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Abstract
Recent advances in person re-identification (re-ID) have led
to impressive retrieval accuracy. However, existing re-ID
models are challenged by the adversarial examples crafted
by adding quasi-imperceptible perturbations. Moreover, re-
ID systems face the domain shift issue that training and
testing domains are not consistent. In this study, we argue
that learning powerful attackers with high universality that
works well on unseen domains is an important step in pro-
moting the robustness of re-ID systems. Therefore, we in-
troduce a novel universal attack algorithm called “MetaAt-
tack” for person re-ID. MetaAttack can mislead re-ID mod-
els on unseen domains by a universal adversarial perturba-
tion. Specifically, to capture common patterns across differ-
ent domains, we propose a meta-learning scheme to seek
the universal perturbation via the gradient interaction be-
tween meta-train and meta-test formed by two datasets. We
also take advantage of a virtual dataset (PersonX), instead
of real ones, to conduct meta-test. This scheme not only en-
ables us to learn with more comprehensive variation factors
but also mitigates the negative effects caused by biased fac-
tors of real datasets. Experiments on three large-scale re-ID
datasets demonstrate the effectiveness of our method in at-
tacking re-ID models on unseen domains. Our final visual-
ization results reveal some new properties of existing re-ID
systems, which can guide us in designing a more robust re-
ID model. Code and supplemental material are available at
https://github.com/FlyingRoastDuck/MetaAttack AAAI21.

Introduction
Person re-identification (re-ID) (Sun et al. 2018; Wang et al.
2018) aims to match pedestrians across non-overlapping
cameras. Recent advances in person re-ID have witnessed
great progress with the developments of deep models (Ye
et al. 2020; Wang et al. 2020b). However, the robustness of
deep re-ID models is challenged by the adversarial exam-
ples (Szegedy et al. 2014; Wang et al. 2020a). By disturb-
ing images with quasi-imperceptible noises, re-ID models
will suffer from catastrophic performance degradation. This
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Figure 1. Schematic illustration of attacking in re-ID. Adver-
sarial perturbation sets of real source, real target, and virtual
(PersonX) datasets are visualized in different colors. Each
perturbation set crushes the re-ID model on its correspond-
ing dataset. The common region represents perturbations
that can attack models on all datasets. This common region
is hard to reach when directly training with only one dataset,
e.g., optimizing with real source (δinit→δreal) or PersonX
(δinit→δvirtual). Our MetaAttack leverages the interacted
gradients from real source and PersonX to guide the initial-
ized perturbation to the common region (δinit→δmeta).

makes the design of robust re-ID systems that are insensi-
tive to adversarial examples become an urgent issue to be
resolved.
“Our strength grows out of our weakness.”

—Ralph Waldo Emerson
Inspired by this quote, in this work, we argue that learning
powerful attackers helps verifying and improving the robust-
ness of re-ID models, especially ones with high universality.
Then, our goal is designing such an attacker, which will help
reveal and understand the weaknesses of re-ID systems.

Most current studies in adversarial attack mainly fo-
cus on image classification (Moosavi-Dezfooli, Fawzi, and
Frossard 2016; Moosavi-Dezfooli et al. 2017; Goodfellow,
Shlens, and Szegedy 2015), while few (Tolias, Radenovic,
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and Chum 2019; Li et al. 2019; Wang et al. 2020a) have
touched upon the attacking scheme of image retrieval, espe-
cially person re-ID. Different from image classification, 1)
person re-ID is an open-set (Panareda Busto and Gall 2017)
problem in which identities in the training and testing sets
are non-overlapped, and 2) person re-ID often encounters
a large domain shift issue that training and testing sets are
from different domains (Zhong et al. 2018). Hence, it is im-
portant to learn an adversarial attacker that is appropriate
for different person identities and can generalize to differ-
ent unseen domains. Recently, MisRank (Wang et al. 2020a)
focuses on attacking unseen domains by simulating the im-
pact of image scale with a multi-scale feature extractor. De-
spite its effectiveness, MisRank has two shortcomings: 1) it
requires to generate a unique noise for each query image,
limiting the efficiency and flexibility; 2) it ignores various
factors (e.g., illumination and viewpoint) that significantly
influence the testing results, which should also be consid-
ered in generalization. In this paper, we aim to design an at-
tacker that is 1) efficient and flexible, and 2) robust to more
variations that may exist in unseen domains.

