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Abstract

Visual storytelling is the task of generating a short story to
describe an ordered image stream. Different from visual cap-
tions, stories contain not only factual descriptions, but also
imaginary concepts that do not appear in the images. In this
paper, we propose a novel imagine-reason-write generation
framework (IRW) for visual storytelling, inspired by the logic
of humans when they write a story. First, a multimodal imag-
ining module is leveraged to learn the imaginative storyline
explicitly, improving the coherence and reasonability of the
generated story. Second, we employ a relational reasoning
module to fully exploit the external knowledge (common-
sense knowledge base) and task-specific knowledge (scene
graph and event graph) with a relational reasoning method
based on the storyline. In this way, we can effectively cap-
ture the most informative commonsense and visual relation-
ships among objects in images, enhancing the diversity and
informativeness of the generated story. Finally, we integrate
the visual information and semantic (concept) information
to generate human-like stories. Extensive experiments on a
benchmark dataset (i.e., VIST) demonstrate that the proposed
IRW framework substantially outperforms the state-of-the-art
methods across multiple evaluation metrics.

Introduction
Visual storytelling (VST), which aims to generate a se-
quence of coherent sentences to describe an ordered image
stream, has gained increasing attention in the vision and lan-
guage communities. Different from visual captions, stories
have more diverse structures and include imaginary con-
cepts that do not explicitly appear in the image sequence.
VST is challenging because it requires machines not only to
fully understand semantic meaning of each image in a steam
and the relations among the images, but also to possess the
linguistic intelligence to generate the fluent paragraph and
imaginary concepts for storytelling.

Most recent VST methods employ the sequence-to-
sequence (seq2seq) models to generate the stories based on
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the semantics of images (Wang et al. 2018a; Huang et al.
2019; Jung et al. 2020). The common idea of these meth-
ods is to use the convolutional neural network (CNN) as an
encoder to extract the visual feature of each image and fuse
them together to obtain the whole image stream representa-
tion, and then feed this representational vector into a hier-
archical long short-term memory (LSTM) so as to generate
the narrative story. Seq2seq models have brought great im-
provements for VST and almost dominate this field, since
they have the capacity to generate stories with good flexibil-
ity and quality.

Despite the remarkable progress of previous methods,
there are still several technical challenges for visual story-
telling. First, one major challenge for storytelling is how to
learn the storyline (a sequence of coherent concepts) for the
image stream, which can serve as a guidance for generat-
ing a subjective and imaginative story. However, most previ-
ous methods learn the main concepts for each image without
considering the previously generated sentences (i.e., seman-
tic features), which may hurt the coherence of the gener-
ated story. Second, most existing studies merely learn fine-
grained visual features for images, which do not explicitly
detect the objects and reason about their visual relationship.
Fortunately, with advanced progress in deep learning and
image recognition, higher-level visual understanding tasks
such as scene graph construction have achieved noticeable
success in various computer vision tasks (Teney, Liu, and
van Den Hengel 2017; Johnson, Gupta, and Fei-Fei 2018),
which may provide complementary strengths with symbolic
reasoning for visual storytelling. Third, previous Seq2Seq
models generate the stories solely from the original images.
Such information is insufficient for generating diversity and
imaginative stories since a certain story could contain not
only the concepts described in the image, but also the imag-
inary concepts that do not appear in the image.

In this study, we aim at resolving the aforementioned
challenges in a unified framework. We explore the symbolic
knowledge (graph knowledge) and relation reasoning for vi-
sual storytelling, aiming to benefit from the complementary
strengths of both symbolic reasoning and end-to-end mul-
timodal feature mapping. To this end, we propose a novel
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imagine-reason-write generation framework (IRW), inspired
by the logic of humans when they write the story. First,
we propose a multimodal imagining module to predict the
imaginary concept (topic) for each image based on the cur-
rent visual feature extracted by an encoder and the previ-
ously generated sentence, aiming to improve the coherence
and reasonability of the generated story. Second, we employ
a relational reasoning module to fully exploit the symbolic
knowledge from commonsense knowledge graph (KG) and
task-specific KG (scene graph and event graph) for improv-
ing the diversity and informativeness of the generated story.
In particular, we first retrieve a set of candidate sub-graphs
from the three kinds of graphs. Then, we extract the most
informative graph knowledge from the sub-graphs via graph
convolutional networks (GCNs) (Johnson, Gupta, and Fei-
Fei 2018) as the complementary semantic information for
story generation. Third, we design a guiding unit to inte-
grate the visual features from images and the semantic fea-
tures from the three kinds of graphs to generate a human-like
story for the input image stream.

