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Abstract

Generative Adversarial Networks (GAN) are good at generat-
ing variant samples of complex data distributions. Generating
a sample with certain properties is one of the major tasks in
the real-world application of GANs. In this paper, we pro-
pose a novel generative adversarial network to generate 3D
point clouds from random latent codes, named Controllable
Point Cloud Generative Adversarial Network(CPCGAN). A
two-stage GAN framework is utilized in CPCGAN and a
sparse point cloud containing major structural information
is extracted as the middle-level information between the two
stages. With their help, CPCGAN has the ability to control the
generated structure and generate 3D point clouds with seman-
tic labels for points. Experimental results demonstrate that the
proposed CPCGAN outperforms state-of-the-art point cloud
GANs.

Introduction
Generative Adversarial Networks (GANs) have attracted
significant research interest because of their successes in
many applications. Those applications on 2D images include
single image super-resolution(Dong et al. 2017; Wang et al.
2018), interactive image generation(Rott Shaham, Dekel,
and Michaeli 2019), image editing(Perarnau et al. 2016),
and image-to-image transformation(Karras, Laine, and Aila
2019; Rott Shaham, Dekel, and Michaeli 2019). Captured
3D information has been garnering attention over the past
few years, and the requirements of expanding or generat-
ing 3D data is also growing. Various approaches have been
proposed on 3D data generation. Such as point cloud upsam-
pling(Li et al. 2019; Yu et al. 2018a,b), point cloud comple-
tion(Yang et al. 2018; Yuan et al. 2018), and 3D data form
transformation(Dai et al. 2017; Yang et al. 2018; Zhou and
Tuzel 2018). To use GAN in real-world applications, one
of GANs’ fundamental targets is to construct and learn a
generative model that can be controlled to generate samples
with a certain distribution. Controllable GANs using random
latent codes as input have been well researched on 2D im-
ages(Chen et al. 2016; Karras, Laine, and Aila 2019; Mirza
and Osindero 2014; Wang and Gupta 2016).

Owing to the sparse representation of point clouds and
the lack of computational power, GANs for generating 3D
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point clouds from random latent codes have been rarely re-
searched until recent years. (Achlioptas et al. 2017) imple-
ments 3D point cloud GAN using simple fully connected
layers. (Valsesia, Fracastoro, and Magli 2018) uses dy-
namic graph convolutions network(GCN) to deal with local
point cloud features. (Shu, Park, and Kwon 2019) uses tree-
structured GCN, reducing the computational cost to some
extent. (Hui et al. 2020) proposes a learning-based bilateral
interpolation method to generate more precise point clouds.
Validation metrics aiming to measure the point cloud gener-
ation performances are proposed in (Achlioptas et al. 2017;
Shu, Park, and Kwon 2019). Although the methods are get-
ting better on those metrics, the controllability of genera-
tion has not been well concerned. Besides, those works(Shu,
Park, and Kwon 2019; Valsesia, Fracastoro, and Magli 2018)
with GCN are somewhat inefficient due to the complexity of
their network structures.

In this paper, we present a novel method called Control-
lable Point Cloud Generative Adversarial Network (CPC-
GAN), which can generate 3D point clouds from random
latent codes. CPCGAN can also generate semantic labels
for points and it is controllable for generated shape. Our ap-
proach takes the inspiration of S2-GAN(Wang and Gupta
2016) and constructs a two-stage GAN, which suits well
on the 3D point cloud generation task. The first-stage GAN
takes a random latent code as input and generates a sparse
point cloud with semantic labels, which we call structure
point cloud. The second-stage GAN takes the output of first-
stage as input and generates the complete point cloud by
breeding a certain number of points from every structure
point. The semantic label of the structure point will be inher-
ited by the bred points. Some simple fully connected layers
and a self-attention layer are used to construct the genera-
tors.

The main contributions of this paper are:

1. A novel CPCGAN method is proposed, which achieves
state-of-the-art performance on both generating results
and computational effectiveness.

