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Abstract

Learning single-image 3D reconstruction with only 2D im-
ages supervision is a promising research topic. The main
challenge in image-supervised 3D reconstruction is the
shape-pose ambiguity, which means a 2D supervision can be
explained by an erroneous 3D shape from an erroneous pose.
It will introduce high uncertainty and mislead the learning
process. Existed works rely on multi-view images or pose-
aware annotations to resolve the ambiguity. In this paper, we
propose to resolve the ambiguity without extra pose-aware la-
bels or annotations. Our training data is single-view images
from the same object category. To overcome the shape-pose
ambiguity, we introduce a pose-independent GAN to learn the
category-specific shape manifold from the image collections.
With the learned shape space, we resolve the shape-pose am-
biguity in original images by training a pseudo pose regressor.
Finally, we learn a reconstruction network with both the com-
mon re-projection loss and a pose-independent discrimination
loss, making the results plausible from all views. Through
experiments on synthetic and real image datasets, we demon-
strate that our method can perform comparably to existing
methods while not requiring any extra pose-aware annota-
tions, making it more applicable and adaptable.

Introduction

Recovering 3D shape from a single image is a classical ill-
posed problem in computer vision, requiring the prior of 3D
shapes. Different from common 3D-supervised reconstruc-
tion methods (Choy et al. 2016; Fan, Su, and Guibas 2017;
Wang et al. 2018; Mescheder et al. 2019), it becomes popu-
lar to learn an image-supervised 3D reconstruction recently.
The core idea in image-supervised reconstruction is the re-
projection, which requires the model to predict a shape that
looks like the input image.

Many works use multiple views per object for train-
ing (Yan et al. 2016; Insafutdinov and Dosovitskiy 2018;
Kato, Ushiku, and Harada 2018; Liu et al. 2019). However,
learning to reconstruct with only single-view image collec-
tions remains challenging. The main challenge is the shape-
pose ambiguity, which means an erroneous shape and pose
can produce a 2D observation that closely matches the input
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Figure 1: An example of shape-pose ambiguity. The three
models are all trained with the same single-view image
dataset. The two baselines are trained with the re-projection
loss. (a) With the viewpoint annotations, the ambiguity is
eliminated, and the model can learn meaningful reconstruc-
tion. (b) Without viewpoint annotations, the result looks
plausible from the original viewpoint, but not correct from
other viewpoints. (¢) Our method can learn a correct 3D re-
construction without any viewpoint annotations.

image. This ambiguity can easily be eliminated with multi-
view images because it is unlikely for an incorrect shape to
match the multiple views at the same time. However, the
ambiguity becomes difficult to resolve when we only have a
single-view image for each object.

Affected by the shape-pose ambiguity, we can not achieve
meaningful reconstructions with the re-projection loss be-
cause the loss is pose-relevant and suffers from the ambi-
guity. An example is shown in Fig 1: if we provide the
model with viewpoint annotations, then the pose is precise
(the viewpoint and the pose are equivalent concepts in this
work), and the ambiguity is eliminated. The model can learn



a plausible reconstruction (top row). If we block the view-
point annotations and require the model to predict both the
pose and the shape, it fails to produce meaningful results
(middle row). The shape-pose ambiguity confuses the model
and leads it to get inaccurate training signals from the re-
projection. To handle the problem, some works rely on extra
pose-aware annotation (Kato and Harada 2019; Kanazawa
et al. 2018; Li et al. 2020) to help eliminate the ambiguity.
However, these extra annotations are tedious and limit the
adaptability. In this paper, we try to solve the problem with-
out any extra pose-aware annotations.

The key to our method is a category-specific shape mani-
fold estimation by a pose-independent GAN. We use a pose-
independent discrimination loss instead of the pose-aware
re-projection loss to help estimate the shape manifold. More
specifically, a discriminator takes the training images from
the same category of various poses as real samples and the
projections of generated 3D shapes of any pose as fake sam-
ples. A 3D generator is required to fool the discriminator.
As the discriminator is pose-independent, the generator has
to produce plausible 3D shapes from any poses. Note that
all images are from the same object category, so the dis-
criminator can learn the effective category prior to guide the
generator even without access to the pose annotations.

