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Abstract

In 2D image processing, some attempts decompose images
into high and low frequency components for describing edge
and smooth parts respectively. Similarly, the contour and flat
area of 3D objects, such as the boundary and seat area of
a chair, describe different but also complementary geome-
tries. However, such investigation is lost in previous deep
networks that understand point clouds by directly treating all
points or local patches equally. To solve this problem, we pro-
pose Geometry-Disentangled Attention Network (GDANet).
GDANet introduces Geometry-Disentangle Module to dy-
namically disentangle point clouds into the contour and flat
part of 3D objects, respectively denoted by sharp and gentle
variation components. Then GDANet exploits Sharp-Gentle
Complementary Attention Module that regards the features
from sharp and gentle variation components as two holistic
representations, and pays different attentions to them while
fusing them respectively with original point cloud features.
In this way, our method captures and refines the holistic
and complementary 3D geometric semantics from two dis-
tinct disentangled components to supplement the local in-
formation. Extensive experiments on 3D object classifica-
tion and segmentation benchmarks demonstrate that GDANet
achieves the state-of-the-arts with fewer parameters. Code is
released on https://github.com/mutianxu/GDANet.

1 Introduction
The capacity to analyze and comprehend 3D point clouds
receives interests in computer vision community due to its
wide applications in autonomous driving and robotics (Rusu
et al. 2008; Qi et al. 2018). Recent studies explore deep
learning methods to understand 3D point clouds inspired by
their great success in computer vision applications (He et al.
2015, 2016). Deep networks (Guo et al. 2016) can extract
effective semantics of 3D point clouds with layered opera-
tions, in contrast to low-level handcrafted shape descriptors.
The pioneer work PointNet (Qi et al. 2017a) directly pro-
cesses 3D points by Multi-layer Perceptrons(MLPs) (Hornik
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Figure 1: Examples of 3D objects, where sharp-variation
component describes the contour areas, and gentle-variation
component denotes the flat areas. Our method regards the
features from these two disentangled components as two
holistic representations, i.e., each point of the original point
cloud is linked with all points of sharp and gentle variation
components. This operation integrates complementary geo-
metric information from two disentangled components.

1991), whose main idea is to learn a spatial encoding of each
point and then aggregate all point features to a global point
cloud signature. PointNet++ (Qi et al. 2017b) adopts a hier-
archical encoder-decoder structure to consider local regions,
which downsamples point clouds in layers and gradually in-
terpolates them to the original resolution. From another per-
spective, some recent efforts extend regular grid convolution
(Xu et al. 2018; Li et al. 2018; Thomas et al. 2019) on irreg-
ular 3D point cloud configuration.

To fully utilize geometric information, some attempts
(Wang et al. 2019b; Lan et al. 2019) capture local geometric
relations among center points and its neighbors. However,
these works treat all points or local patches equally, which
are entangled together with large redundancy, making it hard
to capture the most related and key geometric interest to the
network. Moreover, previous operations only capture the ge-
ometric information in local areas.

To remedy these defects, we need to disentangle point
clouds into distinct components and learn the few-redundant
information represented by these holistic components. In
image processing, some attempts collect and combine the
high-frequency (edge) and low-frequency (smooth) compo-
nents with distinct characteristics filtered through digital sig-
nal processing. Similarly, the contour areas of 3D objects
delineating skeletons provide basic structural information,
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while the flat areas depicting surfaces supply the geomet-
ric manifold context. When operating them separately, the
network performs better by learning distinct but also com-
plementary geometric representations of point clouds. This
inspires us to extract and utilize the geometric information
of the contour and flat areas disentangled from 3D objects.