2. A two-stage GAN framework is constructed to make the
CPCGAN able to control the generated shapes.

3. A concept of structure point clouds as well as its extrac-
tion method are introduced to help the CPCGAN generate
not only point clouds but also semantic labels.
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Figure 1: Overview of CPCGAN. Two stages are con-
structed in CPCGAN. A sparse point cloud containing major
structural information, which we call structure point cloud,
is introduced as the middle-level representation between
two stages. Semantic information is generated by Struc-
ture GAN. The controllability is achieved by modifying the
structure point cloud.

4. A series of metrics are proposed to evaluate the perfor-
mance of the semantic labels generation.

Related Work
3D Point Clouds Feature Extracting
In 3D point cloud GAN, a comparison between real and fake
point clouds is indispensable. It is hard to compare point
clouds using the raw data. Therefore we need a compara-
ble representation of point clouds. 3D point cloud features
extracted by deep neural networks are one of the most pop-
ular choices. The extraction methods have been wildly re-
searched, and are already used on discriminators of 3D point
cloud GANs.

Over the past few years, plenty of works focus on 3D
point cloud feature extraction with the purpose of point
cloud classification and semantic segmentation(Atzmon,
Maron, and Lipman 2018; Li et al. 2018; Mao, Wang, and
Li 2019; Qi et al. 2017a,b; Su et al. 2018; Wang et al.
2019; Wu, Qi, and Fuxin 2019; Zhang, Hua, and Yeung
2019). Qi et al.(Qi et al. 2017a) proposed PointNet, which
uses multi-layer perceptrons with shared weights and point-
wise max-pooling layer to avoid the disorderliness of point
cloud. Because the max-pooling layer is applied across all
the points, it is difficult to capture local structures. There
are many other works improving PointNet through vari-
ous approaches. Some use grid-based methods like SPLAT-
Net(Su et al. 2018), InterpCNN(Mao, Wang, and Li 2019),
etc. and others adopt continuous methods on 3D space to
extract local features, like PointCNN(Li et al. 2018), Point-
Conv(Wu, Qi, and Fuxin 2019), ShellNet(Zhang, Hua, and
Yeung 2019), etc.

In this paper, we adopt wildly used PointNet based mod-
els, which are simple and yet efficient, as the discriminators.

GANs for 3D Point Clouds Generation
GANs have achieved great success on 2D image generation
tasks(Isola et al. 2017; Lin et al. 2018; Radford, Metz, and

Chintala 2015; Rott Shaham, Dekel, and Michaeli 2019),
but are rarely studied in the 3D point cloud generation field.
Achlioptas et al.(Achlioptas et al. 2017) presented a method-
ology to apply autoencoder models on point cloud learning,
and introduced the r-GAN, which is based on multiple fully
connected layers. As structure information cannot be em-
bedded into fully connected layers, the r-GAN has difficulty
in generating diverse shapes. Valsesia et al.(Valsesia, Fracas-
toro, and Magli 2018) used multi-layer dynamic graph con-
volutions network(GCN) as a generator in GAN. Adjacency
matrixes of the graphs are dynamically constructed, which
causes the weakness of time complexity. Hui et al.(Hui et al.
2020) introduced a learning-based bilateral interpolation
method to upsample point clouds, and proposed a new net-
work with several discriminators in different scales. Shu et
al.(Shu, Park, and Kwon 2019) proposed tree-GAN, which
uses tree-structured graph convolutions to obtain a hierar-
chical structure in feature space. Compared to the method
in (Valsesia, Fracastoro, and Magli 2018), tree-GAN re-
quires no prior knowledge regarding the connectivity of the
graph, which is more computationally efficient. Tree-GAN
also claimed that it can generate point clouds for different
semantic parts without prior knowledge, but no semantic la-
bel will be generated for points and the accuracy of semantic
part generation is not so satisfactory.

