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Abstract
Despite the remarkable empirical performance of deep learn-
ing models, their vulnerability to adversarial examples has
been revealed in many studies. They are prone to make a
susceptible prediction to the input with imperceptible adver-
sarial perturbation. Although recent works have remarkably
improved the model’s robustness under the adversarial train-
ing strategy, an evident gap between the natural accuracy and
adversarial robustness inevitably exists. In order to mitigate
this problem, in this paper, we assume that the robust and
non-robust representations are two basic ingredients entangled
in the integral representation. For achieving adversarial ro-
bustness, the robust representations of natural and adversarial
examples should be disentangled from the non-robust part and
the alignment of the robust representations can bridge the gap
between accuracy and robustness. Inspired by this motivation,
we propose a novel defence method called Deep Robust Rep-
resentation Disentanglement Network (DRRDN). Specifically,
DRRDN employs a disentangler to extract and align the robust
representations from both adversarial and natural examples.
Theoretical analysis guarantees the mitigation of the trade-off
between robustness and accuracy with good disentanglement
and alignment performance. Experimental results on bench-
mark datasets finally demonstrate the empirical superiority of
our method.

Introduction
With the rapid development of deep learning, revolutionary
breakthroughs have been made in various fields during the
past few years, such as computer vision (He et al. 2016; Guo
et al. 2019b; Wang et al. 2018), natural language processing
(Collobert and Weston 2008), transfer learning (Yang et al.
2020; Guo et al. 2019a) and so on. However, in parallel with
remarkable achievements, DNNs were revealed to be brittle
to certain maliciously manipulated inputs named adversarial
examples (Biggio et al. 2013; Szegedy et al. 2013). Compared
with the natural ones, only imperceptible perturbations are
introduced to adversarial examples, yet entirely different
predictions can be induced even for the well-trained deep
learning models. It poses threats to the real-world, especially
the security-critical (e.g., autonomous driving (Tian et al.
2018; Bojarski et al. 2016)) deployments of deep learning
models due to the existence of adversarial examples.
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In response to adversarial examples, tremendous effort has
been made towards the robustness of deep learning models
against adversarial attacks. Common defense strategies in-
clude adversarial examples detecting and filtering methods
(Metzen et al. 2017; Grosse et al. 2017; Xie et al. 2019),
pre-processing and dimension reduction methods (Bhagoji,
Cullina, and Mittal 2017; Buckman et al. 2018; Prakash et al.
2018). These methods may improve the robustness of DNN
models to some extent, however, they are only applicable to
a narrow range of attacks or model architectures (Athalye,
Carlini, and Wagner 2018; Xie et al. 2019).

Recently, a novel defense framework call adversarial train-
ing (Madry et al. 2017) has drawn significant attention. Ad-
versarial training takes the adversarial defense as a mini-max
game between the attacker and the classifier, and reinforces
the model’s robustness by alternatively generating adversarial
examples and training the models with both adversarial and
natural examples. Adversarial training has shown to be one
of the most effective defense strategies according to (Atha-
lye, Carlini, and Wagner 2018). Based on the adversarial
training framework, some more advanced works like (Zhang
et al. 2019) have been proposed and achieved state-of-the-
art performance. However, (Zhang et al. 2019) also reveals
an intrinsic negative impact, i.e., the trade-off between the
accuracy and robustness.

More recently, the seminal work (Ilyas et al. 2019) sug-
gests that the existence of adversarial examples is a natural
consequence of the non-robust (predictive, yet brittle) rep-
resentation set, which exists in the natural representation
distribution independently along with the robust representa-
tion set. The model’s robustness can be improved by sepa-
rating the robust representation set from the non-robust one.
However, the hypothesis of independence between robust
and non-robust representation seems to be questionable, be-
cause it is possible to generate adversarial examples for any
instance including the robust set. Thus, in this paper, we
postulate that the robust and non-robust representations are
two basic ingredients entangled in the integral representation.
The robust representation is specified to the classification task
(i.e., class-specific), in contrast, the non-robust representa-
tion is not capable of classification (i.e., class-irrelevant), but
contains the information about whether the natural domain
or the adversarial domain the examples is sampled from. No
matter whether the example is natural or adversarial example,
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its representation always has the robust and non-robust ingre-
dients. The reason why the model has incorrect prediction to
the adversarial example is that the adversarial perturbation
changes the class-irrelevant part (ideally, unchangeable to the
class-specific part) so that the integral representation will be
misclassified by the classifier. Thus, if we can disentangle the
class-specific representation from the integral representation,
better robustness could be achieved. Further more, if a good
alignment between the natural and adversarial class-specific
representations can be realized, the gap between the natural
accuracy and adversarial robustness should be minimized.