After learning the category-specific shapes manifold, we
resolve the shape-pose ambiguity in the original images by
training an image pose regressor. We train it with the ren-
dered images of sampling shapes from the estimated shapes
manifold. Then the pose can be disentangled from the im-
ages by predicting the pose label with the pose regressor.
Finally, with the training images and the predicted poses, a
reconstruction model is trained with both the re-projection
loss from the predicted pose and a discrimination loss from
other poses, making the results plausible from all views. Our
contribution can be summarized as follows:

e We propose a 3D reconstruction framework which only
requires unlabeled single-view image collections as train-
ing data.

e We reveal that, without extra pose-aware cues or annota-
tions, it is possible to resolve the shape-pose ambiguity in
single-view images from the same object category.

e We conduct comprehensive experiments on public
datasets, including both synthetic and real images. The
results show that our method can achieve comparable re-
sults to other methods using extra annotations.

Related Works

We overview related works from the aspects of supervision
and classify them into 3D-supervised methods, multi-view-
supervised methods, and single-view-supervised methods.

3D-supervised Methods

Many methods take the 3D annotations and correspond-
ing 2D image as supervision. The representation of em-
ployed 3D annotation includes voxel (Choy et al. 2016;
Wu et al. 2017), point cloud (Fan, Su, and Guibas 2017),

2979

mesh (Groueix et al. 2018; Wang et al. 2018), and sam-
pling values on implicit 3D space function (Park et al.
2019; Mescheder et al. 2019; Chen and Zhang 2019;
Michalkiewicz et al. 2019). The use of the 3D supervision
provides full geometry and structure information of the tar-
get objects, which could be necessary for 3D reconstruction.
With the development of the advanced 3D representation,
well-designed network architecture, and effective loss func-
tions, these methods achieve impressive results. However,
the great difficulty in collecting full 3D supervision limits
the scalability and adaptability of these methods.

Multi-view-supervised Methods

To relieve the burden of collecting 3D supervision, learn-
ing 3D reconstruction with 2D view supervision has re-
cently become popular. Many view-supervised methods pro-
pose differentiable projection operation for comparing the
3D shapes and 2D observations (Yan et al. 2016; Insafutdi-
nov and Dosovitskiy 2018; Kato, Ushiku, and Harada 2018;
Liu et al. 2019). To handle the ambiguity in 2D observations,
these works employ images from different viewpoints of the
same object instance as training data. The multi-view im-
ages provide sufficient information to avoid the shape-pose
ambiguity. The difference between projections of the gener-
ated 3D shape and ground truth images is computed as the
loss to train the model. Although these methods avoid 3D
supervision, multi-view images for each object instance are
still challenging and expensive to obtain in practice.

Single-view-supervised Methods

Some works attempt to train a 3D reconstruction model with
only single-view images. To resolve the shape-pose ambi-
guity, most of them rely on extra pose-aware annotations.
Kato (Kato and Harada 2019) proposes to learn a 3D re-
constructor by introducing adversarial learning to the unob-
served views. They rely on the GT viewpoint labels for re-
projection and discriminator’s condition. Peng (Peng et al.
2021) proposes to disentangle the shape and the pose by in-
troducing the domain adaptation, but they also rely on the
GT viewpoint labels. Kanazawa (Kanazawa et al. 2018) at-
tempts to predict both shape and pose matrix at the same
time. The extra 2D keypoints are used to provide the infor-
mation of pose transformation implicitly. Recently, Wu (Wu,
Rupprecht, and Vedaldi 2020) proposes to learn the 3D re-
construction without pose-aware annotation. However, they
only focus on symmetric objects. Besides, their 2D depth
map representation is not suited to complex object cate-
gories, such as the chairs or tables. Differently, our method
can learn to reconstruct a 3D mesh from complex categories.

Some other works do not use pose-aware annotations but
they make some extra assumptions, including the existence
of dense correspondence between each image and a 3D tem-
plate (Li et al. 2020; Kulkarni, Gupta, and Tulsiani 2019;
Kulkarni et al. 2020) or the uniform pose distribution (Hen-
derson and Ferrari 2018). Differently, our work can recover
the shape and pose information from single-view images
without relying on these assumptions.
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Figure 2: Overview of our method. It contains three main components: (a) a pose-independent 3D GAN for learning
a category-specific shape manifold, (b) a pseudo pose regressor for predicting the pose from input silhouettes, (c) a 3D
reconstruction network trained with both the re-projection and the view discrimination loss.