Furthermore, the controllability of generation hasn’t been
considered in the above works. CPCGAN uses semantic data
from the training dataset and information extracted by a K-
means clustering algorithm to achieve the controllability of
the generated structure. Besides, our method is able to gen-
erate semantic labels for points.

GANs for Controllable Generation
Controllable GANs have been studied deeply in 2D image
generations. Conditional GAN(CGAN)(Mirza and Osindero
2014) added a one-hot vector to embed classification infor-
mation into GAN network, thus has the ability to generate
samples in certain classes. Chen et al.(Chen et al. 2016) im-
proved CGAN to infoGAN, in which property information
is embedded into latent code. Besides, infoGAN proposed
a regularization term using variational mutual information,
which makes the model learn a controllable feature explana-
tion. StyleGAN(Karras, Laine, and Aila 2019) has the ability
to control high-level attributes in generation with the help of
new architecture and a latent space mapping function.

Wang et al.(Wang and Gupta 2016) used another way to
control the generation. A two-stage GAN was presented by
(Wang and Gupta 2016). The first stage generates a middle-
level representation of the final result, which is a surface
normal map of a scene, and the second stage generates an
image with the guidance of the middle-level representation.
The controllability is ensured by changing the middle-level
representation.

Hierarchical structures of semantic information are main-
tained more completely in constructed 3D point clouds than
in 2D images. Therefore, useful information like structures
and semantics can be embedded into an appropriate middle-
level representation more precisely than images. We take
the inspiration of (Wang and Gupta 2016) and construct a
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two-stage GAN, which are named Structure GAN and Final
GAN. With the help of the structure point clouds extracted
by a K-means clustering algorithm, CPCGAN has the ability
to control the generated structure.

Proposed Method
Overview
Fig. 1 shows the overview structure of our method. Given a
random latent code z ∈ R96 ∼ N(0, I), we aim to generate
a complete point cloud CPGE = {gi}2048i=1 , where gi ∈ R3.
Corresponding semantic labels CSGE = {si}2048i=1 are also
generated, where si ∈ [1, c] ∩ Z and c denotes the total
number of semantic types. To generate CPGE and CSGE , we
construct a two-stage GAN network called CPCGAN. The
structure point cloud SPGT = {spi}32i=1, and its semantic
labels SSGT = {ssi}32i=1 are introduced as the middle-level
representation between two stages. The first stage, which
we call Structure GAN, is aiming to learn the distribution
of structure point clouds SPGT and SSGT . The outputs of
this stage are a generated structure point cloud SPGE =
{gspi}32i=1 and semantic labels SSGE = {gssi}32i=1. The dis-
tribution of the complete point clouds CPGT = {cpi}2048i=1
is learned by the second-stage GAN, which we call Final
GAN. Fig. 2 shows the structure of CPCGAN.

In the training period, CPCGAN is optimized by a com-
bined loss function. Besides, a stage-wise training strategy is
designed in order to provide a more stable training process.
A controllable generation method will also be introduced in
this section.

Data Preprocessing
We use the ShapeNet-Partseg(Chang et al. 2015) dataset for
training, which contains more than 13,000 samples within
16 classes. Each sample includes a point cloud and the
semantic labels for points. Samples with more than 2048
points are selected and randomly downsampled to 2048
points.

In order to extract the 32-point structure point cloud
SPGT and their semantic labels SSGT , we use K-means
clustering to find the centroids of the points with the same
semantic labels. The value of K for each semantic label is
determined by the percentage of the points with that label in
the whole point cloud. The semantic labels are automatically
inherited in the K allocating procedure.

Structure GAN
Structure GAN is constructed by a simple generator and
a modified PointNet-based discriminator with a global
average-pooling layer. The generator receives z as input
and outputs the generated point cloud SPGE with SSGE . A
multi-layer perceptron(MLP) is used to transform z into a
256-dim vector. A fully connected layer is succeeded, aim-
ing to convert the vector into 32 positions in space, namely
SPGE . Another fully connected layer and a softmax layer
convert the 256-dim vector into 32 × c scores represent the
probability of semantic labels, namely SSGE .