Here comes a challenge about how to disentangle 3D
objects into such holistic representations (contour and
flat area) and utilize them for better understanding point
clouds. Thanks to the graph signal processing (Ortega
et al. 2018; Sandryhaila and Moura 2014) who analyzes
the frequency on graphs, we firstly extend this to our
Geometry-Disentangle Module (GDM) that dynamically an-
alyzes graph signals on 3D point clouds in different semantic
levels and factorizes the original point cloud into the contour
and flat parts of objects, respectively denoted by sharp and
gentle variation components (explained at the end of Sec.
4.1). Further, we design Sharp-Gentle Complementary At-
tention Module (SGCAM) that pays different attentions to
features from sharp and gentle variation components accord-
ing to geometric correlation, then respectively fuses them
with each original point features instead of only operating
local patches. As shown in Fig. 1, the contour and flat area
have distinct but also complementary effects on reflecting
the geometry of objects.

Equipped with GDM and SGCAM, we propose GDANet
who captures and refines the holistic and complementary ge-
ometries of 3D objects to supplement local neighboring in-
formation. Experimental results on challenging benchmarks
demonstrate that our GDANet achieves the state of the arts,
and is more lightweight and robust to density, rotation and
noise. Thorough visualizations and analysis verify that our
model effectively captures the complementary geometric in-
formation from two disentangled components.

2 Related Work
Point Cloud Models Based on Geometry. Recently the ex-
ploration on point cloud geometry has drawn large focus.
Geo-CNN (Lan et al. 2019) defines a convolution opera-
tion that aggregates edge features to capture the local geo-
metric relations. In (Xu, Zhou, and Qiao 2020), they aggre-
gate points from local neighbors with similar semantics in
both Euclidean and Eigenvalue space. RS-CNN (Liu et al.
2019c) extends regular CNN to encode geometric relation
in a local point set by learning the topology. DensePoint
(Liu et al. 2019b) recognizes the implicit geometry by ex-
tracting contextual shape semantics. However, the contour
and flat area of 3D objects play different but complemen-
tary roles in modeling 3D objects. All the operations men-
tioned above neglect this property and treat all points or
local patches equally. By contrast, we present Geometry-
Disentangle Module to disentangle point clouds into sharp
(contour) and gentle (flat area) variation components, which
are two distinct representations of 3D objects.
Attention Networks. The applications of attention mech-
anism in sequence-based tasks become popular (Vaswani
et al. 2017), which helps to concentrate on the most relevant
and significant parts. Some recent point cloud methods uti-
lize attention to aggregate the neighboring features of each

point (Liu et al. 2019a). GAC (Wang et al. 2019a) proposes
a graph attention convolution that can be carved into specific
shapes by assigning attention weights to different neighbor
points. Different from them, our network learns to assign
different attention weights to the disentangled contour and
flat areas of 3D objects based on geometric correlations. In
Sec. 4.3, we also illustrate that not only the attention mech-
anism helps the network refine the disentangled feature but
also our disentanglement strategy assists the attention mod-
ule easily concentrate on the key geometric interests.
Disentangled Representation. Recent attempts use disen-
tangled representations in different applications. In general,
the concept of disentanglement (Bengio, Courville, and Vin-
cent 2013) dominates representation learning, closely link-
ing with human reasoning. In (Xiao, Hong, and Ma 2018),
they separate a facial image into individual and shared fac-
tors encoding single attribute. (Huang et al. 2018) processes
images by decomposing latent space into content and style
space. Yet, the disentangled representation on point cloud
understanding remains untouched. Our method explicitly
disentangles point clouds into two components denoting
contour and flat area of objects, which are fused to provide
distinct and complementary geometric information.

3 Revisit Graph Signal Processing
Graph signal processing (Ortega et al. 2018; Sandryhaila and
Moura 2014) is based on a graph G = (V,A) where V =
{v1, · · · , vN} denotes a set of N nodes and A ∈ RN×N de-
notes a weight adjacency matrix encoding the dependencies
between nodes. Using this graph, we refer to the one-channel
features of the data on all nodes in vertex domain as s ∈ RN .
Let A be a graph shift operator which takes a graph signal
s ∈ RN as input and produces a new graph signal y = As.
We also have the eigen decomposition A = VΛV −1, where
the columns of matrix V are the eigenvectors of A and the
diagonal eigenvalue matrix Λ ∈ RN×N corresponds to or-
dered eigenvalues λ1, · · · , λN .