Proposed Method
Overview

Figure 2 shows an overview of our method. Our training data
are single-view images I with silhouettes Y. Our method
contains some modules: let Proj(-,-) be a differentiable
mesh renderer that takes a 3D mesh and a viewpoint and out-
puts the projection of the given shape from the given view-
point, G(+) be a 3D generator that produces a 3D mesh from
an input code, D(+) be a pose-independent discriminator that
takes a 2D silhouette and outputs the probability that the in-
put is from a target distribution, Rp,s () be a pose regres-
sor that predicts a silhouette’s viewpoint, R(-) be a recon-
structor that outputs a 3D mesh from the input RGB image.
Then, in the first stage, we train the G(-) and the first D(+)
to estimate a category-specific shape distribution. In the sec-
ond stage, the R,os.(-) is learned with the sampling shapes
from the estimated distribution. In the final stage, we em-
ploy the R,0sc(+) to resolve the shape-pose ambiguity in the
re-projection. Then we train the R(-) with the re-projection
loss from the predicted pose and the view discrimination loss
from other poses.

Parametrization for Shapes and Poses

The shape is parameterized as a deformable 3D mesh M.
The initial shape is a unit sphere mesh, represented as ver-
tices Ve and faces F'. For a reconstructed shape M, the net-
work predicts the vertices’ transformation AVe € RN#*3,
where N denotes the number of vertices. The shape is gen-
erated as M = (Ve+AVe, F'). We assume all reconstructed
objects are up-oriented for the pose, and we do not consider
the scale. With this setting, the shape’s pose is equivalent to
the camera’s viewpoints. Following (Henderson and Ferrari
2018; Kato and Harada 2019), we model it as the viewpoint
v = (6, ¢), containing the azimuth 6 € [0,27) and a fixed
elevation ¢ = 30.
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Pose-independent 3D GAN

As mentioned above, the main challenge in single-view
supervised 3D reconstruction is the shape-pose ambiguity.
Without extra pose-aware annotations, the model can hardly
achieve the correct signal from the re-projection loss be-
cause it is related to the uncertain pose.

Unlike the pose-aware re-projection loss, we introduce a
pose-independent discrimination loss to help a 3D generator
estimate the category-specific shapes manifold. The D (-)
is a silhouette discriminator, which is pose-independent and
not concerned about the objects’ poses. It takes training sil-
houettes as real samples and projections of generated 3D
shapes as fake samples. The G(-) is a 3D generator, which
produces a 3D shape from a noise code z and tries to fool the
D1(+). As D1(+) does not distinguish images from different
views, the G(+) has to produce the 3D shapes that look plau-
sible from all views. In this way, we can estimate a manifold
of plausible shapes with G(-) from the single-view images
without viewpoints annotations. In practice, we employ the
WGAN-GP (Gulrajani et al. 2017) to help stabilize the train-
ing. The loss for D (-) is:

Lp,(Y,ZV)= Y Di(Proj(G(z),v)) - 3 Di(y)
z~Zu~V y~Y
+ A (1901 )l — 1)
g~y

ey
Where the Y denotes the training images’ silhouettes. The
Z denotes a Gaussian distribution for the sampling codes.
The V denotes a uniform distribution of viewpoints. The Y
denotes the interpolated space between real and fake sam-
ples (Gulrajani et al. 2017). The A is a weighted parameter
and is set to 10. The loss for G(-) is defined as:



La(Z2,V) == > Di(Proj(G(z),v))

z~Zo~V

@

Pseudo Pose Regressor

After training the G(-), we have estimated the manifold of
plausible 3D shapes. However, it is not enough to learn the
reconstruction. As the shape-pose ambiguity still exists and
we can not map the images to the shapes manifold.

To eliminate the ambiguity, we introduce a pseudo pose
(viewpoint) regressor R,ose(-). Its input is 2D silhouettes
and it predicts the viewpoint, as shown in Figure 2(b). The
training data is generated by the trained G(-). We randomly
generate 3D shapes with GG and pick arbitrary viewpoints v.
Then we project the generated shapes from the picked view-
points. The Rs.(+) is optimized to predict the viewpoints.
Note that the G(-) is free to determine its own canonical
pose of the shape manifold. Hence the Ry, (-)’s predicted
pose coordinate is not aligned to the common canonical co-
ordinate of the object category, so we call it pseudo pose
regressor. The pose regression loss is defined as:

Lg,,.(ZV)= > Angle(v, Ryosc(Proj(G(z),v)))
v~ Viz~Z
3

Where Angle(-,-) means the loss between two viewpoints.
Here we compute the angle between the two viewpoints. Es-
pecially, @ € [0, 27), the 0 and 27 correspond to the same
azimuth, so we define the angle loss as:

Angle (v1,v2) =] atan 2(sin(01 — 62), cos(61 — 62))]
“)

3D Reconstruction with View Discrimination

With the R)sc(-), we can easily resolve the shape-pose am-
biguity in training images by predicting their viewpoint la-
bels. Then a straightforward way to learn the reconstructor
R(-) is training it with the re-projection loss:

L(1LY) = ZIoU (Proj (R (i), Rpose(yi)) s 4i) (5)

7

Where the IoU denotes the intersection-over-union, the
1;,y; denotes the i-th training image and silhouette. How-
ever, as shown in Figure 1(a), the results look worse from
unobserved views when we train the model with only the re-
projection loss. That is because, for the unobserved views,
there is no direct supervision to guide the model.

A possible way to improve the unobserved views is
to introduce the GAN to make these views plausible. In
VPL (Kato and Harada 2019), they use a discriminator to
distinguish observed and unobserved views. Their discrim-
inator receives the pose annotations as extra conditions.
This setting is not suited for our method. In our method,
the Rpose()’s predicted pose may not be strictly consistent
between different object instances. Using the misaligned
pose labels as conditions may disturb the discriminator from
learning correctly across different objects. Hence, we re-
place the pose-aware discriminator with a pose-independent
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discriminator Do (-). It aims to distinguish the projections
from observed and unobserved views while it does not take
extra pose labels as conditions. By confusing the observed
and unobserved views, the supervision signal from the train-
ing images can help improve the unobserved views. The loss
for the Dy () is defined as:

>

iaUva’U?éRpose (yb)

_ Z Do (PT’Oj (R (11) ,Rpose (yv)))

+A S (IVsD2(p)ll, — 1)°

p~P

Lp, (17Y7V) - DQ((PTOJ(R(Zi)vv)))

(6)
Where P denotes the interpolated space between the projec-
tions from observed views and unobserved views.
To fool the Dy (-), the R(-) is required to pull the distribu-
tion of unobserved views’ projections to the distribution of
observed ones. The discrimination loss for R(-) is:

>

7;7UNVaU7éRpose (U'L)

LE(I) = - Dy ((Proj(R(i;),v))) (7)

Following (Liu et al. 2019), we further impose a geometry
loss Lgeo that regularizes the Laplacian of predicted shape
to achieve appealing visual quality. The final loss of the R(+)
is a weighted sum of the three losses:

Lp = L + ALE® + pL§e° (8)

In practice, the A is set to Se-4, and the p is set to Se-3 to
make all loss terms in the close magnitude.

Experiments
Datasets

We test our method on two public datasets. The first is
the ShapeNet’s rendered images (Kato, Ushiku, and Harada
2018). Each object is rendered from 24 viewpoints. We
use the provided train-test split. The second is CUB-200-
2011 (Wah et al. 2011). It contains images of 200 species of
birds. We crop the images around the birds. The open-wings
birds are excluded due to the scarcity of them. We use an
8:2 train-test split. For both two datasets, we use no extra
annotations except the silhouettes for training.

Baselines

We select some single-view supervised methods for com-
parison. For the ShapeNet, we set two trivial baselines.
They employ the same network as ours and are trained
with the re-projection loss. The Baselines (B/Lg) is
pose-supervised, having access to the GT viewpoints. The
Baseline,, (B/L,) is pose-unsupervised, predicting the
pose and the shape. We also compare with the state-of-the-
art view priors learning (VPL) (Kato and Harada 2019). It is
pose-supervised. For the CUB data, we select the state-of-
the-art CMR (Kanazawa et al. 2018) for comparison.
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IoU | B/L, | No | .502 362 .551 .560 .368 381 445 586 463 398 428 473 445 | 459
+ | VPL | No | 513 376 .591 .701 .444 425 422 596 .479 500 .436 .595 .485 | .505

Ours | Yes | .521 331 565 .652 439 376 .460 525 468 .574 397 587 .460 | .489

B/L, | Yes | 351 654 663 660 809 853 902 896 842 873 953 9.60 945|797
CD | B/L, | No | 228 3.69 284 215 640 426 940 547 404 6.14 474 391 285|447
L | VPL | No | 1.56 239 297 1.15 329 364 451 430 130 356 3.80 154 1.67 | 2.74

Ours | Yes | 0.70 2.80 1.66 1.02 490 1.88 11.87 3.06 046 1.80 977 0.74 3.24 | 338

Table 1: Quantitative comparison with the B/L,,, the B/ L, and the VPL (Kato and Harada 2019). The metrics are IoU and
CD(x0.01). Our method outperforms the baselines and is comparable to the VPL, while our method requires no pose labels.
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Figure 3: Qualitative comparison. We show the recon-

structed shapes of each method from the input image’s pose
and another unobserved pose.