We summarize our main contributions as follows:

• We propose a novel imagine-reason-write generation
framework for visual storytelling, which benefits from the
complementary strengths of graph knowledge, relational
reasoning, and multi-modal feature mapping.

• We propose a retrieval-enhanced method to build the
event graph from the training corpus. The event graph
learns the high-level events from the stories of similar im-
ages, which can provide auxiliary knowledge for the story
generation.

• Experiments on a benchmark dataset demonstrate that
IRW outperforms the compared methods by a substantial
margin, across multiple evaluation metrics.

Related Work
Visual Captioning
Automatic image captioning is the task of generating a sen-
tence to describe the image content. Inspired by the develop-
ment of neural machine translation, most recent image cap-
tioning methods adopt the encoder-decoder framework (Xu
et al. 2015; Lu et al. 2017; Rennie et al. 2017; Anderson et al.
2018). Xu et al. (2015) proposed an attention-based model
that incorporated the spatial attention on image features into
the decoding process. Lu et al. (2017) proposed a spatial at-
tention model to capture spatial image features and utilized a
sentinel gate to decide whether to attend to image features or
rely on the language model. Rennie et al. (2017) presented
a self-critical sequence training (SCST) method to directly
optimize the model on non-differentiable metrics. Anderson
et al. (2018) proposed a combined bottom-up and top-down
attention mechanism, which calculated the attention at the
level of objects and other salient image regions.

Recently, some previous works have been proposed to
consider the problem of generating a long, coherent, and
detailed story for an image since a single sentence caption
only describes the coarse details of image content (Krause
et al. 2017; Chatterjee and Schwing 2018; Zha et al. 2019).

Krause et al. (2017) integrated the encoder-decoder frame-
work and a hierarchical recurrent neural network, where a
sentence RNN was used to compress the extracted visual
features into sentence topic vectors, and then a word RNN
was employed to generate a sentence based on each topic
vector. Chatterjee and Schwing (2018) augmented the para-
graph generator by leveraging coherence vectors to ensure
topic smoothness between successive sentences and global
topic vectors to summarize information about the image.
Zha et al. (2019) utilized previous visual attention to cap-
ture visual context for compositional visual reasoning and
decided whether to use the context for the word generation.

Visual Storytelling
The goal of visual storytelling is to generate a human-level
narrative to describe the photo stream. Compared with vi-
sual captions, the generated stories may contain more com-
plex structured expressions and imaginary content that are
inferred similar to the performance of a human. Park and
Kim (2015) used a local coherence model to resolve the pat-
terns of local transitions of discourse entities. This is a pio-
neering research for visual storytelling. Afterwards, Huang
et al. (2016) released a large-scale benchmark dataset (i.e.,
VIST) for visual storytelling task, which inspired many fol-
lowing works in this area. For example, Liu et al. (2017)
proposed a novel joint learning model by leveraging the se-
mantic coherence in a photo stream. There have been in-
creasing interests in utilizing reinforcement learning archi-
tecture for visual storytelling (Wang et al. 2018a,b), where a
reward model was designed to evaluate the quality of gener-
ated stories. However, the training process of these models is
inherently unstable. Recently, Yang et al. (2019) proposed a
commonsense-driven generative model, which used a com-
monsense knowledge base by self-attention mechanism to
generate informative stories. Wang et al. (2020) introduced
a graph-based method to enhance visual storytelling based
on relationships of both with-image level and cross-images
level. Different from previous works, our method reasons
over the external knowledge (i.e., commonsense knowledge
base) and task-specific knowledge (i.e., scene graph and
event graph) based on the imaginary storyline to generate
coherent, reasonable and imaginary stories.