For the first aspect, we propose to adopt Universal Adver-
sarial Perturbation (UAP) (Moosavi-Dezfooli et al. 2017)
for person re-ID. The goal of UAP is to mislead models
with a single universal perturbation, which can speed up the
attacking process. In addition, the learned UAP can reflect
the distribution bias of data (Moosavi-Dezfooli et al. 2017),
which benefits the interpretation of the model and the pro-
posal of a defense scheme. However, since the adversarial
perturbation is, in fact, a kind of feature (Ilyas et al. 2019), it
may excessively focus on the biased factors of training data
and as such may fail to achieve good performance on un-
seen domains. In this study, we assume that there exists a
universal perturbation that captures common factors across
domains and can attack most domains. Taking Fig. 1 as an
example, we consider the perturbation sets of different do-
mains have intersections with each other. The “common re-
gion” represents the perturbations that can attack most do-
mains and we aim to learn a perturbation belonging to it.

To achieve this, a straightforward way is to train with a
much larger and comprehensive dataset. However, in prac-
tice, due to the difficulty of labeling, the size of existing
datasets are limited. Although we can directly train with the
combination of existing datasets, the domain shifts between
different datasets will hamper capturing the shared knowl-
edge among datasets. In addition, due to the data privacy,
we can actually only access few datasets. To solve this prob-
lem, we propose to utilize the meta-learning (Finn, Abbeel,
and Levine 2017) to simulate the cross-domain process us-
ing two datasets during training. The meta-learning sepa-
rates the training data into meta-train and meta-test, which
enables us to learn the basic knowledge from meta-train as
well as generalize the variation factors from meta-test. In-
tuitively, if a meta-test can cover as many common factors
as possible, then the learned perturbations would be poten-
tially located at the “common region” and thus can well at-
tack more unseen domains. However, the existing real-world
datasets are seriously limited by the biased environmen-
tal factors (Sun and Zheng 2019), hindering the strength

of the meta-learning. Therefore, for the second aspect, we
consider to take a virtual (synthetic) dataset, PersonX (Sun
and Zheng 2019), into the meta-training process. PersonX
is designed to simulate important variation factors of the re-
ID system, such as pose, viewpoint, illumination and back-
ground. Moreover, more factors can be involved by sim-
ply controlling and generating data with a unity engine. It
is easier for virtual dataset to consider more environmental
factors. Based on these, PersonX is more appropriate to be
the meta-test for capturing common patterns across domains
during meta-learning.

This work proposes a novel universal adversarial per-
turbation method, named “MetaAttack”, for person re-ID
through virtual-guided meta-learning. In our method, we
use two datasets during training: a real dataset regarded
as the source domain and a virtual dataset (PersonX) re-
garded as the extra association domain. MetaAttack is de-
signed to learn a universal perturbation that disturbs queries
and causes significant performance drop on different unseen
(target) domains without any online modification. Specifi-
cally, we take the real dataset as meta-train and PersonX as
meta-test. This enables us to simulate the cross-domain con-
straint and to learn the universal perturbation with a meta-
learning. During optimization, the gradient from meta-train
and meta-gradient from meta-test are aggregated to obtain
the final gradient, which is used to update the perturbation
and can improve the universality of the learned perturbation.
To sum up, our contributions mainly lie in three aspects:
• We propose a meta-learning scheme to learn universal

perturbation for person re-ID. With our method, the cross-
domain constraint is explicitly injected into the optimiza-
tion, improving universality of the learned perturbation.

• We adopt a virtual dataset as meta-test during meta-
optimization. The diverse, balanced virtual data enable us
to capture more common patterns across domains.

• Extensive experiments on three large-scale benchmarks
demonstrate the effectiveness of the proposed MetaAt-
tack. Our method can outperform state-of-the-art ap-
proaches when attacking unseen domains, even using a
smaller perturbation budget ε.