Inspired by the motivation above, we propose a novel de-
fense method called Deep Robust Representation Disentan-
glement Network (DRRDN). Concretely, DRRDN follows
the framework of the Auto-Encoder (AE) which extracts
the hidden representation by the so-called encoder and re-
stores the original input with the decoder. Different from the
typical AEs, DRRDN particularly disentangles the hidden
representation into two branches by two disentanglers, one of
which is to extract the class-specific representation for classi-
fication, while another aims at deriving the class-irrelevant
representation to determine whether the natural domain or
the adversarial domain the representation is from. For bet-
ter disentanglement performance, we further regularize the
disentanglers with a mutual information minimizer. Similar
to the traditional AEs, a reconstructor is also employed to
restore the integral representation before disentanglement for
consistency. During the inference phase, we only utilize the
class-specific representation for prediction, therefore, no mat-
ter what domain the input example comes from, the extracted
representation for classification would be consistently robust
against adversarial attacks. Furthermore, we theoretically
proof that, given satisfying disentanglement and alignment
performance, a smaller distribution discrepancy between the
natural and adversarial class-specific representation can be
realized, therefore, the natural accuracy and adversarial ac-
curacy should be closer. Finally, we empirically verify the
effectiveness of DRRDN on MNIST and CIFAR10 datasets
with various adversarial attacks. It is worthy to highlight the
main contributions of this work as follows:
• We propose a novel adversarial defense method DRRDN

which eliminates the effect of adversarial perturbations by
disentangling and aligning the robust representation from
both natural and adversarial examples.

• The proposed DRRDN is model-agnostic, thus can adapt
to any model architecture. Furthermore, DRRDN exploits
the information from the perturbation for complete disen-
tanglement performance.

• We prove a smaller gap between the natural accuracy and
adversarial robustness with theoretical analysis.

• Experimental results on benchmark datasets demonstrate
the superiority of DRRDN.

Related Works
Adversarial Attacks
The phenomenon of adversarial examples is initially revealed
by (Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy

2014). Based on their observation, following works pro-
pose various adversarial attacks, including the gradient-based
methods FGSM (Szegedy et al. 2013), PGD (Madry et al.
2017), C&W (Carlini and Wagner 2017), the evolutionary-
based extreme one pixel attack (Su, Vargas, and Sakurai
2019), and the universal adversarial perturbations (Moosavi-
Dezfooli et al. 2017), among which the gradient-based meth-
ods empirically show stronger attack ability.

Adversarial Defenses
Traditional defense strategies include adversarial examples
detecting and filtering methods (Metzen et al. 2017; Grosse
et al. 2017; Xie et al. 2019), pre-processing and dimension
reduction methods (Bhagoji, Cullina, and Mittal 2017; Buck-
man et al. 2018; Prakash et al. 2018). These methods may
improve the robustness of DNN models to some extent, how-
ever, they are only applicable to a narrow range of attacks
or model architectures (Athalye, Carlini, and Wagner 2018;
Xie et al. 2019). The recently proposed adversarial train-
ing (Madry et al. 2017) framework improves the model’s
robustness by augmenting the training set with generated
adversarial examples. Although adversarial training-based
methods such as ALP (Kannan, Kurakin, and Goodfellow
2018) and TRADES (Zhang et al. 2019) competitive perfor-
mance, a trade-off between the model’s natural accuracy and
adversarial robustness ubiquitously exists. Our model share
similar idea with the feature denoising (FD) (Xie et al. 2019)
method. However, FD directly modify the convolutional filter
and highly rely on the model architecture.

Representation Disentanglement
Representation disentanglement aims at modeling the inde-
pendent factors of data variation. It has a wide range of appli-
cations including image generation and translation (Mathieu
et al. 2016; Liu et al. 2018), domain adaptation (Peng et al.
2019). Unlike the unsupervised representation disentangle-
ment which is proved to be fundamentally impossible without
proper inductive biases (Locatello et al. 2019), our disentan-
glement is conducted under the supervised manner, which
provides more guarantees for its performance.

Method
The proposed DRRDN method is updated under the adver-
sarial training framework, and for simplicity, we use PGD
method to generate adversarial examples during training
stage. Thus, before we introduce our proposed method, it
is necessary to make a brief review of adversarial training
and PGD attack procedure in the following preliminary sub-
section.

Preliminary
We consider a deep neural network f(·) = c

(
g(·; θ);w

)
∈

Rk, where g(·; θ) is the representation encoder parameterized
by θ, c(·;w) is the classifier parameterized by w, and k is the
number of classes. The adversarial example x′ ∈ RH×W×C
is generated from the natural example x ∈ RH×W×C by
adding the adversarial perturbation δ which is constrained
in a ball with small radius ε, i.e., x′ = x + δ ∈ Bpε (x) :=
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Figure 1: Illustration of proposed DRRDN architecture. g(·; θ) represents the feature extractor parameterized by θ, ds(·;φs)
and di(·;φi) are the disentanglers for the class-specific and class-irrelevant representations with φs and φi as parameters,
respectively, cs is the classifier to predict the category of the input representation, ci is a discriminator identifying which domain
the representation comes from, r is a reconstruction decoder, and z represents the output representation of each module.