Proposed Method
Overall Architecture
Given an image stream I = {I1, ..., IM}, the goal of
visual storytelling is to understand the event flow in the
stream and then generate a coherent, human-level story y =
{y1, .., yM}, where M indicates the number of images in
I and each sentence ym = {wm,1, .., wm,T } consists of T
words.

The overall architecture of the proposed model is illus-
trated in Figure 1. Our model adopts the encoder-decoder
framework as the backbone for visual storytelling. The im-
age stream encoder consists of a CNN and bidirectional
Gated Recurrent Unit (BiGRU), which encodes the image
features and the information from context images in the
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Figure 1: The overview of our model. The image stream encoder learns a visual cue vector for each image in the image steam
via CNN and BiGRU, while the story decoder adopts an imagine-reason-write framework.

stream. The decoder aims to generate a coherent, infor-
mative and imaginative story word by word for the image
stream. To this end, we propose a novel imagine-reason-
write generation architecture. First, a multimodal imagin-
ing module is devised to generate an imaginative storyline.
Second, we employ a relational reasoning module to fully
exploit the external commonsense KG and task-specific
knowledge (scene graph and event graph), and learn the
complementary semantic features for storytelling. Finally,
a story generation module with guiding units is devised
to generates a coherent, informative, and imaginative story
based on both visual and semantic features. Next, we de-
scribe the technical details of each component in the pro-
posed model.

Image Steam Encoder

First, we employ the ResNet-152 (He et al. 2016) pre-trained
on ImageNet (Russakovsky et al. 2015) as our CNN en-
coder to learn the visual feature vector am of each image
Im. Then, BiGRU is deployed to process the visual features
of a sequence of images sequentially and keep its hidden
state through time. In this way, we can obtain the visual cue
vectors r = {r1, ..., rM} that capture the temporal relations
among images, where each cue vector rm captures both the
visual feature of image Im and the information from context
images in the stream. Formally, the visual cue vector rm for
image Im is computed as:

am = CNN(Im) (1)

hI
m = BiGRU(hI

m−1,am) (2)

rm = ReLU(hI
m,am) (3)

Multimodal Imagining Module

Given the visual cue vectors r, our first goal is to extract
a key concept for each image in the photo stream, and an
imaginative storyline is explicitly constructed based on the
predicted concepts. However, it is difficult to learn imagi-
nary concepts and coherent storyline by merely relying on
the visual features extracted from images. Therefore, we de-
sign a multimodal imagining module to integrate visual cue
vectors and previous generated sentence to imagine the ab-
stract concept for each image. Formally, given the previously
generated sentence wm−1,1:T (or ym−1) for image Im−1, a
skip-thought model (Kiros et al. 2015), which maps a full
sentence to a dense sentence vector, is utilized to calculate a
skip-thought vector sym−1 as the sentence representation for
ym−1. Then, a multimodal fusion vector fm is computed by:
fm = ϕ([W1rm,W2sym−1 , g(W3rm +W4sym−1)]) (4)

where W1, W2 , W3 and W4 are the parameters to be
learned. Both ϕ and g are feed-forward neural networks.

We use a GRU to produce a stroyline by generating one
imaginary concept for each image in the image stream. Tak-
ing as input the multimodal fusion vector fm, the hidden
state of GRU at time step m is calculated by:

hm = GRU(fm,hm−1) (5)
where hm is the hidden state of GRU when generating the
concept for the image Im. The generation probabilities of
imaginary key concept for image Im is then computed by:

km ∼ pcm = softmax(Wkhm + bk) (6)
where Wk and bk are learned parameters. The word with
maximum probability are selected as the final imaginary
concept km for image Im.
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Relational Reasoning Module
We propose a relational reasoning module to fully exploit
the commonsense knowledge and task-specific knowledge
(scene graph and event graph) with a relational reasoning
method based on the storyline.