Theorem 1 (Ortega et al. 2018; Sandryhaila and Moura
2014). The ordered eigenvalues (λ1 ≥ λ2 ≥ · · · ,≥ λN )
represent frequencies on the graph from low to high.

Accordingly, we obtain V −1y = ΛV −1s, and the graph
Fourier transform of graph signal s and y are ŝ = V −1s,
ŷ = V −1y, respectively. V −1 is the graph Fourier trans-
form matrix. The components of ŝ and ŷ are considered as
frequency contents of signal s and y.

As stated in (Sandryhaila and Moura 2014), a graph filter
is a polynomial in the graph shift:

h(A) =
L−1∑
`=0

h`A
`, (1)

where h` are filter coefficients and L is the length of the fil-
ter. It takes a graph signal s ∈ RN as the input and generates
a filtered signal y = h(A)s ∈ RN . Then y = V h(Λ)V −1s,
making V −1y = h(Λ)V −1s and ŷ = h(Λ)ŝ.

Theorem 2 (Ortega et al. 2018; Sandryhaila and Moura
2014). The diagonal matrix h(Λ) is the graph
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frequency response of the filter h(A), which is

denoted as ĥ(A). The frequency response of λi
is
∑L−1

`=0 h`λ
`
i .

4 Method
We firstly design Geometry-Disentangle Module based on
graph signal processing to decompose point clouds into
sharp and gentle variation components (respectively denotes
the contour and flat area). Further, we propose Sharp-Gentle
Complementary Attention Module to fuse the point features
from sharp and gentle variation components. Last, we intro-
duce Geometry-Disentangled Attention Network equipped
with these two modules.

4.1 Geometry-Disentangle Module
Graph Construction. We consider a point cloud con-
sisted of N points with C−dimensional features, which
is denoted by a matrix X = [x1, x2, · · · , xN ]T =
[s1, s2, · · · , sC ] ∈ RN×C , where xi ∈ RC represents the
i-th point and sc ∈ RN represents the c-th channel feature.
Features can be 3D coordinates, normals and semantic fea-
tures. We construct a graph G = (V,A) through an adja-
cency matrix A that encodes point similarity in the feature
space. Each point xi ∈ RC is associated with a correspond-
ing graph vertex i ∈ V and sc ∈ RN is a graph signal. The
edge weight between two points xi and xj is

Ai,j =

{
f(||xi − xj ||2), ||xi − xj ||2 ≤ τ
0, otherwise

, (2)

where f(·) is an non-negative decreasing function (e.g.,
Gaussian function) which must ensure that A ∈ RN×N is
a diagonally dominant matrix and τ is a threshold. In ad-
dition, to handle the size-varying neighbors across different
points and feature scales, we normalize all edge weights as
follows:

Ãi,j =
Ai,j∑
j Ai,j

, (3)

where Ã is still a diagonally dominant matrix. Now as illus-
trated in Theorem 1, we obtain a graph G = (V, Ã), where
eigenvalues of Ã

(
λ̃1 ≥ λ̃2 ≥ · · · ,≥ λ̃N

)
represent graph

frequencies from low to high.

Disentangling Point Clouds into Sharp and Gentle Vari-
ation Components. In 2D image processing, high fre-
quency component corresponding to intense pixel variation
(edge) in spatial domain gets high response while low fre-
quency component (smooth area) gets very low response af-
ter being processed by a high-pass filter. Here we aim to de-
sign a graph filter on our constructed G = (V, Ã) to select
the points belongs to the contour and flat areas of 3D ob-
jects. Following Eq. (1), the key to design this graph filter is
to construct the corresponding polynomial format of h(Ã).
Here we use the Laplacian operator as (Chen et al. 2018),
where L = 2, h0 = 1, h1 = −1, making the polynomial
format of the graph filter to be h(Ã) = I − Ã. This filter

Figure 2: Visualization of the process in our Geometry-
Disentangle Module and the obtained sharp and gentle vari-
ation components of some objects.