Both SPGE and SSGE are fed into the first discriminator,
which we call structure discriminator. Note that SPGE and

SSGE are both treated as the points’ feature and are balanced
by two fully connected layers. A PointNet-based network is
applied in the discriminator. Since the ShapeNet-Partseg is
a normalized dataset, we remove the T-Net of PointNet.

In experiments, we found that some points in SPGE are
clustered within a very small distance. This phenomenon
also causes the distortion of the semantic types’ distribu-
tion. In some generated samples in the class of airplane, half
of the points are generated as the tail wings. This might be
caused by the max-pooling layer in PointNet. By using the
max-pooling layer among all points, PointNet is not sensi-
tive to the spatial distribution of points. So a global average-
pooling layer is used instead.

Final GAN
Final GAN takes the SPGE , SSGE , and z as input, aiming to
fit the distribution of the complete point cloud. A PointNet-
like network is used to breed the points. A novel method,
which is called Delta, and a self-attention layer are used to
improve the performance.

Three fully connected layers are implemented first to bal-
ance the influences caused by different dimensions of SPGE ,
SSGE , and z, generating a feature for every point. The in-
puts of Final GAN only contain the coordinate and seman-
tic information for every point. As the succeeded network
is independent between points, the data transformation be-
tween points is indispensable to generate better complete
point clouds. For this purpose, a self-attention layer is used
to further transform the features.

With the features generated above, Final GAN outputs a
complete point cloud by generating 64 points around every
generated structure point. Ancestor relationships are estab-
lished between the structure point cloud and the complete
point cloud. Follow the inspiration of PointNet in dealing
with the disorderliness of point cloud, we propose a novel
method which is called Delta to breed the structure point
cloud. Thirty-two MLPs with shared weights are applied to
generate structure points. Each MLP transforms the features
into 64 × 3 delta values that represent the relative positions
between final points and their ancestor. By adding the coor-
dinates of structure points, the Final GAN outputs the coor-
dinates of the generated complete point cloud.

Most earlier methods directly use the models’ output as
the generated point cloud(Achlioptas et al. 2017; Valsesia,
Fracastoro, and Magli 2018), or generate a transformation
matrix and branch points by multiple the matrix with the an-
cestor’s coordinates(Shu, Park, and Kwon 2019). To control
the generated shape by changing the structure point cloud,
the points are expected to be closer to their ancestor. Ear-
lier methods lead to a mixture of all child points around the
origin after initialization. The PointNet-based discriminator
only cares about the overall shape, and doesn’t have the abil-
ity to re-cluster the points belong to the same ancestor. In
our method, points will be distributed around their ancestors
after initialization, which meets our expectation.

Loss Function
Four networks are proposed in CPCGAN, which we repre-
sent as Gs, Gf , Ds, Df . We adopt the loss function intro-
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Figure 2: Network Structure of CPCGAN. Rectangles represent vectors or matrixes, rounded rectangles represent networks.
Note that c is the number of semantic types, expand means to copy the data several times and concatenate them.

duced in Wasserstein GAN(Arjovsky, Chintala, and Bottou
2017) with gradient penalty(Gulrajani et al. 2017). Four loss
functions for four networks are defined as

LGs = −Ez∼Z [Ds(Gs(z))]

LDs = Ez∼Z [Ds(Gs(z))]− Exs∼Rs [Ds(xs)]

+λgpEx̂s
[(||∇x̂s

Ds(x̂s)||2 − 1)2]

LGf
= −Ez∼Z [Df (Gf (z))]

LDf
= Ez∼Z [Df (Gf (z))]− Exf∼Rf

[Df (xf )]

+λgpEx̂f
[(||∇x̂f

Ds(x̂f )||2 − 1)2]

where Z represents a latent code distribution, which we de-
signed as Z = N(0, I). xs denotes the structure point cloud,
xf denotes the complete point cloud, Rs and Rf represent
the real distribution of structure and complete point clouds,
the formulas after λgp are the gradient penalty terms, which
were proposed in (Gulrajani et al. 2017).