Related Work
Adversarial Attack
Szegedy et al. (2014) reveal the existence of adversarial ex-
amples and propose to learn perturbations by one-step gra-
dient optimization. Subsequently, a lot of adversarial attack
methods have been explored (Moosavi-Dezfooli, Fawzi,
and Frossard 2016; Madry et al. 2018; Poursaeed et al. 2018;
Fan et al. 2020), but they need to generate perturbation for
each image individually, which are not efficient in practice.
Su, Vargas, and Sakurai (2019) propose to attack classifica-
tion models with only one pixel. However, it dramatically
suffers from increased searching time when handling large-
scale datasets. To speed up the attacking process, Moosavi-
Dezfooli et al. propose the Universal Adversarial Perturba-
tion (UAP) (Moosavi-Dezfooli et al. 2017) algorithm that
can attack deep models with a single adversarial noise. It can

3129



Query Disturbed

Training Attacking

Pe
rs
on
X

So
ur
ce

: Gradient
: Meta-Gradient

Meta-test
on 𝛿′

Meta-train
on 𝛿

Target #1

Target #2

𝛿’ 𝛿

Figure 2. The framework of the proposed MetaAttack. During training, we use the source dataset S as meta-train Mtr and
PersonX as meta-testMte to simulate cross-domain attack. The aggregation of gradients computed by meta-train and meta-test
is used to optimize the perturbation δ. During testing, δ can attack both source domain and unseen target domains.

also be used for black-box attack, where the target model is
not available during the optimization. Most of existing attack
methods focus on misleading classification models. Differ-
ent from them, this paper concentrates on fooling person re-
ID systems with a universal perturbation.

Attack Person Re-ID System
There are few existing works that contribute to the attack of
image retrieval problem (Li et al. 2019; Wang et al. 2020a),
especially person re-ID. Li et al. (2019) design an attack
scheme for image retrieval by corrupting label-wise, pair-
wise and list-wise relationships in the training set. Zheng
et al. (2018) and Bai et al. (2019) study the effectiveness of
different attack methods for person re-ID. The above meth-
ods do not explicitly consider the context of universal at-
tack, which aims to attack unseen domains during testing
and is the goal of this work. Our work is most related to the
method in (Wang et al. 2020a) that designs a generator to
produce perturbation and verify the universality of the gen-
erated perturbation. Different from their work, our method
does not require any generators and adopts a virtual-guided
meta-learning scheme to learn a UAP.

Meta Learning
Meta-learning is designed to learn new tasks with limited
training samples and improve the generalization to differ-
ent tasks (Li et al. 2018; Guo et al. 2020). Existing meta-
learning methods can be mainly divided into three classes:
metric-based (Snell, Swersky, and Zemel 2017; Sung et al.
2018), model-based (Santoro et al. 2016) and optimizing-
based methods (Finn, Abbeel, and Levine 2017; Nichol
and Schulman 2018). Our algorithm is constructed based
on MAML (Finn, Abbeel, and Levine 2017), which is an
optimizing-based method. MAML attempts to obtain a good
initialized weight that can fast adapt to new tasks by simulat-
ing the learning process of new tasks with meta-test. Differ-
ent from MAML that focuses on few-shot learning problem,

this work aims to learn a universal perturbation that can be
used for misleading re-ID models on unseen domains.

Methodology
Problem Definition. We aim to seek a universal adversar-
ial perturbation δ that can mislead ranking results of re-ID
models in both source domain S and unseen target domains
T . The attack operation is achieved by adding δ to a query
image I . The perturbed query I

′
(I

′
= I + δ) is used to

retrieve from the gallery and mislead victim re-ID model F .

Overall Framework
In Fig. 2, we show the overall framework of the proposed
MetaAttack. In the training stage, we propose to optimize δ
by meta-learning with a source dataset and an extra associ-
ation dataset. The source data is a real dataset (e.g., Duke),
which is adopted as the meta-train for basic optimization.
The extra association dataset is a virtual dataset (PersonX)
that is utilized as meta-test to mimic possible real-world sce-
narios and improve the universality of δ. Our method tries
to learn a δ locating at the “common region” that can suc-
cessfully attack different domains. In the attack stage, the
obtained δ fools re-ID models, resulting in incorrect ranking
lists. Next, we will introduce our method in detail.