{x′ : ‖x− x′‖p = ‖δ‖p ≤ ε}. Besides, x′ should lead to a
prediction alteration of the network, i.e., argmaxi fi(x

′) 6=
argmaxj fj(x) = y, where y ∈ Rk represents the one-
hot embedding of the ground-truth label. The basic idea of
adversarial training is to alternately generating the adversarial
examples and training with them. The overall objective can
be formally described as the following optimization problem:

min
θ,w

Ep(x,y) max
x′∈Bpε (x)

Lθ,w(f(x′), y). (1)

However, the inner maximization is normally intractable
for complex high dimensional data. Therefore, PGD uses the
following T -step projection to approximately generate the
strongest adversarial example within the ε-ball:

x′{t+1} = ProjBpε (x)

(
x′{t} + αsign(∇xLθ,w(x′{t}, y))

)
,

(2)
where ProjBpε (x)(·) indicates the projection operation which
projects the perturbed example to a ε-radius ball Bpε (x)
around x to ensure the perceptual similarity, t ∈ [1, T ] is
the number of projection steps, α is the step size, and sign(·)
returns the sign of each element in the gradient. Note that if
the total update step T equals to one, PGD method degrades
to the weaker attack FGSM. After x′ is obtained by Eq. (2),
it will be fed to the model to optimize the outer minimization
as in Eq. (1) for robustness.

Deep Robust Representation Disentanglement
Network (DRRDN)
The basic philosophy of our DRRDN is we suppose that
the integral representation z = g(x; θ) ∼ pθ(z) (simi-
larly, z′ = g(x′; θ) ∼ pθ(z

′)) is composed of two entan-
gled branches which are the class-specific representation
zs and class-irrelevant representation zi, where pθ(z) is a
push-forward measure of the original data distribution p(x).

Concretely, the pure zs is specified to classification task, thus,
no matter for zs or z′s, they all should be capable to be cor-
rectly classified. In DRRDN, we use a disentangler ds(·;φs)
to separate the class-specific representation from z and z′ as:

zs = ds(z;φs), z ∼ pθ(z),
z′s = ds(z

′;φs), z
′ ∼ pθ(z′).

(3)

Recall the job of the class-specific representation, we impose
classification loss (e.g, cross-entropy (CE)) on ds(·;φs):

Lθ,φs,wsCE = −E z∼pθ(z)

z′∼pθ(z
′)

[
yT · log(cs({zs, z′s}, ws))

]
, (4)

where cs(·, ws) ∈ Rk is the class-specific classifier parame-
terized by ws.

However, only the separation of the class-specific represen-
tation maybe not enough for complete disentanglement. The
class-irrelevant part which captures the perturbation noise
information also should be modelled and wiped out from
the integral representation. Similar to ds, we design a class-
irrelevant disentangler di(·;φi) to model the information ir-
relevant to classification:

zi = di(z;φi), z ∼ pθ(z),
z′i = di(z

′;φi), z
′ ∼ pθ(z′).

(5)

Note that the class-irrelevant representation should capture
the characteristics of the natural representation and adver-
sarial representation, which is to say zi is supposed to be
distinguishable from z′i. Therefore, we apply the binary clas-
sification loss on di as:

Lθ,φi,wiBC = −Ez∼pθ(z) [log(ci({zi, zs}, wi))]
− Ez′∼pθ(z′) [log(1− ci({z

′
i, z
′
s}, wi))] , (6)

where ci(, wi) ∈ [0, 1] is the class-irrelevant classifier param-
eterized by wi, which tries to distinguish the natural repre-
sentations from the adversarial ones no matter class-specific
or class-irrelevant.
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A good disentanglement should produce mutually indepen-
dent parts which contain no shared information from each
other. In order to achieve this objective, we consider the fol-
lowing two aspects: functional exclusiveness, and mutual
information minimization. Firstly, functional exclusiveness
means that one disentangled branch should and only should
be competent for one specific job but incompetent for another.
Eqs. (4) and (6) have ensured that each disentangled represen-
tation is capable for its corresponding task, but no constraints
are imposed on the counterpart, which may cause the remain-
ing of perturbation information or the loss of the robust in-
formation in the class-specific representation. Thus, inspired
by the generative adversarial networks (GANs) (Goodfellow
et al. 2014), we update ds to fool the well-trained c∗i by using
an adversarial loss:

Lθ,φsADV = Ez∼pθ(z) [log(c
∗
i (zs, w

∗
i ))]

+ Ez′∼pθ(z′) [log(1− c
∗
i (z
′
s, w

∗
i ))] , (7)

where c∗i (·, w∗i ) is the class-irrelevant classifier well-trained
by Eq. (6). Besides, we regularize the prediction entropy of
optimized c∗s on di to be large to make sure that di cannot be
correctly classified:

Lθ,φiENT = E z∼pθ(z)

z′∼pθ(z
′)

[
c∗s(zi, w

∗
s)

T · log(c∗s(z′i, w∗s))
]
, (8)

where c∗s(·, w∗s) is optimized by Eq. (4), and Eq. (8) is to
minimize the negative information entropy of c∗s(·, w∗s) on
di.

Second, for the complete disentanglement, the dependence
between the output of ds and di should be as small as possible.
As denoted by (Kinney and Atwal 2014), mutual informa-
tion (MI) can serve as a measure of true dependence for it
capturing non-linear statistical dependencies between vari-
ables. Thus, in our method, we impose MI minimization on
ds and di for better decoupling the effect adversarial pertur-
bation. However, the computation of MI is usually intractable.
Thus, in our model, we adopt the Mutual Information Neu-
ral Estimator (MINE) (Belghazi et al. 2018) for unbiased
estimation of MI. Specifically, given n samples of jointly
distributed class-specific and class-irrelevant representation
pairs {(djs, d

j
i )i}ni=1, and n pairs from the product of margins

{(djs, dmi )i}ni=1 (note that, the disentangled representation
can be either from natural or adversarial representations),
MINE empirically estimates MI between ds and di by Monte-
Carlo integration as below:

MIφ,ψ =
1

n

n∑
i=1

T
(
(djs, d

j
i )i;ψ

)
− log

(
1

n

n∑
i=1

eT((d
j
s,d

m
i )i;ψ)

)
, (9)

where T (·;ψ) is a neural network parameterized by ψ.
Finally, following the standard AE architecture, we em-

ploy a reconstructor to restore the integral representation
to keep the cross-cycle consistency of the disentangled rep-
resentations. In this paper, we use an L2 reconstructor for
simplicity:

Algorithm 1: Training Process.
1 Input: Natural training data (x, y), initialized

parameters for different modules in DRRDN
θ, φ{s,i}, w{s,i}, ψ, θrec, trade-off coefficient
λ{mi,rec}, initialized learning rate η.

2 for each training iteration do
3 Draw a mini-batch of natural example from an

empirical distribution (x, y) ∼ p̂(x, y);
4 Generate adversarial examples x′ by iteratively

optimizing Eq. (2) with LCE (Eq. (4));
5 Disentangle the class-specific representation zs, z′s

and class-irrelevant representation zi, z′i with ds
and di in Eqs. (3) and (5), respectively;

6 Update the class-specific and class-irrelevant
classifiers by minimizing LCE (Eq. (4)) and LBC
(Eq. (6)), respectively;

7 Adversarially update the class-specific and
class-irrelevant disentanglers by minimizing
LADV (Eq. (7)) and LENT (Eq. (8)), respectively;

8 Estimate and minimize the MI between
class-specific and class-irrelevant representations
with the MINE loss in Eq. (9);

9 Minimize the reconstruction loss LREC (Eq. (10));

Lφ,θrecREC = E z∼pθ(z)

z′∼pθ(z
′)

[
||r(zs, zi; θrec)− z||22

+ ||r(z′s, z′i; θrec)− z′||22
]
, (10)

where r(·, ·; θrec) is the reconstructor parameterized by
θrec.

Note that, during the inference phase and when generating
the adversarial example, we only use the basic representa-
tion extractor g(·;φ), class-specific disentangler ds(·;φ), and
class-specific classifier cs(·, ws). For a better understanding
of the DRRDN structure, we provide an illustration in Fig.
1. We also summarize the training steps of DRRDN in Algo-
rithm 1. Specifically, the overall objective of DRRDN can be
summarized as follows:

LDRRDN = LCE + LBC + LADV + LENT

+ λmiLMI + λrecLREC, (11)

Theoretical Analysis
In this section, we provide theoretical understanding of the
proposed method. Zhang et al. (2019) indicate that there
exists a trad-off between the model’s accuracy on the natural
examples and the robustness against adversarial examples.
We hypothesize a possible reason for the trade-off is that the
classifier cannot generalize to the representations from both
natural and adversarial distribution. Recall that in Eqs. (6)
and (7), we have an adversarial loss to regularize the class-
specific disentangler. In the following proposition, we prove
that by optimizing the objectives in Eqs. (6) and (7), the
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distribution of class-specific representation from natural and
adversarial example can be aligned to each other. Because we
only use the class-specific representation for inference, the
gap between the model’s accuracy and robustness can then
be reduced.
Proposition 1. pφs(zs) equals to pφs(z

′
s) when the global

minimums of Lθ,φi,wiBC and Lθ,φsADV are achieved.