Commonsense Knowledge Graph To bridge the gap be-
tween the predicted imaginary concepts and imaginary sen-
tences, we exploit the commonsense knowledge graph (KG)
to obtain the supporting knowledge corresponding to the
imaginary concepts. Similar to (Yang et al. 2019), we choose
ConceptNet (Speer and Havasi 2012) as our commonsense
KG, which contains a large-scale commonsense facts. Each
fact in KG is composed of two entities, one relation, and a
relation weight, which can be formulated as a triple (sub-
ject entity, relation, object entity). Formally, given the gen-
erated imaginary key concept km of image Im, we conduct
entity mention detection by performing exact matching be-
tween km and entities, and obtain top-L candidate relation-
ships from KG for km based on the relation weights. Hence,
a sub-graph GCm = (VC

m, ECm) is built based on the retrieved
candidate relationships for image Im. VC

m = {vCm,i}
N1
i=1 in-

dicates the entity node set and each edge eCm,ij ∈ ECm repre-
sents the relationship between the entity pair. N1 represents
the number of entity nodes in the retrieved sub-graph.

Scene Graph Scene graph generation aims at automati-
cally mapping an image into a structured graph representa-
tion, which requires detecting salient objects and their re-
lationships in the images. Recently, various studies (Zellers
et al. 2018; Tang et al. 2019) work on scene graph networks
and achieve remarkable progress. Inspired by these works,
we employ the Faster R-CNN detector to generate a set of
object proposals for each image, and then compute dynamic
tree structures (Tang et al. 2019) to encode the object pro-
posals into visual context for predicting the relationship be-
tween each object pair. The scene graph generation model
is pre-trained on the Visual Genome dataset, which is then
utilized directly to generate a scene graph GSm = (VS

m, ESm)

for each image Im, where VS
m = {vSm,i}

N2
i=1 represents the

visual node set and eSm,ij ∈ ESm represents the relation edge
between node vSm,i and vSm,j . N2 indicates the number of
entity nodes in the retrieved scene sub-graph.

Event Graph We first describe the event extraction pro-
cess for each image, and then introduce the operation of
constructing the event graph. First, we develop a retrieval-
enhanced method to retrieve top-R visually similar images
from the training set for each image in the image stream
by exhaustively computing the cosine similarity between the
query image and the training images. Then, the description
sentences of the retrieved similar images are concatenated
to form a guidance story, which is exploited to construct the
event graph. Specifically, given the retrieved guidance story,
we apply the Stanford Open IE approach (Angeli, Premku-
mar, and Manning 2015) to extract an event for each sen-
tence. Each event can be represented as a relational triple
(e1, r, e2), where e1 is the subject entity, e2 is the object en-
tity, and r is the relation between e1 and e2. After obtaining

all the events for the image Im, we extract the consensus
events that are representative in the event set D. In partic-
ular, we first compute the semantic similarity between each
event di and the other event dj in D:

scorei =
1

| D |
∑
dj∈D

cosine
(
sdi , sdj

)
(7)

where scorei is the consensus score for event di. sdi
and

sdj
are skip-thought vectors of event di and dj , respectively.

The top-K events (relational triples) with highest consensus
scores are collected to form the event graph GEm = (VE

m, EEm)

for the image Im, where VE
m = {vEm,i}

N3
i=1 is the entity node

set, and eEm,ij ∈ EEm indicates the relation between vEm,i and
vEm,j . N3 is the number of entity nodes in VE

m.

Relational Reasoning from Graphs We reason over the
retrieved commonsense KG GCm = (VC

m, ECm), the scene
graph GSm = (VS

m, ESm), and the event graph GEm =
(VE

m, EEm), to capture relevant and appropriate knowledge,
which help to improve the diversity and informativeness of
the generated knowledge. The three kinds of graphs share
the same relational reasoning process. Due to limited space,
we merely introduce the details of relational reasoning over
the event graph GEm for conciseness.

Specifically, we utilize a GCN to aggregate infor-
mation along edges of the knowledge. Given a triple
(vEm,i, e

E
m,ij , v

E
m,j), each node and relation entity are first

transformed into vector representations by an embedding
layer, and the triple is represented as (vE

m,i, e
E
m,ij ,v

E
m,j).