Final loss functions LG and LD are defined as

LG = LGf
+ λsLGs

(1)

LD = LDf
+ λsLDs

(2)

The hyperparameters, λgp and λs, are set to 10 and 0.5 re-
spectively.

Controllable Generation Method

Note that Structure GAN is designed to learn the distribu-
tion of structure point clouds SPGT and their semantic la-
bels SSGT , and to generate SPGE and SSGE with the same
matrix shape as SPGT and SSGT accordingly. It is obvi-
ous that we can replace the SPGE and SSGE to handcrafted
SPGT and SSGT , and feed them into Final GAN to control
the generation of complete point clouds. Fig. 3 (b) shows
the data flow when the CPCGAN model switches to con-
trollable generation mode. With the help of the self-attention
layer and MLPs based on PointNet, Final GAN can receive
handcrafted SPGT and SSGT without caring the order of the
points. Latent code z is still fed into Final GAN in order to
generate various samples when the handcrafted SPGT and
SSGT are unchanged.

Training Strategies

To accelerate the training speed and improve the perfor-
mance of CPCGAN, a two-step training strategy is used
in the training period. In the first step, we train Structure
GAN and Final GAN separately, which is achieved by feed-
ing SPGT and SSGT instead of SPGE and SSGE into Final
GAN. Fig. 3 (c) shows the data flow for the first step. In the
second step, we train structure GAN and final GAN together.
Fig. 3 (a) shows the data flow for the second step. In exper-
iments, we train CPCGAN in the first step for 500 epochs
and then in the second step for 1500 epochs.
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Class Model FPD↓ JSD↓ MMD-CD↓ MMD-EMD↓ COV-CD↑ COV-EMD↑

Chair

r-GAN* 1.860 0.238 0.0029 0.136 33 13
Valsesia et al.* - 0.100 0.0029 0.097 30 26

tree-GAN 1.114 0.0725 0.00191 0.0900 60.21 33.92
CPCGAN(ours) 0.877 0.0433 0.00186 0.0753 62.33 50.41

Airplane

r-GAN* 1.016 0.182 0.0009 0.094 31 9
Valsesia et al.* - 0.083 0.0008 0.071 31 14

tree-GAN 0.549 0.0854 0.00039 0.0584 58.40 23.13
CPCGAN(ours) 0.522 0.0296 0.00038 0.0417 59.63 45.36

Table 1: Quantitative comparison in terms of FPD and the metrics proposed by Achlioptas et al.(Achlioptas et al. 2017). Bold
values denote the best results. The * indicates that the results reported in (Shu, Park, and Kwon 2019) and (Valsesia, Fracastoro,
and Magli 2018) are cited for those models. Results of tree-GAN are based on the model we trained using original code and
default settings. All metrics we have tested are calculated by averaging the results of 100 times of evaluation.
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Figure 3: (a)data flow for second step training period, also an
abstract of Fig. 2. (b) data flow for controallable generation
mode. (c) data flow for first step training period.

Experiments
Datasets and Implementation Details
We train and test our CPCGAN on the ShapeNet-Partseg
dataset. The dataset is designed for the 3D shape part
segmentation task and has semantic label for every point.
ShapeNet is the most popular object-level synthetic dataset
with semantic information. Lots of datasets are sampled
from ShapeNet including ShapeNet-Partseg, which means
they have similar shapes and little differences will be
made when changing between those datasets. Thus we use
ShapeNet-Partseg as the only data source. Two classes that
previous works used are chosen to compare quantitatively.