Basic Losses for Attacking Re-ID Models
In this work, we aim to cheat re-ID models with a single
universal perturbation. We use pair-wise and label-wise re-
lations among training samples for the perturbation learning.
Misleading Pair-wise Relations. We follow (Wang et al.
2020a), which applies triplet loss to pull dissimilar pairs
close and push similar pairs away. Different from (Wang
et al. 2020a), we do not use the labels of training data to es-
timate the pair-wise relations between samples. Instead, we
apply the centroids generated by clustering, which can bet-
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Figure 3. An illustration of our meta-learning process. Given
current perturbation δ, we update it with gradient computed
on meta-train dataMtr and obtain temporary δ′. Then, we
compute meta-gradient on meta-test dataMte with δ′. Note
that the meta-gradient is obtained from δ rather than δ′.
The final gradient is the combination of gradient and meta-
gradient, which is used for updating δ.

ter reveal the sample similarities of re-ID models (Li et al.
2019; Radenović, Tolias, and Chum 2018).

Optimizing perturbations with cluster centroids can be re-
garded as directly corrupting the feature space of the re-ID
model. Therefore, we first quantize the training data into k
centroids by the k-means algorithm with the features gener-
ated by re-ID models. Then, based on the obtained cluster
centroids, we use the triplet loss to mislead pair-wise rela-
tions between samples, which is formulated as:

Ltri(f
′
; δ) =

[
||cn − f

′
||2 − ||cp − f

′
||2 +m

]
+
, (1)

where [·]+ is the max(·, 0) function. f
′ ∈ Rd×1 is the dis-

turbed feature of the disturbed image I
′

(f
′
= F(I ′

)), and
d is the dimension of feature. cp and cn are closest and fur-
thest cluster centroids of original image feature in the train-
ing data, respectively.m is the hyper-parameter that controls
the margin of positive and negative pairs.
Misleading Label-wise Relations. We also use the loss
function proposed in (Li et al. 2019) to mislead label-wise
relations among training samples. In this function, a mis-
classification loss is used to enforce a sample away from its
nearest centroid while pull it close to its second-nearest cen-
troid. The mis-classification loss is formulated as:

Lcls(f
′
; δ) =

[
f
′Tc1 − f

′Tc2

]
+
, (2)

where c1 and c2 represent the nearest and second-nearest
centroids of original image feature, respectively.

Virtual-Guided Meta-Learning
To improve the universality of perturbation δ, an intuitive
way is to train with a larger dataset. This is, however, not ap-
plicable in the real world because of the difficulty of labeling
re-ID data and data privacy. We propose to generalize pertur-
bation with meta-learning. In our method, the training data is
formed by two datasets that are regarded as meta-trainMtr

and meta-testMte, respectively. As shown in Fig. 3, the fi-
nal gradient for meta-optimization is obtained by combining

gradients from bothMtr andMte, which calibrates the uni-
versal perturbation δ to the direction that can perform well
on both parts. Intuitively, if a meta-test set includes as many
common factors as possible, the learned perturbation will
more easily be located at the “common region,” as shown in
Fig. 1, and thus the perturbation has a better universality. To
achieve this, we require a dataset that has more common and
balanced factors to formMte. PersonX is a virtual synthetic
dataset that contains several important and comprehensive
variation factors of re-ID system. Hence PersonX is more
appropriate for meta-learning. We present a virtual-guided
meta-learning algorithm for attacking re-ID models. The al-
gorithm is summarized in Alg. 1, which contains three steps.
Step 1: Meta-train. We utilize the source dataset S as the
meta-train set and learn the perturbation δ with the loss func-
tions introduced in Sec. . For the given meta-train batch with
Nb samples, we perturb and extract their features with the re-
ID model trained on the source data. The loss function for
meta-train is formulated as:

Lmtr(F
′

mtr; δ) =
1

Nb

Nb∑
i=1

[
Lcls(f

′

i ; δ)+λLtri(f
′

i ; δ)
]
, (3)

where F
′

mtr represents Nb features of current disturbed
meta-train batch, f

′

i is the i-th feature, and λ is the balanc-
ing parameter. We follow (Dong et al. 2018; Li et al. 2019)
to obtain a updated temporary δ′ through stochastic gradient
descent (SGD) with momentum, which is formulated as:

g′ = µg +
∇δLmtr
||∇δLmtr||1

,

δ′ = clip(−ε, ε, δ − α · sign(g′)),
(4)

where g′ is the momentum for updating δ and g is the mo-
mentum. µ is the weight of momentum and α is the learn-
ing rate. clip(·) is the function that ensures the constraint
||δ||∞ ≤ ε. δ

′
is the updated temporary perturbation, which

will be used in the following meta-test step.
Step 2: Meta-test. We use PersonX to be the meta-testMte

and compute meta-test loss with temporary δ′ obtained in
Step 1, which is defined as:

Lmte(F
′

mte; δ
′) =

1

Nb

Nb∑
i=1

[
Lcls(f

′

i ; δ
′) + λLtri(f

′

i ; δ
′)
]
,

(5)
where F

′

mte indicatesNb features of current disturbed meta-
test batch, f

′

i is the i-th feature extracted by re-ID model.
The meta-test is used to mimic the perturbation attack pro-
cess on unseen target domains. We use the meta-test loss to
calculate the meta-gradient on the original δ, which can be
considered as a regularization term to guide the original δ to
the “common region” in the final step.
Step 3: Meta-update. The final step is based on the losses
in the aforementioned two steps. Specifically, our final meta-
loss function for learning δ is:

Lmeta(F
′

mtr,F
′

mte; δ) = Lmtr(F
′

mtr; δ)+Lmte(F
′

mte; δ
′
).

(6)
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Algorithm 1 Procedure of MetaAttack.
Inputs: Meta-trainMtr (source dataset S), meta-testMte

(association dataset), number of centroids k, batch size
Nb, re-ID model trained on source domain FS , maximum
iterations max iter, learning rate α.
Outputs: Universal perturbation δ.

1: Use k-means clustering to obtain k centroids on Mtr

andMte, respectively;
2: Initialize δ with 0;
3: for i in max iter do
4: repeat
5: Sample mini-batches mtr and mte with Nb images

fromMtr andMte, respectively;
6: Disturbmtr andmte with δ to obtainm

′

tr andm
′

te;
7: Extract features for disturbedm

′

tr andm
′

te withFS
to obtain F

′

mtr ∈ Rd×Nb and F
′

mte ∈ Rd×Nb ;
8: // Step 1: Meta-train
9: Compute meta-train loss and obtain temporary δ′

with F
′

mtr (Eq. 3 and Eq. 4);
10: // Step 2: Meta-test
11: Compute meta-test loss with δ′ and F

′

mte (Eq. 5);
12: // Step 3: Meta-update
13: Compute final loss and update δ through SGD with

momentum (Eq. 6);
14: untilMtr andMte are enumerated;
15: end for
16: Return δ;

The former item aims to learn basic knowledge with meta-
train, while the latter item aims to capture common factors
across domains that are helpful in improving universality.

Universal Attack
The optimized δ is utilized to proceed universal attack, as
shown in the right part of Fig. 2. We mainly aim to attack
re-ID models of unseen domains. This goal is achieved by
directly adding δ to all queries and corrupting their corre-
sponding retrieval ranking lists.

Experiments
Datasets. We use three large-scale re-ID benchmarks to
verify our algorithm, i.e. Market-1501 (Market) (Zheng
et al. 2015), DukeMTMC-reID (Duke) (Ristani et al.
2016; Zheng, Zheng, and Yang 2017) and MSMT-17
(MSMT) (Wei et al. 2018). Market contains 32, 668 images
of 1, 501 identities obtained from six cameras. Duke consists
of 36, 411 labeled images of 1, 404 identities pictured by
eight different cameras. MSMT has 126, 441 images from
4, 101 pedestrians captured by fifteen cameras. For each
dataset, nearly half of the identities are used for training.
We only use PersonX-456 as meta-test, which removes all
samples without backgrounds in PersonX (Sun and Zheng
2019) and contains 39, 852 images from 410 identities.
Evaluation Protocol. To show the universality of different
attack methods, we learn δ on a source dataset and then