takes sc ∈ RN in this graph as the input and generates a fil-
tered graph signal yc = h(Ã)sc ∈ RN . Following Theorem
2, the frequency response of h(Ã) with corresponding λi is

ĥ(Ã) =

 1− λ̃1 0 · · · 0

0 1− λ̃2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1− λ̃N

 . (4)

In this way, the eigenvalues λ̃i are in a descending order,
which represents that frequencies are ordered ascendingly
according to Theorem 1. Due to the corresponding fre-
quencies response 1 − λ̃i < 1 − λ̃i+1, the low frequency
part is weakened after this filter. Hence, we call this filter
h(Ã) = I − Ã a high-pass filter.

Note: The eigenvalues representing frequencies is only
for deducing the polynomial format of our high-pass filter
h(Ã). The implementation of this filter only requires the
calculation of Ã.

Next, we apply h(Ã) to filter the point set X and get a
filtered point set h(Ã)X . Due to h(Ã) = I − Ã, each point
in h(Ã)X can be formulated as:(

h(Ã)X
)
i

= xi −
N∑
j

Ãi,jxj . (5)

When the distance between two point xi, xj is less than the

threshold τ , Ai,j remains non-zero value. Here
(
h(Ã)X

)
i

actually equals to the difference between a point feature and
the linear convex combination of its neighbors’ features,
which reflects the degree of each point’s variation to its
neighbors.

Finally, we calculate the l2-norm of Eq. (5) at every point,
and the larger l2-norm at a given point reflects sharp varia-
tion and means this point belongs to the contour of a 3D
object, which is consistent to the edge areas obtained by
a high-pass filter in 2D images. We put all original points
in descending order as Xo = [x̌1, x̌2, · · · , x̌N ]T accord-
ing to l2-norm of Eq. (5). Following this order, we select
the first M points Xs = [x̌1, x̌2, · · · , x̌M ]T ∈ RM×C

called as sharp-variation component and the lastM points
Xg = [x̌N−M+1, x̌N−M+2, · · · , x̌N ]T ∈ RM×C denoted
by gentle-variation component. Fig. 2 (a) shows this pro-
cess and Fig. 2 (b) visualizes sharp and gentle variation com-
ponents disentangled by our trained network. We employ
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Figure 3: Visualization of Sharp-Gentle Complementary At-
tention Module. Features from different variation compo-
nents are respectively integrated with the features from orig-
inal point cloud, so that to provide complementary geomet-
ric information.

our Geometry-Disentangle Module on point features in dif-
ferent semantic levels, which is elaborated in Sec. 4.4.

4.2 Sharp-Gentle ComplementaryAttentionModule
The sharp and gentle variation components play different
but complementary roles in representing the 3D object ge-
ometries, which should not be treated equally. However,
most previous methods operate all points or local point sets
equally. To solve this issue and utilize different variation
components gained from Geometry-Disentangle Module,
we design Sharp-Gentle Complementary Attention Module
inspired by (Vaswani et al. 2017; Wang et al. 2018). It re-
gards the features from two variation components as two
holistic geometric representations and generates two atten-
tion matrices separately according to the geometric correla-
tion. Then our module assigns the corresponding attention
weights to features from two different variation components
while respectively integrating them with the original input
point features. The details of Sharp-Gentle Complementary
Attention Module are shown in Fig. 3 and elaborated below.

Attention Matrix. According to Sec. 4.1, we have origi-
nal point cloud featuresXo, features of sharp-variation com-
ponent Xs and features of gentle-variation component Xg .
These features are firstly encoded by different nonlinear
functions, and then are utilized to calculate different atten-
tion matrices as the following equation:

Ws = Θo(Xo)·Θs (Xs)
T
,Wg = Φo(Xo)·Φg (Xg)

T
, (6)

where different nonlinear functions Θo, Θs, Φo and Φg are
implemented by different MLPs without sharing parame-
ters. In this way, we get two learnable adjacency matrices
Ws ∈ RN×M and Wg ∈ RN×M , where M is the number
of points in either Xs or Xg . Each row of Ws or Wg cor-
responds to attention weights between each original point
feature and features from sharp and gentle variation com-
ponents, respectively. Because the adjacency matrices Ws

and Wg are computed as feature dot product, they can ex-
plicitly measure the semantic correlation or discrepancy be-
tween points.