On implementation of CPCGAN, Adam optimizers are
used for every sub-networks with a learning rate of α =
0.01, coefficients β1 = 0 and β2 = 0.99. In loss function,
the hyperparameters λgp and λs are set to 10 and 0.5 respec-
tively. In the training period, the batch size is set to 128 and
both discriminators in Structure GAN and Final GAN are
updated three times per iteration. The size of the structure
point cloud is set to 32. The size of the complete point cloud

is set to 2048, which is the same with tree-GAN(Shu, Park,
and Kwon 2019) and r-GAN(Achlioptas et al. 2017).

Evaluation Metrics
In order to evaluate the performance of the complete point
cloud generation, metrics in (Achlioptas et al. 2017; Shu,
Park, and Kwon 2019) are applied. CPCGAN and tree-
GAN(Shu, Park, and Kwon 2019) are trained in the experi-
ments. In the training period, the FPD metrics proposed by
(Shu, Park, and Kwon 2019) are the major validation met-
rics. Because the discrepancy on FPD score among epochs
are large enough, the FPD can indicate the performance dif-
ferences between epochs. We choose the epochs with the
best FPD score on both CPCGAN and tree-GAN to com-
pare. However, the FPD is not stable enough for compari-
son between two well-trained models, because its value may
vary by ±0.2 in our experiments. Therefore, in the evalua-
tion period, we apply FPD on both models for 100 times and
take the average, which is different from the original code of
tree-GAN(Shu, Park, and Kwon 2019).

In the generated semantic label evaluation, it is hard to
give the ground truth semantic labels for a generated point
cloud. We use ShellNet(Zhang, Hua, and Yeung 2019) to
generate semantic labels as the ground truth, which may
contain incorrect labels. A ShellNet model pre-trained on
the ShapeNet-Partseg dataset is used. Average IoU, accu-
racy, and frequency weighted IoU of semantic label genera-
tion are calculated and named as mIoU , mAcc and fwIoU
respectively. Tree-GAN also claimed the ability to generate
point cloud with semantic information which is reflected by
the leaf layer of the tree structure network. In treeGAN ,
each ancestor has 64 leaf nodes, who share the same seman-
tic type. However, the semantic label is not explicit defined.
This causes the difficulty in evaluating the semantic genera-
tion performance. As the generated ground truth have a la-
bel for every point, A voting algorithm, which is applied on
the 64 points with the same ancestor, is applied to produce
labels for the points generated by tree-GAN. With these pro-
duced labels, the Average IoU and accuracy are reported as
mIoUNL andmAccNL respectively, which ”NL” stands for
”No Label”. The same NL metrics are also applied to CPC-
GAN for comparison.
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Model #G params #D params batch size memory time/100 samples
tree-GAN 40.690M 2.536M 20 ∼ 8821M ∼ 4.15s
CPCGAN 1.904M 2.693M 128 ∼ 16347M ∼ 2.63s

Table 2: Comparisons with tree-GAN on computational efficiency. #G params denotes the number of parameters in generator
and #D params denotes the number of parameters in discriminator(s). Time efficiency results are tested on a single RTX Titan
GPU. The settings of tree-GAN are the default settings in the open source code provided by the authors.

Class Delta Attention Avg-pool FPD↓ mIoU% ↑ fwIoU% ↑ mAcc% ↑

Chair

1.240 24.781 18.961 30.621√
1.188 69.730 68.740 79.176√ √
1.045 75.332 73.609 82.924√ √ √
0.877 59.003 76.269 84.954

Airplane

0.537 13.700 17.817 29.346√
0.617 59.407 60.336 74.157√ √
0.696 59.747 72.220 81.681√ √ √
0.522 69.677 76.436 85.865

Table 3: Results for ablation studies. Bold values denote the best results. Delta represents the last component of Final GAN,
which generates the delta values from structure points and produces the complete point clouds. Attention represents the self-
attention layer. Avg-pool represents the replacement of the max-pooling layer in the discriminator of Structure GAN.