Proof. Following (Goodfellow et al. 2014), given natural and
adversarial class-specific representations zs ∼ pφs(zs), z′s ∼
pφs(z

′
s), the optimal class-irrelevant classifier c∗i (·, w∗i ) satis-

fies:

c∗i (·, w∗i ) =
pφs(zs)

pφs(zs) + pφs(z
′
s)
. (12)

With the fixed optimal class-irrelevant classifier c∗i (·, w∗i ), Eq.
(7) can be transformed as:

Lθ,φsADV = Ezs∼pφs (zs)
[

pφs(zs)

pφs(zs) + pφs(z
′
s)

]
+ Ez′s∼pφs (z′s)

[
pφs(z

′
s)

pφs(zs) + pφs(z
′
s)

]
= Ezs∼pφs (zs)

[
2

pφs(zs)

pφs(zs) + pφs(z
′
s)

]
+ Ez′s∼pφs (z′s)

[
2

pφs(z
′
s)

pφs(zs) + pφs(z
′
s)

]
− log 4

= KL
(
pφs(zs)

∣∣∣∣(pφs (zs)+pφs (z′s))/2)
+KL

(
pφs(z

′
s)
∣∣∣∣(pφs (zs)+pφs (z′s))/2)− log 4

= 2 · JS(pφs(zs)||pφs(z′s))− log 4.

(13)

Thus, the optimal Lθ
∗,φ∗s

ADV can be achieved when pφs(zs) =
pφs(z

′
s), which completes the proof.

Experimental Results
In this section, we empirically verify the effectiveness of our
proposed method with various experiments. We first imple-
ment white- and black- box attacks to compare the robustness
of DRRDN with state-of-the-art methods. Further analysis
of the effect of disentanglement is also conducted in this
section.

Settings
Datasets. In this paper, we use MNIST 1 and CIFAR10 2

which are benchmark datasets for the evaluation of defense
methods. MNIST contains 70,000 examples of handwritten
digits with the resolution of 28×28, while CIFAR10 consists
of 60,000 32×32 real-world object images in 10 classes. We
keep the default training/testing set splits in practice.
Implementation. Following (Zhang et al. 2019), we utilize a
four-layer convolutional network as the basic representation
extractor for MNIST dataset. The disentanglers and classi-
fiers of DRRDN are fully-connected layers, and for a fair
comparison, the classifiers of DRRDN share the same capac-
ity of that in baseline models. For the CIFAR10 dataset, we

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html

employed the WRN-28-10 (Zagoruyko and Komodakis 2016)
as the representation encoder. We followed the same prin-
ciple when designing the disentanglers and classifiers as in
the MNIST dataset. In the MINE and reconstructor modules,
we also employ the dense layers for simplicity. We defer the
detailed architecture of DRRDN model for different datasets
in the supplementary materials. As for the optimization, we
use the SGD optimizer with an initial learning rate of 1e−2
and 1e−1 for CIFAR10. The number of total training epoch
is 100 during which a learning rate decay of 0.1 is imposed
at 55, 75, 90 epochs, respectively. Also, the searching for the
optimal hyper-parameters is included in the supplementary
materials. We use Pytorch3 to implement our model and the
code can be found here4.
Defense Setting. We train DRRDN under the adversarial
training framework. For the training attacks, we typically set
the perturbation ε = 0.3, step size α = 0.01 for MNIST;
ε = 0.031, step size α = 0.007 for CIFAR10. The update
iterations for generating the training attacks is 40 and 10 for
MNIST and CIFAR10, respectively. Note that, we only verify
the l∞-norm attack for simplicity.

Adversarial Defense Performance under Different
Attacks
White-box Attacks The white-box attack assumes that the
attacker has full access to the architecture and parameters of
the target model, and directly generate adversarial examples
based on the gradient as described in Eq. (2). Thus, the robust-
ness of the standard training model could collapse rapidly. In
this work, three types of attacks are employed for verifica-
tion, which are FGSM, PGD, and CW (Carlini and Wagner
2017) (with various update steps). PGD and CW generate
attacks with the step size of 0.01 and 0.003 for MNIST and
CIFAR, respectively, and the step size of FGSM is magnified
10 times. We follow (Carlini and Wagner 2017) to generate
the CW attacks. We compare the performance of DRRDN
with the model trained under Standard manner (only trained
with natural data), and robust models trained under Madry
(Madry et al. 2017) and TRADES (Zhang et al. 2019) . We
summarize the natural accuracy and robust accuracy in the
left seven columns of Table 1 and 2 for comparison.

