a constraint when utilizing sim-
ilarity scores to choose positive samples, with regard to the
intra-class similarity. Inspired by (Lin et al. 2020), we first
calculate the feature distance between îc and the top-scoring
proposal ĩc from MIL branch,

ĩc = arg max
i
Xbox

c,i , (5)

dîc,ĩc = ||fîc − fĩc ||. (6)

Next, we calculate the average distance between ĩc and its
surrounding proposals,

dĩc = meani(||fi − fĩc ||), s.t. IoU (i, ĩc) > τ. (7)

dĩc can be regarded as the average intra-class similarity of
the c-th class in image I . Hence, if the selected sample îc
meets the condition that dîc,ĩc < αdĩc , we consider it cred-

ible. Otherwise, we use the top-scoring proposal ĩc to up-
date CFB instead, and regard it as a new type for category c,
which ensures the diversity of CFB. The detailed algorithm
is described in Algorithm 2.
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Figure 3: The examples of FGIM. Red boxes represent top-
scoring proposals, while blue boxes are selected following
the guidance of CFB. Both of them are utilized to train the
FGIM network and update CFB in turn.

For each ground-truth class, both Rĩ and Rî satisfy-
ing the constraint above will be selected as positive sam-
ples to train the FGIM network. Specifically, for each pro-
posal Ri, we compute its maximum IoU Ii with the se-
lected positive samples. We denote the positive proposals
as Rpos = {Ri|Ii ≥ 0.5} and the negative proposals as
Rneg = {Ri|0.1 ≤ Ii < 0.5}. Positive proposals are la-
beled as the same class as their closest positive samples,
while negative proposals are labeled with C + 1. There-
fore, for each proposal Ri, we can obtain its pseudo-label
Yi = [y1,i, y2,i, · · · , yC+1,i].

The output of the FGIM network can be denoted as x ∈
R(C+1)×N , where xc,i represents the confidence of the pro-
posal i belonging to the class c. Combined with pseudo-
labels, the loss for the FGIM network is denoted as:

Lfgim = − 1

N

N∑
i=1

C+1∑
c=1

wiyc,ilogxc,i, (8)

where the loss weight wi for proposal Ri is calculated fol-
lowing (Tang et al. 2017).

As illustrated in Figure 3, Rî acts as a refinement or sup-
plement for Rĩ , hence combining them together exerts a
good influence on both training FGIM network and updat-
ing CFB, which will in turn help refine themselves.

Online Instance Refinement

Following the general pipelines in (Tang et al. 2017; Yan
et al. 2019; Yang, Li, and Dou 2019), we add several classi-
fication refinement branches after FGIM and select the top-
scoring region proposal as the initial positive seed for each
ground-truth class. In contrast to the previous work, we uti-
lize the results from the FGIM network instead. The loss for
each branch has the same formulation with Lfgim. More-
over, we add a regression branch sibling to the last classifi-
cation branch to further refine the proposals. The regression
branch is a RCNN-like structure, which contains classifica-
tion and regression parts. For each proposal i, the regres-
sion part predicts offsets of the positions and shapes tci =
(tcx, t

c
y, t

c
w, t

c
h) for a ground-truth class c, and its pseudo-

label t̂ci can be calculated with its corresponding positive

seed. We apply weighted smooth-L1 loss for regression,

Lregress = − 1

N

N∑
i=1

C∑
c=1

I(yc,i = 1)wismoothL1(tci , t̂
c
i ).

(9)

Finally, we train the network end-to-end by combining all
the losses mentioned before as in Eq. 10,

Ltotal = Lmil + Lfgim +
T∑

t=1

Lt
ref + Lreg. (10)

Experiments and Analysis
Datasets
We evaluate our proposed method on both Pascal VOC 2007
and Pascal VOC 2012 (Everingham et al. 2010) following
previous WSOD works. PASCAL VOC 2007 and 2012 con-
sist of 9,962 and 22,531 images, respectively, and both of
them contain 20 categories. We train on trainval split (5,011
images for VOC 2007, 11,540 images for VOC 2012), and
apply two kinds of metrics to evaluate the localization accu-
racy: 1) Average Precision (AP) and the mean of AP (mAP)
on the test split; 2) Correct localization (CorLoc) on the
trainval split.

Implementation Details
For the sake of fair comparison, we adopt VGG16 (Si-
monyan and Zisserman 2014) pre-trained on Imagenet
(Deng et al. 2009) as the backbone and utilize Selec-
tive Search to generate object proposals following previous
work. FGIM network consists of a fully connected layer
followed by a softmax operation. The batch size, momen-
tum, and weight decay are set to 4, 0.9, and 5 × 10−4 re-
spectively. The learning rate is set to 1 × 10−3 for the first
60K iterations and 1 × 10−4 for the following 20K itera-
tions. For data augmentation, we use five image scales, i.e.,
{480, 576, 688, 864, 1200} for the shortest side of images,
and random horizontal flipping is applied. We set K = 6 for
the VOC 2007 andK = 8 for the VOC 2012. We set τ = 0.5
for both datasets. Considering that the stability of the net-
work increases during the training process, we set α = 5 at
the first 40K iterations and then tighten the restriction with
α = 2. The number of refinement branches T is set to 2. For
inference, we combine both proposal scores of FGIM and
OIR and then calculate their average as the final scores. Our
experiments are implemented based on PyTorch on NVIDIA
GTX 1080Ti GPUs.