adopt δ to corrupt queries of other (target) datasets. In this
paper, only the real datasets will be used as source and target
datasets. The virtual dataset (PersonX) is an extra associa-
tion dataset for our MetaAttack. The widely used mAP and
rank-1 accuracy are used for evaluation. Lower mAP and
rank-1 accuracies indicate better attack performance.
Experimental Settings. We test our method on both global-
based and part-based models. For the first, we use IDE
(Zheng, Yang, and Hauptmann 2016) to train the re-ID
model and extract pooling-5 feature to compute Eq. 6 for
meta-optimization. For the second, we use PCB (Sun et al.
2018) to train the re-ID model. Specifically, PCB considers
pedestrians as six parts and extract 256-dim feature for each
part.1 We use the ResNet-50 (He et al. 2016) as the backbone
for both models.

All hyper-parameters in our experiments are set as follow:
the number of centroids k = 512, the batch size Nb = 50,
the iteration number max iter = 20, margin m = 0.5,
and the learning rate α = ε/10. We use SGD with momen-
tum (Dong et al. 2018; Li et al. 2019) to update δ, and the
weight of momentum µ = 1. The balancing factor λ is set
to 10. We perform L∞-bounded attacks with ε = 8 unless
otherwise noted. ε is the upper bound for each pixel of the
generated δ, i.e., ||δ||∞ ≤ ε.

Comparison with State-of-the-Art
We first compare our method with two state-of-the-art
algorithms: MisRank2 (Wang et al. 2020a) and UAP-
Retrieval2 (Li et al. 2019). In most experiments, we set the
ε = 8 to obtain quasi-imperceptible perturbation. We also
report results when ε = 16 for fair comparison with Mis-
Rank (Wang et al. 2020a). In addition, since our method uses
PersonX as the extra association dataset, we report the re-
sults of training MisRank with both source data and PersonX
(“MisRank+PersonX”). In Tab. 1, the first two columns of
results (Duke→ Market and Duke→ MSMT) use Duke as
the source domain and the other two datasets (Market and
MSMT) as target domains. Similar settings are used for the
last two columns of results.

From Tab. 1, we have the following conclusions. (1) Our
method can achieve the best attack results with the same ε
in all settings. This demonstrates the effectiveness of our
method in attacking unseen domains and shows that our
method is capable of attacking both global- and part-based
models. (2) The effect of MisRank largely relies on a larger
ε. When ε = 8, MisRank fails to achieve competitive attack-
ing results while our method obtains reasonable results that
clearly outperform MisRank. Importantly, our method with
ε = 8 can obtain better results than MisRank with ε = 16
in some settings. For example, in the setting of Duke →
Market, our method with ε = 8 reduces the mAP to 4.9%.
This is 5.4% lower than MisRank with ε = 16. (3) PersonX
can not bring improvement for MisRank. When additionally

1During clustering, part features are aggregated into 1, 536-dim
feature to obtain cluster centroids. During optimization, each clus-
ter centroid is divided into six parts for computing attack losses of
each corresponding part.

2We reproduced the experiments based on the authors’ code.
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Backbone Methods Duke→Market Duke→MSMT Market→ Duke Market→MSMT
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

IDE

Before Attack 78.2 88.7 42.3 69.8 66.7 80.9 42.3 69.8
MisRank 28.2 38.6 11.7 30.3 36.7 48.8 11.1 28.5

MisRank + PersonX 38.5 51.5 20.9 55.8 43.4 71.2 12.4 31.0
MisRank (ε = 16) 10.3 13.0 3.0 7.2 13.7 18.3 1.6 4.2

UAP-Retrieval 8.2 9.7 5.5 15.4 14.8 20.4 5.3 13.9
MetaAttack (Ours) 4.9 7.0 3.5 8.3 11.2 15.2 3.4 8.3

MetaAttack (Ours, ε = 16) 0.7 0.9 0.3 0.7 1.0 1.3 0.5 1.1

PCB

Before Attack 76.7 91.3 50.8 88.9 68.0 84.1 50.8 88.9
MisRank 48.1 64.2 21.1 47.7 31.2 45.4 14.4 28.5