From Table 1 and 2 we can find that the Standard model
can barely resist to any kind of attacks. When testing with
the adversarial examples, the robust accuracy of the Stan-
dard model will abruptly plunge to almost zero, except for
FGSM which is a slightly weaker attack. Madry and TRADES
demonstrate their effectiveness on defending the adversarial
attacks, however, there is a large margin between their natural
accuracy and robust accuracy. We attribute this phenomenon
to the misalignment of the representation distributions be-
tween natural examples and adversarial examples so that it is
not easy for the model to generalize to both natural and adver-
sarial examples. In contrast, our proposed DRRDN not only
achieves higher performance on adversarial classification ac-
curacy (boldface) but also maintains a smaller gap between
the natural and adversarial accuracies. This suggests that by

3https://pytorch.org/
4https://github.com/AAAI2021DRRDN/DRRDN.git
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MNIST

Models Natural
Accuracy

Robust Accuracy White-box Attack Black-box Attack from Surrogate Models
FGSM PGD40 PGD100 CW40 CW100 Standard Madry TRADES DRRDN

Standard 99.49 86.44 0.36 0.30 0.00 0.00 – 90.26 83.83 98.24
Madry 99.45 98.88 96.58 95.32 96.62 95.43 97.74 – 97.02 98.03

TRADES 99.50 98.98 96.95 95.73 96.88 95.88 97.77 96.93 – 97.95
DRRDN 99.56 99.13 97.55 96.78 97.52 96.93 98.05 97.38 97.59 –

Table 1: Model performance under white-box and black-box adversarial attacks on MNIST dataset.

CIFAR10

Models Natural
Accuracy

Robust Accuracy White-box Attack Black-box Attack from Surrogate Models
FGSM PGD40 PGD100 CW40 CW100 Standard Madry TRADES DRRDN

Standard 95.32 37.22 0.0 0.0 0.0 0.0 – 45.22 47.79 50.40
Madry 86.53 55.86 45.49 44.97 47.29 46.95 79.55 – 68.66 71.42

TRADES 84.66 60.30 50.91 50.32 49.73 49.11 81.60 70.79 – 74.52
DRRDN 85.76 62.81 52.32 52.21 51.88 51.33 82.65 72.26 72.33 –

Table 2: Model performance under white-box and black-box adversarial attacks on CIFAR10 dataset.

disentangling and aligning the class-specific representation,
a tighter bond between the natural accuracy and adversarial
robustness can be achieved.

Black-box Attacks We further verify our model with
black-box attacks. Just as the name implies, this type of
attack assumes that the detail of the target defender is totally
unknown to the attacker. Even though the black-box attacks
are generally much weaker than the white-box attacks, the
setting of black-box attack is more natural in the real-world
applications where the specific design of the model is not
clear and can demonstrate the transferability of the model
robustness against different attacks.

Regarding the design of black-box attacks, we first inde-
pendently train surrogate models including Standard, Madry,
TRADES and DRRDN to generate adversarial examples with
PGD method based on their gradients. Then the adversar-
ial examples generated by certain surrogate model will be
used to attack other target models. Specifically, when gen-
erating the black-box attacks, we use the same model struc-
tures as in white-box attacks. For convenience, the PGD
method also share the same set of hyper-parameters (i.e.,
ε = 0.3, α = 0.01 with 40 iterations for MNIST; ε = 0.031,
α = 0.003 with 20 iterations for CIFAR10). The classifica-
tion results under black-box attacks can be found in the right
four columns of Table 1 and 2.

By vertically viewing the right four columns of Table 1
and 2, we can see that DRRDN empowers the model with
the strongest robustness (boldface) against black-box attacks,
which means that the robustness of DRRDN is not specialized
for a certain attack, but is a universal characteristic across
different attacks. The possible reason may be that the class-
irrelevant representation can well-distinguish the natural and
adversarial distribution and induce different attacks into one
non-natural distribution. However, an interesting finding is

that DRRDN provides the weakest attacks (underlined) if we
observe the right four columns of Table 1 and 2 horizontally.
In fact, there is a natural and intuitive explanation for this
phenomenon. We generated adversarial perturbations with
DRRDN based on the gradient of the class-specific branch.
The class-specific representation can capture the basic and
essential characteristic of the input with respect to its cate-
gories (ideally, purer than the representation extracted from
the Standard model which only trained with the natural data,
because the redundant information about the natural distri-
bution is also eliminated). Thus, the adversarial perturbation
generated by DRRDN is supposed to be slightly weaker than
that generated by Standard model.