Geometric Complementary Understanding. Next we
apply the attention matrices Ws and Wg respectively to the
features from sharp and gentle variation components so that
the network can pay different attentions to them while fus-
ing them with the original point features. The whole fusion
procedure can be formulated as the following:

Ys = Xo +Ws ·Ψs (Xs) , (7)
Yg = Xo +Wg ·Ψg (Xg) , (8)

in element-wise:

(Ys)i = (Xo)i +
∑M

j=1
(Ws)ij ·Ψs((Xs)j), (9)

(Yg)i = (Xo)i +
∑M

j=1
(Wg)ij ·Ψg((Xg)j), (10)

where two different nonlinear functions Ψs and Ψg are uti-
lized to refine Xs and Xg . They are implemented by differ-
ent MLPs without sharing parameters.

Last we concatenate the features as the following equa-
tion:

Z = Ys ⊕ Yg. (11)
Accordingly, our method regards features from sharp and

gentle variation components as two holistic representations,
i.e., all the point features with different attention weights
from these two components are respectively linked with
each original input point cloud feature. Our module explic-
itly conveys the complementary geometric information and
the most relevant and key geometric interest to the network
in a holistic way for better understanding 3D point cloud.

4.3 Self-Attention or Sharp-Gentle Attention
Self-Attention is an alternative holistic fusion strategy that
pays different attentions to each point feature while linking
them with the original point cloud itself, instead of integrat-
ing the feature from sharp and gentle variation components.

However, self-attention unavoidably brings large redun-
dancy due to it operates all points together, making it hard
to capture the most related geometric interest to the network.
Yet this issue is alleviated after disentangling point clouds,
where our model easily pays different attentions to two vari-
ation components carried with few redundancy and distinct
geometric information.

To verify this, we compare our module with applying
self-attention fusion on original point features and visual-
ize the attention weights distribution in Fig. 5. The attention
weights in self-attention are assigned irregularly, which indi-
cates that self-attention method is limited to capture the most
relevant geometric information. By contrast, through our
module, different point features from sharp and gentle vari-
ation components are assigned different weights based on
the geometric correlation with the anchor point in the origi-
nal input. As shown in Fig. 5, a point in one leg of desk pays
more attention to the points belongs to that leg among sharp-
variation component and the relatively geometry-correlated
points among gentle-variation component.

Therefore, compared with self-attention, our attention
module drives the network to easily capture the distinct and
complementary geometric information with less redundancy
from two disentangled components. The quantitative com-
parison is listed in Table 4.
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Figure 4: GDANet architecture for classification and segmentation. Our network disentangles the original point cloud into sharp
and gentle variation components in different semantic levels, then fuses features from these two components with the input point
features to supplement the KNN local context.

Figure 5: Visualization of the attention weights distribu-
tion on Sharp-Gentle Complementary Attention and Self-
attention. We select some points in original point clouds as
the anchor points (in circle) to investigate their attention dis-
tributions, where the points drawn in red are assigned higher
attention weights and the points drawn in blue are assigned
lower attention weights with respect to anchor points. We
observe that anchor points pay different attentions to points
based on the geometric correlation.