MisRank + PersonX 52.4 70.6 18.8 39.6 38.0 51.4 18.8 39.6
MisRank (ε = 16) 11.5 13.8 5.2 9.6 12.4 17.8 8.2 17.0

UAP-Retrieval 21.6 30.4 4.4 9.1 29.0 41.9 4.3 8.9
MetaAttack (Ours) 19.5 28.2 4.2 8.7 26.9 39.9 3.8 8.2

MetaAttack (Ours, ε = 16) 4.5 5.9 0.6 1.4 4.1 6.6 0.9 1.9

Table 1. Results for attacking re-ID systems. We use our method to attack different backbones (IDE (Zheng, Yang, and Haupt-
mann 2016) and part-based PCB (Sun et al. 2018)), then compare our method with state-of-the-arts (MisRank (Wang et al.
2020a) and UAP-Retrieval (Li et al. 2019)). “Before Attack”: re-ID accuracies of unseen target model on target set.

No.
Duke→MSMT Market→MSMT Extra Data Meta
mAP rank-1 mAP rank-1 Real PersonX Learning

1 5.6 14.3 5.8 14.9 × × ×
2 5.1 14.5 5.7 14.3 X × ×
3 4.8 10.4 5.0 12.6 X × X
4 4.6 9.9 5.5 14.2 × X ×
5 3.5 8.3 3.4 8.3 × X X

Table 2. Ablation study on the proposed virtual-guided
meta-learning algorithm.

training with PersonX, the attacking results of MisRank are
even worse compared to the one trained with only source
data. This suggests that PersonX may be not suitable for
generator-based method and that leveraging the extra virtual
dataset is not trivial in attack re-ID.

Ablation Study
To show the effectiveness of the proposed method, we con-
duct experiments by adding extra training data and meta-
learning into the baseline. Results with IDE model are re-
ported in Tab. 2. The first row (No.1) is the baseline that only
uses the basic losses functions (Sec. ) on the training data.
For the extra real data, we use Market when using Duke as
the source domain, vice versa.
The effectiveness of meta-learning. To verify the signif-
icance of the meta-learning strategy, we compare with the
variant that directly trained with the source data and the ex-
tra data. From the comparison of No.2 vs No.3 and No.4 vs
No.5, we can observe that 1) directly combing the source
and extra data brings limited improvement; and 2) training
with the meta-learning strategy can consistently improve the
attack results and universality of learned perturbation.
The benefit of virtual data in meta-learning. Another
important component of our method is adopting a virtual
dataset instead of a real one during meta-learning. The com-
parison of No.3 vs No.5 shows that virtual-guided meta-
learning outperforms the real-guided one. For example,

Backbone Method Duke Market
mAP rank-1 mAP rank-1

IDE
Before Attack 66.7 80.9 78.2 88.7
UAP-Retrieval 4.2 9.9 3.6 4.5

Ours 3.6 6.4 3.1 3.4

PCB
Before Attack 68.0 84.1 76.7 91.3
UAP-Retrieval 14.3 20.3 10.7 15.1

Ours 11.2 16.5 10.9 15.4

Table 3. Results on source domain.

when using Duke as the source domain, virtual-guided meta-
learning (No.5) reduces the mAP to 3.5%, which is lower
than real-guided one (No.3) by 1.3%. These results indicate
that using a dataset with less biased factors can improve the
universality of learned perturbation.

Performance on Source Domain
In Tab. 3, we report results on the testing set of source do-
main and compare our MetaAttack with UAP-Retrieval for
both IDE and PCB models. Tab. 3 shows that our model
can effectively corrupt the accuracies of the ranking list on
the source domain, and can achieve better results than UAP-
Retrieval in most settings. Since UAP-Retrieval uses almost
the same basic loss functions to our MetaAttack, it can be re-
garded as the reduction of MetaAttack, which does not use
virtual-guided meta-learning. Then, we can conclude that
our MetaAttack can also improve the university of pertur-
bation in the source domain.