The Effectiveness of Disentanglement
Aforementioned experiments demonstrate that DRRDN is
able to empower the DNN models with stronger robustness
against both white- and black-box adversarial attacks. We
may wonder how and whether the elaborate disentanglement
mechanism really benefits the robustness of the model. In
this subsection, we conduct the following two exploratory
experiments to verify the effectiveness of disentanglement.

Hybrid Reconstructed Representations In the method
section, we introduce the function of class-specific and class-
irrelevant representations in detail. Recall that the job of class-
specific disentangler is to retain the representation which only
contains the information for classification, meanwhile the
class-irrelevant representation aims at absorbing the perturba-
tion information. Naturally, the class-specific representations
disentangled from the natural and adversarial examples are
supposed to generalize well from one to another because
they are basically from the same distribution. Thus, should
the disentanglement mechanism of DRRDN really works,
it is not difficult to imagine that if we combine the class-
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Figure 2: Visualization of class-specific, class-irrelevant and
standard representations on MNIST.

Hybrid
Representation zs + zi z′s + zi zs + z′i z′s + z′i

Accuracy 99.31% 99.02% 95.82% 95.01%

Table 3: Classification performance on hybrid representa-
tions.

specific and class-irrelevant representations with different
distribution labels (i.e., natural distribution and adversarial
distribution) to reconstruct the hybrid representations, we
will receive distinct classification results by the classifier
of the Standard model fine-tuned on the hybrid represen-
tations. Because the hybrid representations actually restore
the original representation from two distributions. With the
same setting as the white-box attack on MNIST dataset, we
conduct classification experiments based on the hybrid recon-
structed representations with a standard training model and
the results are shown in Table 3. Note that, by permutation,
we can reconstruct four kinds of combinations of hybrid rep-
resentations which are zs + zi, z′s + zi, zs + z′i, and z′s + z′i,
respectively.

In Table 3, it is obvious that the reconstructed representa-
tions hybridized with z′i (i.e., the class-irrelevant representa-
tion from adversarial examples) are generally more difficult
be correctly classified by the standard model. On the con-
trary, the hybrid representations which contain zi (i.e., the
class-irrelevant representation from natural examples) can be
well-distinguished. This phenomenon implies that the distri-
bution characteristic has been successfully disentangled into
the class-irrelevant representation.

Visualization of Disentangled Representations In order
to better demonstrate the effectiveness of the disentangle-
ment, we conduct a visualization of the disentangled repre-
sentations. The visualization experiment is also based on the

Model DRRDN DRRDN-MI DRRDN-REC

PGD40 97.55% 96.88% 97.32%

PGD100 96.78% 96.25% 96.43%

Table 4: Ablation study on MNIST dataset. DRRDN (the final
algorithm), DRRDN-MI (without the mutual information
item), and DRRDN-REC (without the reconstruction item).

experiment setting of the white-box attack on MNIST dataset.
After the robust model trained with DRRDN is obtained, we
first extract the class-specific and class-irrelevant represen-
tations from the natural and adversarial testing data, then
we compress the high-dimensional representation into a 2D
feature by t-SNE (Maaten and Hinton 2008). We summarize
the visualization results in Figure 2. Compressed features
belonging to different categories are represented with differ-
ent colours. Except for the class-specific and class-irrelevant
representation, we also visualize the representations from the
Standard model for comparison.

In Figure 2, the fist and third row demonstrate the com-
pressed representations of examples from natural distribution
and adversarial distribution, respectively, and the middle row
is a combination of compressed representations form both dis-
tributions to illustrate the distribution alignment. Regarding
the compressed representation in Figure 2, we have the fol-
lowing three significant discoveries: 1) only the class-specific
representation is classifiable concerning both natural and
adversarial examples; 2) only the class-irrelevant represen-
tation can distinguish between the natural and adversarial
distribution; 3) in the middle row, the class-specific repre-
sentation extracted from natural and adversarial examples is
more compact and aligns better than the standard represen-
tation. These aforementioned characteristics also justify the
effect of disentanglement.

Ablation Study We further conducted ablation study by
removing the mutual information item (Eq. (9)) or the recon-
struction item (Eq. (10)) from the whole objective function,
respectively. As shown in Table 4, we find that without mu-
tual information, DRRDN suffers a much worse accuracy
drop than that without the reconstruction item, which implies
the importance of the complete disentanglement.

Conclusion
In this paper, we investigate the problem of adversarial de-
fense against adversarial attacks. We propose the DRRDN
model to disentangle the class-specific representation where
the information about natural and adversarial domain char-
acteristics has been fully eliminated. We also provide a theo-
retical guarantee of our proposed model by taking advantage
of the GAN theories. Empirical evaluations based on bench-
mark datasets further demonstrate the superiority of DRRDN
compared with state-of-the-art defense methods.
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Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion attacks
against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery in
databases, 387–402. Springer.

Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316 .

Buckman, J.; Roy, A.; Raffel, C.; and Goodfellow, I. 2018.
Thermometer Encoding: One Hot Way To Resist Adversarial
Examples. In International Conference on Learning Repre-
sentations. URL https://openreview.net/forum?id=S18Su--
CW.

Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), 39–57. IEEE.

Collobert, R.; and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Advances in neural informa-
tion processing systems, 2672–2680.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572 .

Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; and Mc-
Daniel, P. 2017. On the (statistical) detection of adversarial
examples. arXiv preprint arXiv:1702.06280 .

Guo, T.; Xu, C.; He, S.; Shi, B.; Xu, C.; and Tao, D. 2019a.
Robust student network learning. IEEE Transactions on
Neural Networks and Learning Systems .

Guo, T.; Xu, C.; Shi, B.; Xu, C.; and Tao, D. 2019b. Learn-
ing from Bad Data via Generation. In Advances in Neural
Information Processing Systems, 6044–6055.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.

Ilyas, A.; Santurkar, S.; Tsipras, D.; Engstrom, L.; Tran, B.;
and Madry, A. 2019. Adversarial examples are not bugs, they
are features. In Advances in Neural Information Processing
Systems, 125–136.

Kannan, H.; Kurakin, A.; and Goodfellow, I. 2018. Adver-
sarial logit pairing. arXiv preprint arXiv:1803.06373 .

Kinney, J. B.; and Atwal, G. S. 2014. Equitability, mutual
information, and the maximal information coefficient. Pro-
ceedings of the National Academy of Sciences 111(9): 3354–
3359.

Liu, A. H.; Liu, Y.-C.; Yeh, Y.-Y.; and Wang, Y.-C. F. 2018.
A unified feature disentangler for multi-domain image trans-
lation and manipulation. In Advances in neural information
processing systems, 2590–2599.

Locatello, F.; Bauer, S.; Lucic, M.; Raetsch, G.; Gelly, S.;
Schölkopf, B.; and Bachem, O. 2019. Challenging common
assumptions in the unsupervised learning of disentangled
representations. In international conference on machine
learning, 4114–4124.

Maaten, L. v. d.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research 9(Nov):
2579–2605.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2017. Towards deep learning models resistant to adversar-
ial attacks. arXiv preprint arXiv:1706.06083 .

Mathieu, M. F.; Zhao, J. J.; Zhao, J.; Ramesh, A.; Sprech-
mann, P.; and LeCun, Y. 2016. Disentangling factors of
variation in deep representation using adversarial training. In
Advances in neural information processing systems, 5040–
5048.

Metzen, J. H.; Genewein, T.; Fischer, V.; and Bischoff, B.
2017. On detecting adversarial perturbations. arXiv preprint
arXiv:1702.04267 .

Moosavi-Dezfooli, S.-M.; Fawzi, A.; Fawzi, O.; and Frossard,
P. 2017. Universal adversarial perturbations. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, 1765–1773.

Peng, X.; Huang, Z.; Sun, X.; and Saenko, K. 2019. Domain
agnostic learning with disentangled representations. arXiv
preprint arXiv:1904.12347 .

Prakash, A.; Moran, N.; Garber, S.; DiLillo, A.; and Storer,
J. 2018. Protecting JPEG images against adversarial attacks.
In 2018 Data Compression Conference, 137–146. IEEE.

Su, J.; Vargas, D. V.; and Sakurai, K. 2019. One pixel attack
for fooling deep neural networks. IEEE Transactions on
Evolutionary Computation 23(5): 828–841.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199 .

Tian, Y.; Pei, K.; Jana, S.; and Ray, B. 2018. Deeptest: Au-
tomated testing of deep-neural-network-driven autonomous
cars. In Proceedings of the 40th international conference on
software engineering, 303–314.

3152



Wang, F.; Zhao, L.; Li, X.; Wang, X.; and Tao, D. 2018.
Geometry-aware scene text detection with instance transfor-
mation network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1381–1389.
Xie, C.; Wu, Y.; Maaten, L. v. d.; Yuille, A. L.; and He, K.
2019. Feature denoising for improving adversarial robustness.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 501–509.
Yang, Y.; Qiu, J.; Song, M.; Tao, D.; and Wang, X. 2020.
Distilling Knowledge From Graph Convolutional Networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
Zagoruyko, S.; and Komodakis, N. 2016. Wide residual
networks. arXiv preprint arXiv:1605.07146 .
Zhang, H.; Yu, Y.; Jiao, J.; Xing, E. P.; Ghaoui, L. E.; and Jor-
dan, M. I. 2019. Theoretically principled trade-off between
robustness and accuracy. arXiv preprint arXiv:1901.08573 .

3153