Quantitative Comparisons
Quantitative comparisons on point cloud generation.
In the comparison of point cloud generation, metrics in
(Achlioptas et al. 2017) and (Shu, Park, and Kwon 2019)
are used. Table. 1 shows the comparison results. The pro-
posed CPCGAN significantly outperforms other GANs in
terms of all metrics. Compared with the chamfer distance
based metrics (indicated with the suffix ”-CD”), our CPC-
GAN has more significant improvements on the earth move
distance based metrics (indicated with the suffix ”-EMD”).
This proves the point clouds generated by CPCGAN are
more evenly distributed in space, and also closer to the dis-
tribution of point clouds in dataset. This is attributed to the
structure point clouds, which restrict the distribution of com-
plete point clouds in 3D space.

Quantitative comparisons on semantic labels genera-
tion. In the comparison of semantic labels generation, the
metrics we proposed are applied to tree-GAN and our CPC-
GAN. Table. 4 shows the comparison results. Some other re-
sults we generated are shown in Fig. 4. Tree-GAN generates
point clouds without label, thus we use the ”NL” metrics on
tree-GAN’s generation. It’s obvious that our CPCGAN out-
performs in these metrics.

In some classes, the mIoU score is notably lower than
other IoU scores. Some semantic types with few points
cause this phenomenon. The mIoU score is calculated by
directly averaging the IoUs of each semantic type. A se-
mantic type with few points may cause a large influence on
mIoU once it was not predicted correctly.

Quantitative comparison on computational efficiency.
Table. 2 shows the comparison with tree-GAN on both time
efficiency and space efficiency. With the help of two-stage
GAN framework and structure point clouds, CPCGAN can
use less computational resources and larger batch size to

Class Model mIoU% fwIoU% mAcc%
Chair CPCGAN 59.003 76.269 84.954

Airplane CPCGAN 69.677 76.436 85.865
Class Model mIoUNL% mAccNL%

Chair tree-GAN 85.342 91.605
CPCGAN 89.814 94.925

Airplane tree-GAN 54.263 79.072
CPCGAN 80.216 92.355

Table 4: Semantics generation performance comparison
with tree-GAN. Larger value is better. Bold values denote
the better results. Statistics are the means of 104 samples
generated by those models.

achieve better performance. It takes about 2 days on an RTX
Titan GPU when we train the CPCGAN in the class of air-
planes which has nearly 2000 samples.

Ablation Study
We perform ablation studies to investigate the components
of our CPCGAN. Three components of CPCGAN, which
abbreviated as Delta, Attention and Avg-pool, are signifi-
cantly different from those of other 3D point clouds GANs.
Table. 3 shows the contributions of these components. The
Delta is the basis of the semantic label generation ability.
Without this component, points won’t be close to their an-
cestors. This causes the semantic labels of points, which
are inherited from their ancestors, become meaningless. The
fluctuation in themIoU is caused by the calculation method
of mIoU , which has been explained in Section 4.3. The im-
provements in most metrics prove the positive influences of
those components.
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Figure 4: Examples of generated point clouds. The same color in the same class denotes the same semantic types.
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Figure 5: Appearance changes when structure point cloud changes.

Controllable Generation
By changing the structure point clouds, which are fed into
Final GAN, CPCGAN has the ability to control the appear-
ance of the complete point clouds. Fig. 5 show examples
of this control ability. Note that the shape of tail wings are
changing with the raising. That proves the change of struc-
ture is not only the translation of parts. The information of
structure points’ coordinates and relative positions between
points are also guiding the shape generation.

Conclusions
In this paper, we proposed a generative adversarial network
called CPCGAN, which aims to generate 3D point clouds
and their semantic labels. A two-stage GAN framework is
applied to ensure CPCGAN has the controllability on the ap-
pearance of the final results. A sparse point cloud, which we
call structure point cloud, is introduced to make CPCGAN

able to generate meaningful semantic labels. Through var-
ious experiments, we demonstrate that CPCGAN can gen-
erate semantic labels for points and control the generated
structure. Our framework outperforms other 3D point cloud
generation GANs in terms of generation performance and
computational efficiency.
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