Visualization
In this section, we visualize the obtained δ and some per-
turbed query images to give an intuitive presentation of the
proposed MetaAttack algorithm.
Robust Queries in MetaAttack. Our MetaAttack can ef-
fectively corrupt re-ID accuracies with slight modifications
to query images. However, it remains several robust queries
that can defend our attack. To find out their common at-
tributes, we show some examples in Fig. 4(a) and (b). All
the experiments in this part use the IDE model.
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(a) Robust queries in Market (b) Robust queries in Duke

(c) Ranking lists of two (d) Ranking lists of two
robust queries in Market robust queries in in Duke

Figure 4. The visualization of some robust queries.

Ours
( 𝜖 = 8 )

MisRank
( 𝜖 = 8 ) /

Original
Query /

UAPMethod Images

Figure 5. Visualizations of corrupted queries and obtained δ.

We observe two kinds of situations that may help defend
our attack. The first kind of robust query is caused by oc-
clusion and we visualize its ranking lists before and after
attack in the first and second rows of Fig. 4(c). Since there
are few occluded samples in the training data, the learned
perturbation will only capture the overall distribution of non-
occluded images but be sensitive to occluded images.

Therefore, during testing, we can try to add an occlud-
ing process before forwarding queries to the re-ID model,
for defending the adversarial samples, e.g., adding eras-
ing (Carmon et al. 2019; Zhong et al. 2020). Another kind
of robust query is caused by the camera shift in the dataset.
As shown in the third (before attack) and fourth (after at-
tack) rows of Fig. 4(c), the pedestrian in the query image
with a green T-shirt, changes to a blue T-shirt in its cor-
rectly matched nearest neighbor. The change of appearance
is caused by camera shift (Zhong et al. 2018) and has been
a long-standing problem in person re-ID. Both the source
data and the PersonX do not contain such kind of cases,
which causes our failure. In fact, each domain may contain
its own specific camera shift that is very different to other
domains. Therefore, we argue that adding domain-specific
camera shift to query images may help defend our attack,
which can be used as a reference for designing defense mod-
els of re-ID. Similar results and conclusions can also be
found in Duke (Fig. 4(d)).
Visualizations of δ and Perturbed Images. In Fig. 5, we

Duke Market
MisRank 0.1985 0.1889

Ours 0.2121 0.1963

Table 4. SSIM scores of generated adversarial examples be-
tween (Wang et al. 2020a) and our method.
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Figure 6. Sensitive analysis of ε.

visualize the obtained δ and some perturbed images. Our
method is more efficient and flexible than MisRank, because
our method only requires a single perturbation for all queries
while MisRank needs to generate new perturbations for dif-
ferent queries. We can see that under the same magnitude ε
(ε = 8), our generated adversarial examples are much better
than those of MisRank. The quality of generated adversarial
examples is further evaluated in Sec. with SSIM.

Further Experiments
Image Quality. SSIM (Wang et al. 2004) is a kind of met-
ric to measure the similarity of two images and has been
widely used to evaluate the quality of GAN-made (Goodfel-
low et al. 2014) virtual images. A larger SSIM score between
synthetic and natural images indicates better quality and less
distortion. We, therefore, utilize SSIM to evaluate the de-
gree of distortion for adversarial examples. We report SSIM
scores in Tab. 4. Compared with MisRank, our method pro-
duces higher SSIM scores, indicating that our method can
generate higher quality adversarial images and achieve bet-
ter attack performance.
Sensitive Analysis. We change the value of ε from 8 to 16
and study the influence of perturbation budget. In Fig. 6, we
plot the curve of mAP and rank-1 scores under two settings
(Market→Duke and Duke→Market). The results show that
a larger ε can easily damage re-ID accuracies. However, to
make the obtained perturbation quasi-imperceptible, we sug-
gest using a small ε to attack real-world re-ID models if a
good attack results can be achieved.

Conclusion
In this paper, we propose a novel universal attack algorithm
for person re-ID, which is based on the virtual-guided meta-
learning. Our method takes the source dataset to be meta-
train and the synthetic PersonX dataset as meta-test. By
combining the gradients from both meta-train and meta-test
sets during meta-optimization, the obtained perturbation can
learn to generalize in unseen target domains and achieve sat-
isfactory results. In our future work, we consider applying
our observations and perspectives to design robust re-ID that
can defend against adversarial samples.
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