Metrics

We use the 3D intersection-over-union (IoU) and the cham-
fer distance (CD) for evaluation. The IoU is computed in 32
voxel resolution, and the chamfer distance is computed on
2048 surface sampled points. As there is no GT 3D data for
the CUB dataset, all quantitative evaluations are conducted
on the ShapeNet dataset. In particular, the canonical pose of
the viewpoint-unsupervised methods (B/L,, and ours) are
not consistent with the GT 3D data. So we search the rota-
tion angle to align the results before evaluating them.

Implementation Details

Each shape has 642 vertices, the same as VPL (Kato and
Harada 2019). We use the differentiable renderer (Liu et al.
2019) as Proj(-). The G(-) has three fully-connected layers,
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generating a 642*3 transformation vector from a noisy vec-
tor. The D(-) has five 2D convolutional layers with ReLU
activation. The R, (-) has five 2D convolutional and two
fully-connected layers, with ReLU activation in between and
a sigmoid activation in the final. The R(-) has a decoder the
same as G(-) and an image encoder of resnet-18 (He et al.
2016). The batch size is 32, and the learning rate is le-4.
We provide more details in the appendix and the code in:
https://github.com/JiejiangWu/Shape-Pose- Ambiguity.

Results on Synthetic Image Dataset

Comparisons with Baselines We report the quantitative
results in Table 1. The results suggest that our method out-
performs the two trivial baselines. Improving over the B/ L
(in which the GT labels eliminates the shape-pose ambigu-
ity) confirms that our method can resolve the shape-pose
ambiguity in the single-view 3D reconstruction. Compared
to the VPL, our method achieves comparable performance.
Given their methods relies on the GT pose labels for training
while our method does not require any pose-aware annota-
tions, our method is more applicable and scalable.

We also present some qualitative reconstruction results in
Figure 3. More results can be found in the supplementary
material. It is clear that: 1) The B/L,,’s results are plausible
from the input poses but wrong from other poses, and the
B/ L’s results are better from these poses. This confirms the
influence of the shape-pose ambiguity. 2) Our results look
plausible from all poses, indicating our method resolves the
ambiguity successfully. 3) Our results are similar to VPL’s in
general outlines but more smooth on the surface. It is caused
by the difference in the renderer module (Liu et al. 2019).
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airplane  car  chair
shape manifold 476 556 361
learned reconstruction 521 .652 439

Table 2: Quantitative comparison on IoU between the shape
manifold and the learned reconstruction.

This explains why our method is slightly worse than VPL
on IoU while better on CD in most categories. Because the
CD is highly sensitive to the surface, but the IoU is not.

Pose Prediction Our method can predict the pose of ob-
jects in an unsupervised way. However, as the model is free
to determine the canonical pose, it is impossible to evaluate
the result by comparing it with the GT pose labels. Instead,
we visualize the distribution of both predicted and GT poses
for qualitative evaluation. Especially, in the dataset, the ele-
vation is fixed to 30, so we only visualize the azimuths’ dis-
tribution. The Figure 4 shows the result. Our method’s pre-
dicted distribution is close to the real distribution, demon-
strating it has learned correct pose information.

Robust to the Distribution of Training Poses The poses
in the dataset (Kato, Ushiku, and Harada 2018) are uni-
formly and densely distributed. However, in most image
datasets, the poses are often distributed in a non-uniform
and sparse way. To check whether our method is robust
to the distribution of the training images’ poses, we sam-
ple some subsets from the original dataset and train the
model. Especially, let 0 —23 denotes the 24 poses (azimuths)
in the dataset, we make four subsets with different poses
distribution. First: {0,2,4,6,8,12,14, 16, 18, 20,22}. It is
relatively sparse in distribution. Second: {0,6,12,18}. Tt
contains four poses, which are extremely sparse. Third:
{0,4,5,6,12,18}. It is sparse and non-uniform distributed.
Fourth: {0,6,10,11,12,18}. It is similar to the third. We
respectively train the model with four subsets and evalu-
ate it with the same test set, containing images from all
poses. The results are reported in Figure 5. We can find that,
even trained with sparse and non-uniform poses, the model
achieves similar performance. This experiment confirms our
method’s robustness.