4.4 Geometry-Disentangled Attention Network

As illustrated in Fig. 4, we combine Geometry-Disentangle
Module (GDM) and Sharp-Gentle Complementary Atten-
tion Module (SGCAM) as basic blocks to design Geometry-
Disentangled Attention Network for 3D point cloud anal-
ysis. Before each block, features of each point and its K-
nearest neighbors (KNN) are concatenated through the local
operator. In each block, an adjacency matrix is constructed
in the feature space through GDM to disentangle points into
sharp and gentle variation components. Then we fuse fea-
tures from these two components with the original input of
the block through SGCAM. A residual connection (He et al.
2016) is applied at the end of each block. Two basic blocks
are followed by another local operator. After the last MLP
layer, the final global representation from max-pooling fol-
lowed by fully connected and softmax layers is configured
to the classification task. For the segmentation task, the out-
puts of the last MLP layer are directly passed through the
fully connected as well as softmax layers to generate per-
point scores for semantic labels. Note that each original in-

put point is not only integrated with its nearest neighbors to
capture local structure, but also linked with all of the disen-
tangled sharp and gentle variation components that beyond
the local area to describe distinct and complementary 3D
geometries. Table 4 shows the quantitative comparison of
applying our modules with only using KNN.

Dynamic Adjacency Matrix Calculation. Inspired by
(Wang et al. 2019b), the adjacency matrix at the beginning
of the GDM in each block is calculated in a dynamic way
depending on the features learned in different semantic lev-
els. Fig. 2 (b) shows that our module successfully disentan-
gles points into sharp and gentle components in various ob-
jects. This disentanglement module is jointly optimized dur-
ing learning to help the network better model the geometric
structure of objects. Sec 5.2 suggests the quantitative com-
parison of this dynamic operation with the operation of pre-
selecting points before training.

5 Experiments
We evaluate our network on shape classification task and
part segmentation task on various datasets. Furthermore, we
provide other experiments to analyze our network in depth.

5.1 3D Point Cloud Processing
Object Classification. We firstly evaluate GDANet on
ModelNet40 (Wu et al. 2015). It contains 9843 training mod-
els and 2468 test models in 40 categories and the data is uni-
formly sampled from the mesh models by (Qi et al. 2017a).
Same with (Wang et al. 2019b), the training data is aug-
mented by randomly translating objects and shuffling the
position of points. Similar to (Qi et al. 2017a,b), we perform
several voting tests with random scaling and average the pre-
dictions during testing. Table 2 lists the quantitative com-
parisons with the state-of-the-art methods. GDANet outper-
forms other methods using only 1024 points as the input.

Our model is also tested on ScanObjectNN by (Uy et al.
2019), which is used to investigate the robustness to noisy
objects with deformed geometric shape and non-uniform
surface density in the real world. We adopt our model on the
OBJ ONLY (simplest variant of the dataset) and OBJ BG
(more noisy background). Sample objects of these variants
are shown in Fig. 6. We retrain the methods listed in (Uy
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method (time order) cls. ins. aero bag cap car cha. ear gui. kni. lamp lap. moto mug pist roc. ska. tab.
PointNet(Qi et al. 2017a) 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++(Qi et al. 2017b) 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SCN(Xie et al. 2018) 81.8 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
KCNet(Shen et al. 2018) 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.0 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
SpiderCNN(Xu et al. 2018) 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
DGCNN(Wang et al. 2019b) 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
RS-CNN(Liu et al. 2019c) 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
DensePoint(Liu et al. 2019b) 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7
InterpCNN(Mao, Wang, and Li 2019) 84.0 86.3 - - - - - - - - - - - - - - - -
3D-GCN(Lin, Huang, and Wang 2020) 82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.0 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8
GSNet(Xu et al. 2020) 83.5 85.3 82.9 84.3 88.6 78.4 89.7 78.3 91.7 86.7 81.2 95.6 72.8 94.7 83.1 62.3 81.5 83.8
GDANet(ours) 85.0 86.5 84.2 88.0 90.6 80.2 90.7 82.0 91.9 88.5 82.7 96.1 75.8 95.7 83.9 62.9 83.1 84.4

Table 1: Segmentation mIOU (%) on ShapeNet Part dataset. “cls.” and “ins.” respectively denotes class and instance mIOU.