Since the node entity vE
m,i can act as subject or object in

different relationship triples, we encode the entity vE
m,i by

considering all the neighbor nodes of vE
m,i. Similar to (John-

son, Gupta, and Fei-Fei 2018), we compute the subject entity

vector
−−→
xE
m,i for the entity vE

m,i by encoding over the edges

which start at vE
m,i. Similarly, the object entity vector

←−−
xE
m,i

for the entity vE
m,i is calculated by encoding over the edges

which end at vE
m,i. Then, the encoded entity vector xE

m,i is

the average of
−−→
xE
m,i and

←−−
xE
m,i:

−−→
xE
m,i =

∑
vE
m,i∈S

E
m,i

ρ(Ws[W5v
E
m,i,W6e

E
m,ij ,W5v

E
m,j ]) (8)

←−−
xE
m,i =

∑
vE
m,i∈O

E
m,i

ρ(Wo[W5v
E
m,l,W6e

E
m,li,W5v

E
m,i]) (9)

xE
m,i =

1

NE
m,i

(−−→
xE
m,i +

←−−
xE
m,i

)
(10)

where W5,W6,Ws,Wo are the learned parameters, and ρ
is an ReLU activation function. SEm,i indicates the triple
set where vE

m,i plays a subject role while OE
m,i indicates

the triple set where vE
m,i plays a object role. NE

m,i =

|SEm,i| + |OE
m,i| represents the number of knowledge triples

associated with vE
m,i. Hence, after processing the whole

event knowledge graph via GCN, the original node enti-
ties {vE

m,i}
N3
i=1 are converted into event graph embeddings

{xE
m,i}

N3
i=1. Similarly, we obtain the relational commonsense
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KG embeddings {xC
m,i}

N1
i=1 and scene graph embeddings

{xS
m,i}

N2
i=1 by reasoning over commonsense KG and scene

graph, respectively.
We devise an attention mechanism to selectively attend to

the event graph embeddings {xE
m,i}

N3
i=1 by using the imag-

inary concept km and previous generated sentence repre-
sentation sym−1 as attention source. Formally, the attended
event graph vector qE

m is computed over {xE
m,i}

N3
i=1 as fol-

lows:

qE
m =

N3∑
i=1

αE
m,ix

E
m,i (11)

αE
m,i =

exp
(
µE
m,i

)∑N3
i=1 exp

(
µE
m,j

) , µE
m,i = ζ([Wckm, sym−1 ],x

E
m,i)

(12)
where αE

m,i indicates the attention weight assigned to xE
m,i.

ζ(·) is a feed-forward neural network. Wc is the word em-
bedding matrix for each input word. Similarly, we can obtain
an attended scene graph vector qS

m from {xE
m,i}

N2
i=1.

Then, the combination of attended scene graph vector
qS
m and event graph vector qE

m is utilized to reason over
commonsense knowledge graph. We also devise an atten-
tion mechanism to selectively attend to the commonsense
graph embeddings {xC

m,i}
N1
i=1 by using [qS

m;qE
m] as attention

source. Formally, the attended commonsense graph vector
qC
m is computed as follows:

qC
m =

N1∑
i=1

αC
m,ix

C
m,i (13)

αC
m,i =

exp
(
µC
m,i

)∑N1
i=1 exp

(
µC
m,j

) , µC
m,i = δ([qS

m,q
E
m],xC

m,i) (14)

where αC
m,i is the attention weight assigned to xC

m,i, δ(·) is
a feed-forward neural network.

Finally, we can obtain the relational knowledge vector
zm by concating the scene graph vector qS

m, commonsense
graph vector qC

m, and event graph vector qE
m:

zm = [qS
m,q

C
m,q

E
m] (15)

Story Generation Module
Our IRW model aims to generate a coherent, reasonable, and
imaginative story for an image stream. Each sentence in the
story corresponds to an image in the photo stream. In this
section, we elaborate on the decoding process for generating
the sentence ym for each image Im in the image stream.