Comparison with State-of-the-arts
We compare the results of our method with other works
in this subsection. Table 1 and Table 2 show the perfor-
mance on VOC 2007 dataset, where FRCNN means re-
training a Fast-RCNN detector utilizing the results produced
by WSOD methods. Our method obtains 54.3% on mAP
with a single VGG16 model, which outperforms all the
other single model methods by at least 0.8% mAP. More-
over, our single model even surpasses all previous methods
re-trained with FRCNN. More remarkably, after re-training,
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
OICR 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
PCL 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
SDCN 59.8 67.1 32.0 34.7 22.8 67.1 63.8 67.9 22.5 48.9 47.8 60.5 51.7 65.2 11.8 20.6 42.1 54.7 60.8 64.3 48.3
C-MIL 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5
Yang et al. 57.6 70.8 50.7 28.3 27.2 72.5 69.1 65.0 26.9 64.5 47.4 47.7 53.5 66.9 13.7 29.3 56.0 54.9 63.4 65.2 51.5
C-MIDN 53.3 71.5 49.8 26.1 20.3 70.3 69.9 68.3 28.7 65.3 45.1 64.6 58.0 71.2 20.0 27.5 54.9 54.9 69.4 63.5 52.6
WSOD2 65.1 64.8 57.2 39.2 24.3 69.8 66.2 61.0 29.8 64.6 42.5 60.1 71.2 70.7 21.9 28.1 58.6 59.7 52.2 64.8 53.6
OIM 55.6 67.0 45.8 27.9 21.1 69.0 68.3 70.5 21.3 60.2 40.3 54.5 56.5 70.1 12.5 25.0 52.9 55.2 65.0 63.7 50.1
SLV 65.6 71.4 49.0 37.1 24.6 69.6 70.3 70.6 30.8 63.1 36.0 61.4 65.3 68.4 12.4 29.9 52.4 60.0 67.6 64.5 53.5
IM-CFB 64.1 74.6 44.7 29.4 26.9 73.3 72.0 71.2 28.1 66.7 48.1 63.8 55.5 68.3 17.8 27.7 54.4 62.7 70.5 66.6 54.3
Pred Net (FRCNN) 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9
C-MIL+FRCNN 61.8 60.9 56.2 28.9 18.9 68.2 69.6 71.4 18.5 64.3 57.2 66.9 65.9 65.7 13.8 22.9 54.1 61.9 68.2 66.1 53.1
C-MIDN+FRCNN 54.1 74.5 56.9 26.4 22.2 68.7 68.9 74.8 25.2 64.8 46.4 70.3 66.3 67.5 21.6 24.4 53.0 59.7 68.7 58.9 53.6
OIM+FRCNN 53.4 72.0 51.4 26.0 27.7 69.8 69.7 74.8 21.4 67.1 45.7 63.7 63.7 67.4 10.9 25.3 53.5 60.4 70.8 58.1 52.6
SLV+FRCNN 62.1 72.1 54.1 34.5 25.6 66.7 67.4 77.2 24.2 61.6 47.5 71.6 72.0 67.2 12.1 24.6 51.7 61.1 65.3 60.1 53.9
IM-CFB+FRCNN 63.3 77.5 48.3 36.0 32.6 70.8 71.9 73.1 29.1 68.7 47.1 69.4 56.6 70.9 22.8 24.8 56.0 59.8 73.2 64.6 55.8

Table 1: Comparison with the state-of-the-arts in terms of mAP (%) on the VOC 2007 test set.

Method CorLoc(%)
OICR(Tang et al. 2017) 60.6
PCL(Tang et al. 2018) 62.7
SDCN (Li et al. 2019) 66.8

C-MIL (Wan et al. 2019) 65.0
Yang et al. (Yang, Li, and Dou 2019) 68.0

C-MIDN (Yan et al. 2019) 68.7
WSOD2 (Zeng et al. 2019) 69.5

OIM (Lin et al. 2020) 67.2
SLV (Chen et al. 2020) 71.0

IM-CFB 70.7
SDCN+FRCNN (Li et al. 2019) 68.8

Pred Net (FRCNN) (Arun et al. 2019) 70.9
C-MIDN+FRCNN (Yan et al. 2019) 71.9

OIM+FRCNN (Lin et al. 2020) 68.8
SLV+FRCNN (Chen et al. 2020) 72.0

IM-CFB+FRCNN 72.2

Table 2: Comparison with the state-of-the-arts in terms of
CorLoc (%) on the VOC 2007 trainval set.

our method can further achieve 55.8% on mAP and 72.2%
on CorLoc, which are the new state-of-arts.