Method (time order) Input Acc.
PointNet(Qi et al. 2017a) 1K points 89.2
PointNet++(Qi et al. 2017b) 1K points 90.7
PointCNN(Li et al. 2018) 1K points 92.2
PointWeb(Zhao et al. 2019) 1K points 92.3
Point2Sequence(Liu et al. 2019a) 1K points 92.6
DGCNN(Wang et al. 2019b) 1K points 92.9
KPConv(Thomas et al. 2019) 1K points 92.9
InterpCNN(Mao, Wang, and Li 2019) 1K points 93.0
DensePoint(Liu et al. 2019b) 1K points 93.2
Geo-CNN(Lan et al. 2019) 1K points 93.4
RS-CNN(Liu et al. 2019c) 1K points 93.6
3D-GCN(Lin, Huang, and Wang 2020) 1K points 92.1
FPConv(Lin et al. 2020) 1K points 92.5
GSNet(Xu, Zhou, and Qiao 2020) 1K points 92.9
GDANet(ours) 1K points 93.8
PointNet++(Qi et al. 2017b) 5K points+normal 91.9
PointConv(Wu, Qi, and Fuxin 2019) 1K points+normal 92.5

Table 2: Classification accuracy (%) on ModelNet40 dataset.

Figure 6: Visualization of objects in ScanObjectNN.

et al. 2019) and compare them with our network. The results
are summarized in Table 3, where our model gets the highest
accuracy and the lowest performance drop from OBJ ONLY
to OBJ BG. This proves the practicality of our method.

Shape Part Segmentation. Shape Part segmentation is a
more challenging task for fine-grained shape recognition.
We employ ShapeNet Part (Yi et al. 2016) that contains
16881 shapes with 16 categories and is labeled in 50 parts
where each shape has 25 parts. Same voting test in classifi-
cation is conducted. Table 1 summarizes the instance aver-
age, the class average and each class mean Inter-over-Union
(mIoU). GDANet achieves the best performance with class
mIoU of 85.0% and instance mIoU of 86.5%. It is worth

Method OBJ ONLY OBJ BG acc drop
PointNet(Qi et al. 2017a) 79.2 73.3 ↓ 5.9
SpiderCNN(Xu et al. 2018) 79.5 77.1 ↓ 5.4
PointNet++(Qi et al. 2017b) 84.3 82.3 ↓ 2.0
DGCNN(Wang et al. 2019b) 86.2 82.8 ↓ 3.4
PointCNN(Li et al. 2018) 87.9 85.8 ↓ 2.1
GDANet(ours) 88.5 87.0 ↓ 1.5

Table 3: Classification results (%) on ScanObjectNN dataset
(noise robustness test).

Figure 7: Part Semantic Segmentation examples.

mentioning that GDANet performs better on objects with
obvious geometric structure such as bag, mug and table.
Fig. 7 visualizes some segmentation results.

5.2 Network Analysis
Ablation Study. The results are summarized in Table 4.
When the input point cloud is fused with features from both
sharp and gentle variation components, the network achieves
the best accuracy with 93.4%. GDANet also surpasses the
architecture of only using KNN with 1.2%↑. Eventually, our
method obtains an accuracy of 93.8% with voting tests. This
experiment supports our claim that the disentangled sharp
and gentle variation components cooperatively provide dif-
ferent and complementary geometric information to supple-
ment KNN local semantics.

Furthermore, we replace the selection of sharp and gentle
variation components with random and Furthest Point Selec-
tion (FPS) in GDM. The results are listed in Table 5, where
disentangling point clouds into sharp and gentle variation
components gets the highest accuracy and is noticeably ro-
bust on the noisy dataset ScanObjectNN (Uy et al. 2019).
Empirically, our disentanglement strategy selects points car-
ried with informative geometries instead of noisy points,
which improves the noise robustness.

Moreover, when we pre-compute the adjacency matrix on
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Figure 8: Density robustness on ModelNet40 of using
sparser inputs to a model trained with 1024 points.

knn self sharp gentle voting acc. (%)
91.5

X 92.2
X 91.7

X X 92.6
X X 92.7

X X 92.7
X X 92.4
X X X 93.4
X X X X 93.8

Table 4: Geometry-Disentangled complementary effect to
supplement KNN information in GDANet on ModelNet40.
‘knn’ indicates KNN aggregation, ‘self’ means the input
point cloud is fused with itself by self-attention, ‘sharp’ and
‘gentle’ denote the input point cloud is fused with features
of sharp and gentle variation, ‘voting’ is the voting strategy
during testing, respectively.