First, we employ attention mechanism to calculate an at-
tended graph vector gm,t based on previous hidden state
hm,t−1 and the relational knowledge vector zm:

gm,t =
3∑

i=1

γm,izm,i (16)

γm,i =
exp (ξm,i)∑3
i=1 exp (ξm,j)

, ξm,i = φ(hm,t−1, zm,i) (17)

where φ(·) is a two-layer neural network that projects a vec-
tor into a scalar value. In addition, we can obtain the seman-
tic cue vectors um,t via a multilayer perceptron (MLP) by

taking as input the combination of the attended graph vector
gm,t and the embedding of generated concept km:

um,t = MLP([gm,t,Wckm]) (18)
where Wc is defined in Eq. (12).

Then, to automatically integrate the visual cue vectors rm
and semantic cue vectors um,t based on the previous gener-
ated word, we propose a guiding unit to generate the story by
integrating the visual cue vectors rm and semantic vectors
um deeply. Specifically, the guiding unit extends the single
GRU decoder to three GRUs (i.e., word GRU, vision GRU
and semantics GRU) that are designed to model the previ-
ously generated word wm,t−1, the visual cue vector rm, and
the semantic cue vector um,t respectively, and outputs cor-
responding hidden states hw

m,t, h
r
m,t, h

u
m,t.

Inspired by the update gate in GRU, we then summarize
the knowledge of visual clue and semantic cue by integrating
the hidden states hr

m,t and hu
m,t into a final cue hidden state

h̃m,t:
h̃m,t = βm,th

r
m,t + (1− βm,t)h

u
m,t (19)

βm,t = σ(W7[tanh(W8h
r
m,t), tanh(W9h

u
m,t)] (20)

where W7,W8,W9 are learnable parameter, σ is the sig-
moid function. Additionally, we also integrate the final cue
hidden state h̃m,t and word hidden state hwm,t into a final
hidden state hm,t.

Finally, the generation probability of the t-th word in the
m-th sentence is computed by:

pwm,t = softmax(Whm,t + b) (21)
where W and b are parameters to be learned.

Training Procedure
Overall, given the input photo stream with M images, our
training objective is to (i) maximize the log-likelihood of
storyline concepts for the story and (ii) maximize the log-
likelihood of ground-truth story. For the story generation,
we have the parallel training data. However, the storyline
information is not provided in the corpus. In this paper,
we employ the graph-based ranking RAKE method (Rose
et al. 2010) to extract the abstract concepts (storyline) from
each story in the training set. Specifically, the RAKE method
evaluates the importance of each word in the story and give
each word a score based on the word frequency and word
degree. We extract the word cm with the highest score from
each sentence ym and treat it as the gold abstract concept
for ym to construct the storyline. Therefore, the final loss
function is formulated as:

Loverall = −

(
λc

M∑
m=1

log pcm + λw

M∑
m=1

T∑
t=1

log pwm,t

)
(22)

where λc and λw are hyperparameters that control the rela-
tive importance of the two loss functions.

Experimental Setup
Experimental Dataset
In order to evaluate the effectiveness of the proposed
method, we conduct experiments on the widely used bench-
mark dataset VIST (Huang et al. 2016). The dataset consists
of 10,117 Flicker albums with 210,819 unique images. Fol-
lowing previous works (Jung et al. 2020; Wang et al. 2020),
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

Seq2Seq (Huang et al. 2016) - - - 3.5 31.4 - 6.8
h-attn-rank (Yu, Bansal, and Berg 2017) - - 21.0 - 34.1 29.5 7.5
XE-ss (Wang et al. 2018b) 62.3 38.2 22.5 13.7 34.8 29.7 8.7
AREL (Wang et al. 2018b) 63.8 39.1 23.2 14.1 35.0 29.5 9.4
HRSL (Huang et al. 2019) - - - 12.3 35.2 30.8 10.7
ReCo-RL (Hu et al. 2020) - - - 12.4 33.9 29.9 8.6
INet (Jung et al. 2020) 64.4 40.1 23.9 14.7 35.6 29.7 10.0
SGVST (Wang et al. 2020) 65.1 40.1 23.8 14.7 35.8 29.9 9.8
IRW 66.7 41.6 25.0 15.4 35.6 29.6 11.0
w/o reasoning 64.3 39.5 23.2 13.5 35.0 29.5 9.4
w/o event 65.2 40.5 24.2 14.7 35.2 29.7 10.3
w/o scene 65.9 41.1 24.4 15.0 35.6 29.7 10.5
w/o commonsense 65.5 40.8 24.1 14.8 35.2 29.6 10.2
w/o guiding unit 66.1 40.9 24.6 14.6 35.3 29.7 10.3
w/o concept loss 63.8 39.0 22.7 13.1 34.8 29.5 9.0

Table 1: Comparisons of the proposed model and the state-of-the-art baseline methods on VIST dataset.

the VIST dataset is split into training/validation/testing sets
with 40,098/4,988/5,050 samples. Each album has five im-
ages and a corresponding story with five sentences.