Ablation Study Due to the page limitation, we only report

three categories’ results here. Others are in the appendix.
First, is the learned reconstruction necessary? With the

learned shape manifold, an alternative way for reconstruc-
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tion is to cooperate the G(-) with an image encoder, in-
stead of training the R(-) from scratch. We report the quan-
titative comparison in Table 2. We can find that training
the reconstructor from scratch significantly outperforms us-
ing the trained G(-). Some qualitative examples are shown
in Figure 6. The shapes generated by G(-) miss some de-
tails (in the red box) but are improved and corrected (in the
green box) with the learned reconstruction. The reason is
that the G(-) is trained without the re-projection loss, so
it can produce plausible shapes but probably ignore mean-
ingful details. This experiment indicates, for 2D-supervised
3D reconstruction, optimizing the shape decoder with the
re-projection loss is necessary and essential.

Second, is the pose-independent discriminator neces-
sary? As mentioned above, we emphasized the impor-
tance of employing a pose-independent discriminator (PID)
rather than a pose-aware discriminator (PAD). We validate
this statement with an experiment. We replace the pose-
independent discriminator D5 (-) with a pose-aware discrim-



airplane  car  chair
PAD 410 344 325
PID 521 .652 439

Table 3: Quantitative comparison on IoU between the mod-
els trained with the PAD and the PID.
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Figure 8: Qualitative comparison between the

CMR (Kanazawa et al. 2018) and our method.

inator PAD(-), which receives the predicted viewpoint of
the image from R, (-) as extra condition. Its architecture
follows (Kato and Harada 2019). The quantitative results are
reported in Table 3, and some qualitative results are shown
in Figure 7. Obviously, the model with PID outperforms
the model with PAD, verifying the necessity of using the
pose-independent discriminator in our method.

Results on Real Image Dataset

Qualitative Reconstruction Results We test our method
on the real image dataset: CUB-200-2011 (Wah et al. 2011).
We compare our method with the CMR (Kanazawa et al.
2018), which uses extra 2D keypoints on this dataset for re-
construction. We present the qualitative results in Figure 8. It
can be observed that 1) our results are more diverse in geom-
etry and more similar to the input images. A possible reason
is that CMR performs the SFM on 2D keypoints to obtain
a template mesh. This process may restrict their method of
generating diverse results. 2) CMR’s results are more plau-
sible than ours in some details. For example, the abdomen of
the bird in row 2,3. That is not surprising as they have access
to the GT 2D keypoints, providing more information about
the detailed geometry. Without using the 2D keypoints an-
notations, our method achieves comparable results to CMR.

Images Clustering by Pose With our method, we can
learn the pose information contained in the dataset. We use
the pose regressor to predict a viewpoint label for each im-
age and visualize the pose distribution in Figure 9. As there
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Figure 9: The distribution of predicted poses in CUB. We
visualize the distribution and some sampled images.

is no ground-truth pose for comparison, we additionally vi-
sualize some sampled images for some cluster bins. From
the visualization, we can tell that: 1) The images in CUB-
200-2011 are not balanced in the pose. The images are taken
more from the sides than from the front. 2) The images from
the same bin share similar poses, confirming that our method
has learned correctly to resolve the shape-pose ambiguity,
even for the natural images with various appearances.

Conclusion and Future Work

In this paper, we propose to learn the 3D reconstruction by
resolving the shape-pose ambiguity in single-view images.
Experimental results on both synthetic and natural images
show that 1) it is possible to resolve the shape-pose ambi-
guity in images from the same object category, without any
pose-aware labels or annotations. 2) We can achieve compa-
rable results to previous 3D reconstruction methods, demon-
strating that the pose-aware annotations are unnecessary in
2D-supervised 3D reconstruction.

Though our method improves performance on image-
supervised 3D reconstruction, it relies on silhouettes for
training. Training end-to-end 3D reconstruction and silhou-
ette segmentation would be a promising future direction. Be-
sides, another interesting direction is to introduce the im-
plicit 3D representation(Mescheder et al. 2019; Park et al.
2019), which may further improve the results.
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