3D coordinates to pre-disentangle different variation com-
ponents, and fuse the features from them, it gets 93.0% ac-
curacy. Yet by dynamically calculating the adjacency matrix
on semantic features in GDM at different levels, our net-
work gains 0.8%↑. Our disentanglement module is jointly
optimized during training for modeling different geometric
structures. Fig. 2 shows that our disentanglement strategy
successfully decompose points into sharp (contour) and gen-
tle (flat area) variation components.

Last, we investigate the impact of the number of selected
points M in GDM, which is shown in Table 6. GDANet per-
forms best when selecting 25% of input points, which proves
the benefit of our disentanglement strategy. When the num-
ber of selected points equals to the number of input, it indi-
cates self-attention.

Robustness Analysis. First, the robustness of our network
on sampling density is tested by using sparser points as the
input to GDANet trained with 1024 points. Fig. 8 shows
the result. Although sparser points bring more difficulties,
GDANet still performs consistently at all density settings.

Moreover, Table 7 summarizes the results of rotation
robustness, where GDANet performs best especially with
2.7%↑ than the second best at (s/s).

method ModelNet40 OBJ ONLY OBJ BG
random 92.6 84.7 84.3
FPS 92.7 86.0 84.3
sharp-gentle 93.8 88.1 86.6

Table 5: Classification results (%) of using different point
selection methods in our Geometry-Disentangle Module.

number 1024 512 256 128
acc. (%) 92.6 93.2 93.8 92.9

Table 6: Selecting different number of points in GDM on
ModelNet40.

Method z/z s/s
PointNet(Qi et al. 2017a) 81.6 66.3

PointNet++(Qi et al. 2017b) 90.1 87.8
SpiderCNN(Xu et al. 2018) 83.5 69.6
DGCNN(Wang et al. 2019b) 90.4 82.6

GDANet(ours) 91.2 90.5

Table 7: Accuracy (%) comparisons of rotation on Model-
Net40. z/z: both training and test sets are augmented by ran-
dom rotation for z axis; s/s: both training and test sets are
augmented by random rotation for three axis (x,y,z).

Method #params acc. (%)
PointNet(Qi et al. 2017a) 3.50 M 89.2
PointNet++(Qi et al. 2017b) 1.48 M 90.7
KPConv(Thomas et al. 2019) 6.15 M 92.9
DGCNN(Wang et al. 2019b) 1.81 M 92.9
GSNet(Xu, Zhou, and Qiao 2020)1.51 M 92.9
GDANet(ours) 0.93 M 93.8

Table 8: Comparisons of model complexity on ModelNet40.

Last, our model is tested on ScanObjectNN (Uy et al.
2019) that consists of noisy objects with deformed geomet-
ric shape and non-uniform surface density. Table 3 shows
GDANet gains the lowest accuracy drop from OBJ ONLY
to OBJ BG, which proves the noise robustness of GDANet.

Model Complexity. Table 8 shows the complexity by
comparing the number of parameters. GDANet reduces the
number of parameters by 84.9% and increases the accuracy
with 0.9%↑ compared with KPConv (Thomas et al. 2019).

6 Conclusion
This work proposes GDANet for point cloud processing.
Equipped with Geometry-Disentangle Module, GDANet dy-
namically disentangles point clouds into sharp and gentle
variation components in different semantic levels, which re-
spectively denotes the contour and flat area of a point cloud.
Another core component is Sharp-Gentle Complementary
Attention Module, which applies the attention mechanism
to explore the relations between original points and differ-
ent variation components to provide geometric complemen-
tary information for understanding point clouds. Extensive
experiments have shown that our method achieves state-of-
the-art performances and decent robustness.
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