Baseline Methods
We evaluate and compare the proposed method with several
strong visual storytelling methods, including (1) Seq2Seq
(Huang et al. 2016); (2) h-attn-rank (Yu, Bansal, and Berg
2017), a hierarchically-attentive RNN; (3) XE-ss/AREL
(Wang et al. 2018b), an adversarial reward learning frame-
work; (4) HSRL (Huang et al. 2019), a hierarchically struc-
tured reinforcement learning model; (5) ReCo-RL (Hu et al.
2020), a reinforcement learning framework with relevance,
coherence and expressiveness assessment criteria; (6) INet
(Jung et al. 2020), an imagination network; (7) SGVST
(Wang et al. 2020).

Evaluation Metrics
We quantitatively evaluate our model with six automatic
evaluation metrics that are widely used in previous work
(Jung et al. 2020; Wang et al. 2020), including BLEU-
N (N=1,2,3,4) (Papineni et al. 2002), ROUGE (Lin and
Och 2004), METEOR (Denkowski and Lavie 2014), CIDEr
(Vedantam, Lawrence Zitnick, and Parikh 2015). These met-
rics measure the consistency between the n-gram overlap be-
tween generated stories and reference stories.

Implementation Details
Following previous works (Wang et al. 2018b; Huang et al.
2019; Jung et al. 2020), we utilize the pretrained ResNet-152
(He et al. 2016) to learn image features. The dimension of
each generated image feature vector is set as 2048. The max
number of relationships in each scene graph, event graph and
commonsense graph is set to 25, 25, 40, respectively. We set
the size of the word embedding to 512. The hidden sizes of
all GRUs are set to 512. The dimension of each skip-thought
vector is set to 2400. The maximum length of each sentence
is set to 30 via padding operation. We train the model with
cross-entropy loss, which consists of concept loss and word
loss, and use the Adam optimizer with an initial learning rate

5 × 10−4 to optimize the model. The batch size is set to 80
for all experiments.

Experimental Results
Quantitative Evaluation
We firstly report the model comparison from the quantita-
tive perspective. The experimental results on VIST dataset
are summarized in Table 1. We observe that IRW model
achieves noticeably better performance than the state-of-the-
art methods on most of the automatic evaluation measures.
Concretely, our IRW model makes the relative improvement
over the best existing score by 4.8% on BLEU-4 and 3.7%
on CIDEr. In addition, our model also substantially outper-
forms the AREL, HRSL and ReCo-RL methods, which all
employ reinforcement learning paradigms to optimize the
model. The performance of IRW could be further improved
by deploying reinforcement learning.

Ablation Study
To analyze the effect of each component of the IRW model,
we also perform the ablation test of IRW in terms of dis-
carding the reasoning module (denoted as w/o reasoning),
the event knowledge (denoted as w/o event knowledge), the
guiding unit (denoted as w/o guiding unit), and the story-
line concept loss (denoted as w/o concept loss). As illus-
trated in Table 1, we can observe that both reasoning module
and storyline concept loss contribute greatly to our model.
Benefiting by relational reasoning from graphs to exploit
the commonsense knowledge, scene knowledge and event
knowledge, the IRW model has the capability of utilizing
both explicit objects and implicit perception. Meanwhile,
that the IRW (w/o concept loss) model obtains poor perfor-
mance over all metrics is within our expectation since the
model would reason from the three kinds of graphs and ob-
tain irrelevant information which might be usefulness even
harmful to the decoding process. On the contrast, the model
could learn to automatically generate coherent and reason-
able storylines by calculating the concept loss. In addition,
we can also observe that all three kinds of graphs greatly
influence the performance of the IRW model. This may be
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AREL: this is a picture of a lake. we got to see a lot of boats on the water. the view of the lake was beautiful. we all had a great time in the lake.  at the end of 
the day, we decided to take a picture.
IRW: my friends and i decided to take a boat trip on the river. they had a lot of fun swimming in the water. we crossed the bridge to get a good view. we 
climbed up the mountain and watched the lake. at the end of the day, everyone was tired and ready to go home.
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Figure 2: Example visual stories generated by AREL and IRW, and human-annotated ground-truth descriptions. The graphs in
the left, middle and right for each image indicate the scene graph, commonsense graph and evnet graph, respectively. And the
word with red indicate the predicted concept. Limited by the space, we just show part of the graphs.