Compared with recent works, e.g., (Tang et al. 2018;
Yang, Li, and Dou 2019), which utilize results from MIL
branch to select positive seeds directly, our work introduces
extra box-level features to refine MIL branch, which enables
to select more accurate seeds and outperforms (Yang, Li, and
Dou 2019) by 2.8% mAP. WSOD2 (Zeng et al. 2019) and
OIM (Lin et al. 2020) also utilize features as extra informa-
tion, but both of them focus on objects in a single image. In
contrast, our work proposes CFB to collect class-wise cross-
image information, which provides a broader view for each
category, hence achieves a better performance.

We also evaluate our work on VOC 2012 dataset. Table
3 shows the mAP and CorLoc results using a single model,
which validates the effectiveness of our work.

Figure 4 shows the detection results on VOC 2007 test set.
The first two rows indicate that our method can correctly de-
tect diverse objects, e.g., “car”, “dog”, even if they are in
some complex backgrounds. Some failure cases are shown

Method mAP(%) CorLoc(%)
PCL (Tang et al. 2018) 40.6 63.2
SDCN (Li et al. 2019) 43.5 67.9

C-MIL(Wan et al. 2019) 46.7 67.4
Yang et al. (Yang, Li, and Dou 2019) 46.8 69.5

WSOD2 (Zeng et al. 2019) 47.2 71.9
OIM (Lin et al. 2020) 45.3 67.1

SLV (Chen et al. 2020) 49.2 69.2
IM-CFB 49.4 69.6

Table 3: Comparison with the state-of-the-arts in terms of
mAP (%) on the VOC 2012 test set and CorLoc (%) on the
VOC 2012 trainval set using a single model.

in the last row, containing localizing the most discrimina-
tive parts, grouping multiple objects, and containing back-
ground, especially for “person” class.

Ablation Study
We conduct ablation experiments on PASCAL VOC 2007 to
prove the effectiveness of our proposed network.

Effect of each component Table 4 shows the effectiveness
of each component, where OIR means the online instance
refinement network mentioned in Sec 3.5. We start from a
basic model only containing MIL. Next, we extend the base
model by adding our proposed FGIM, improving the mAP
from 34.8% to 38.0%. The results indicate that, by introduc-
ing diversity information, our FGIM enhances the capacity
of detection to a great degree. Furthermore, “MIL + OIR”
can be seen as a stronger baseline for our work. Adding
FGIM can further lead to a boost of 2.2% mAP. The results
verify that, when providing more reliable seeds by utiliz-
ing FGIM (as shown in Figure 5) for further refinement, the
performance of the whole detector is able to reach a higher
ceiling.

Updating methods for CFB As discussed in the previous
section, two methods can be applied to update CFB. Apply-
ing First-In-First-Out (FIFO) strategy is the simplest way,
which is the original updating policy for queues. In order
to guarantee the diversity of keys in CFB, we propose our
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Figure 4: Detections results on VOC 2007 test set. Boxes in red, yellow, and green represent ground-truth boxes, successful
predictions, and failure cases respectively. We apply NMS first and show all detections with scores ≥ 0.2.

MIL OIR FGIM mAP(%)
X 34.8
X X 38.0
X X 52.1
X X X 54.3

Table 4: Ablation study of different components of our
method on VOC 2007 dataset.

FIFO Weighting mAP(%)
52.1

X 52.6
X 54.3

Table 5: Impact of updating methods for CFB on VOC 2007
dataset.

weighting strategy. Table 5 shows a comparison between the
two methods. Based on the original model, adding FIFO-
based CFB brings 0.5% mAP improvement, which attributes
to introduction of the extra cross-image box-level informa-
tion, but the improvement is limited. Compared to FIFO,
2.2% mAP gain can be achieved by our weighting strategy,
which indicates the effectiveness of saving diversity infor-
mation. In addition, the weighting strategy can also suppress
the impact of incorrectly bringing in noisy samples.

Length of sub-bank in CFB Table 6 indicates that K =
6 is the optimal length for CFB. If the length is too small,
diversity will be harmed, resulting in less kind of objects
collected. If the length is too large, some noisy information
will be absorbed and background proposals will be selected
incorrectly.

MIL

FGIM

Figure 5: Seeds obtained from MIL (top part) and FGIM
(bottom part) at 20k Iteration.

K 2 4 6 8 10 20
mAP(%) 51.5 52.7 54.3 53.1 52.3 51.3

Table 6: Impact of length K in CFB on VOC 2007 dataset.

Conclusion

In this paper, we present an Instance Mining with Class Fea-
ture Banks (IM-CFB) framework that enables to store and
utilize class-wise information for weakly supervised object
detection. Considering the intra-class diversity, the Class
Feature Banks (CFB) module is designed to record and up-
date box-level information online, bringing a broader view
for each category. Leveraging the features recorded in the
CFB, the Feature Guided Instance Mining (FGIM) algo-
rithm is introduced to ameliorate the region proposal selec-
tion of the MIL branch. Extensive experiments conducted on
two benchmark datasets, i.e. PASCAL VOC 2007 and 2012,
demonstrate the effectiveness of our method.
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