Model Rele Cohe Info
Seq2Seq 0.73 0.81 0.69
AREL 0.91 0.94 0.80
HSRL 0.89 0.97 0.85
IRW (Ours) 1.17 1.20 1.13
w/o reasoning 1.05 1.07 0.98
w/o concept loss 0.99 1.02 0.95

Table 2: Human evaluation results. Here, Rele, Cohe and
Info are short for relevance, coherence and informativeness,
respectively.

the reason that the scene graph and event graph capture the
task-specific knowledge, providing essential knowledge of
the salient objects and their relationships. The IRW model
can also capture the external commonsense knowledge from
the commonsense KB to generate informative and imaginary
stories based on the predicted storyline.

Human Evaluation
We also use human evaluation to verify the proposed model
quantitatively. Specifically, we randomly select 200 image
streams from the VIST test set and invited five well-educated
volunteers to judge the quality of the generated stories gen-
erated by different models based on their relevance (whether
the story is relevant with the image stream), coherence
(whether the sentence in the story is coherent with the other
sentences), and informativeness (whether the story contains
diverse and rich content). The volunteers are asked to give
each story a score of 0 (poor), 1 (satisfactory), 2 (good)
for relevance, coherence and informativeness, respectively.
Table 2 reports the results of human evaluation. Consistent
with the results of automatic evaluation metrics, IRW can
generate more relevant, coherent, and informative captions
than other models.

Qualitative Evaluation
To evaluate the proposed IRW model qualitatively, we show
one visual story generated by IRW and AREL model in Fig-
ure 2. IRW can generate coherent and reasonable stories by

utilizing the imagine-reason-write architecture. On the con-
trary, the AREL model, which just relies on visual features
to generate descriptions, is prone to generate simple and
noncoherent stories. Taking the first generated sentence in
Figure 2 as an example, the phrase “a picture of a lake”
generated by AREL is curiously short on detail, while the
phrase “take a boat trip” generated by IRW is informative
and imaginative. In addition, IRW can capture the change
between images to generate reasonable and coherent stories.
For example, the content of the last image is totally differ-
ent from previous images in the image stream. The imag-
ine module in our model first predicts the imaginary concept
“tired” based on the image feature and previous generated
sentence. Then, the reasoning module utilizes the concept
“tired” to reason from the three kinds of graphs, and gener-
ates the sentence “everyone was tired and ready to go home”,
which is coherent with previous generated sentence and con-
forms to human commonsense. However, the phrase gener-
ated by AREL “take a picture” is just reasonable for the last
image, but not coherent to the whole story.

Conclusion

In this paper, we proposed a novel imagine-reason-write
generation framework (IRW) for visual storytelling, inspired
by the logic of humans when they write the story. We lever-
aged an imagining module to learn the imaginative story-
line, which could improve the coherence and reasonabil-
ity of the generated story. Then, we proposed a reasoning
module to fully exploit the external commonsense knowl-
edge and task-specific knowledge (scene graph and event
graph) with relational reasoning method. In this way, the di-
versity and informativeness of the generated story could be
enhanced substantially. Finally, we devised a guiding unit
to integrate the visual and semantic knowledge to generate
human-like stories. Extensive experiments on a benchmark
dataset demonstrated that IRW achieved competitive results
when compared to strong baselines.
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